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ABSTRACT 

As we currently live in an information age, it is essential to 
prepare the next generation for a professional life characterised by 
continuous learning. It is important to teach students at an early 
age how they develop themselves to become effective planners 
and learners (Christie & Kumar, 2018). However, this is a 
daunting task to assign to the primary school teachers, who 
already deal with a high workload (Hagen, 2019; TNO, 2019). In 
order to relieve some of this workload, Taaldiertje was developed, 
with the aim of helping children to learn how to effectively plan 
and learn word lists. Taaldiertje’s XAI contains two Support 
Vector Regression (SVR) models, each using the same 7 inputs 
and generating one of two outputs: a prediction of the score 
improvement or a prediction of the amount of time an exercise 
would take. These two outputs are fed into a comparative 
algorithm, and results in recommendations for the student, which 
are presented to the student through a web application running on 
NodeJS. The AI has been validated using the LeaveOneOut 
method in order to determine the R-squared error values for both 
outputs. Taaldiertje is currently not yet a single system, but both 
the AI and the web application are functioning and ready for 
merging. Once the systems are combined, Taaldiertje will be 
ready for deployment, and validation with the target user group 
could start. 
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1.  INTRODUCTION 
1.1  Problem analysis 
We currently live in an information age, and in order to keep up 
with the constant flow of information thrown at us, we need to 
develop skills that help us become lifelong learners (Christie & 
Kumar, 2018). In order to prepare the next generation for what is 
essentially a life characterised by continuous learning, it is 
important to teach children how to become effective planners and 
learners from a young age.  
 
Yet, monitoring individual planning skills of each and every 
student would be  a daunting task. The task could be assigned to 
the primary school teachers, however quality is limited by the 
busy work schedules of teachers: a questionnaire under eight 
groups of people actively in education show that the introduction 
of ‘passend onderwijs,’ while having many benefits, has the 

downside of increased work pressure on teachers (Dienst 
Uitvoering Onderwijs & Algemeen Dagblad, 2015). The survey 
included 1668 participants of which 955 were active in primary 
school education. The participants concluded that the work 
pressure with the introduction of this new format of education has 
further increased which means that teachers lack the necessary 
time for personalized guidance for all students.  
 
This increased work pressure amongst other factors contributes to 
the significant increase in burn-out symptoms among primary 
school teachers. Research performed by the TNO for the Dutch 
ministry of Education states that 22,1% of all educational workers 
have burn-out symptoms compared to 15,6% among other 
workers. This research also concludes that the percentage of 
educational workers with burn-out symptoms has increased most 
significantly among primary school teachers compared to teachers 
in other educational environments such as high schools and higher 
education (Hagen, 2019; TNO, 2019). Considering these 
important factors, we aim to assist primary school teachers in 
teaching  students how to plan their homework tasks.  
 
To achieve this task, Taaldiertje is developed. By using 
explainable artificial intelligence  (XAI) integrated in a webapp, 
Taaldiertje aims to help students aged 10-12 to effectively plan 
and learn word lists. The AI will be able to predict how long a 
specific task will take and the potential improvement a student 
will make by practising, and give planning recommendations 
based on this. When this system will be implemented in a 
classroom of primary school students it aims at reducing the 
workload of primary school teachers while simultaneously 
providing students with the skills they need in their future 
professional careers and to fully develop into lifelong learners 
which this information age requires them to be.  
 

1.2  Related works 
1.2.1 Self-Regulated learning 
In general, Self-Regulated learning can be described as the ability 
to initiate, regulate and reflect on activities independently and is 
based on the interaction between 3 key components: motivation, 
cognition and metacognition (Zimmerman, 1990). Motivation 
refers to task selection, initiation of the task and the effort and 
persistence during the task. Cognition covers conceptual and 
strategic knowledge and the ability to apply the right strategies for 
the task at hand. Metacognition is the component that refers to 
both the knowledge and regulation of the person’s own 
cognitions. This also includes the observation and assessment of 
one’s own acting and thinking (Dörr & Perels, 2019). 
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But up to 2007 it was only researched among upper elementary 
grades through college. This was because of the wide belief that 
children under 10 years old had difficulty coordinating the 
cognitive and metacognitive processes required to complete 
complex, multifaceted tasks (Adagideli, Saraç & Ader, 2017). 
According to research conducted by Whitebread, Bingham, Grau, 
Pino Pasternak and Sangster (Whitebread, Bingham, Grau, Pino 
Pasternak, & Sangster, 2007), studies done within a laboratory 
setting and other studies based on children’s self-reported data 
have been shown to underestimate young children’s abilities when 
it comes to self-regulated learning. While studying children in a 
natural setting and while performing familiar tasks, it showed that 
young children are indeed capable of and engage in self-regulated 
learning (Whitebread & Coltman, 2010).  
 

1.2.2 Explainable AI 
Research about explainable AI often goes hand in hand with 
research looking into making reliable systems that can cooperate 
with humans (Tulli, 2020). Making sure that the expected agent 
behaviour closely resembles the actual agent behaviour secures a 
better cooperation between the human and the system (Rader, 
Cotter, & Cho, 2018). Research done by Friedrich and Zanker 
(2011, p. 90) classifies AI explanation in two categories: “white 
box” and “black box”. How explanations describe a “white box” 
system and explains elements such as inputs and outputs and what 
the system does to get to particular outcomes. These explanations 
bridge the gap between the working system and the user 
interacting with the system. Why explanations treat the system as 
a “black box”, justifying the system’s actions and choices, but 
these explanations do not explain how the system comes to certain 
conclusions. Why explanations do help the user determine 
whether their goals match the system’s goals, and when users feel 
like they understand a system’s recommendations, they’ll be more 
comfortable following these recommendations for themselves 
(Sinha & Swearingen, 2002).  
 
The research done by Rader, Cotter, and Cho (2018) also 
describes different functions of transparency within systems: 
creating awareness that there’s a working algorithm in a system, 
evaluate the correctness of the outputs users might experience 
when working with a system, making the system’s behaviour 
interpretable and helping users feel comfortable acting on the 
outputs and governing a system through accountability.  
 
1.2.3 Existing solutions 
JARET is an AI powered web application designed to help 
students create a homework and study schedule (Schwabe, 2020). 
The interface is a weekly calendar view where students can 
double click to add events and goals such as classes, tests and due 
dates. The student can also add an estimate for the required time 
this task will take. JARET also has settings where students can 
indicate certain preferences such as when they want to study 
(morning/evening) or when to review knowledge for tests (in 
advance/hours before). JARET’s AI system will then recommend 
a schedule based on the student’s inputs and preferences, which 
students can edit and then load into their personal calendar app. 
JARET is currently still in development and they are working on 
self-reflection and finer adjustments.  
 
JARET is capable of generating a planning based on a set amount 
of inputs in combination with user preferences. What JARET 
lacks is a system to automatically keep track of results of the 

performed tasks. Since Taaldiertje is aimed at younger students, 
result tracking might be beneficial to them in order for Taaldiertje 
to effectively help these students. Furthermore, JARET is a tool 
which can propose a planning students can then import into their 
own personal calendar, where primary school students might 
benefit from a Taaldiertje system where everything is in the same 
place.  
 
FRACTOS focuses on the mathematical problem of fractions, and 
aims to help children with this mathematical challenge by 
providing a virtual peer and a system based on simplifying 
fractions using LEGO style blocks in order to help the child 
(Krishna, Pelachaud, & Kappas, 2020). This system is also 
heavily based on self-regulated learning and aims to emphasize 
the child on the different phases such as planning, performance 
and reflection. FRACTOS is a Unity3d built game that can be 
played on a tablet together with a virtual tutor and a robot peer 
which are both partially controlled by a human wizard to make 
sure the interaction stays on topic. The system was showcased to 
the public for a pilot interaction with 25 children at a science 
festival. It gathered positive feedback on agent perception and 
task engagement. Their next step is to deploy FRACTOS in 
primary schools.  
 
FRACTOS provides a proper interaction between the child and 
the system which remains on topic. Furthermore it focuses on the 
mathematical problem of fractions, which means that the setting is 
very on topic and controlled when using the system since it 
doesn’t divert to various different other topics within 
mathematical knowledge.  
 

2. METHOD & MATERIALS 
The related Dutch word-learning platform WRTS, was considered 
as a source of inspiration for this project (WRTS, n.d.). Within 
this methodology, it will be explained how our regressor predicts 
the time and the score of the next learning session through two 
separately trained models. These outputs are necessary to 
determine the optimal planning for the student. The aim of the AI 
is that the student should master each list sufficiently, with a 
preference for the list(s) that the student will achieve most 
progress.  

2.1 Methods & Approach 
2.1.1  Regression 
A Support Vector Regression (SVR) is used for multiple 
independent variables (inputs) that have a plausible correlation 
with one or more dependent variables (outputs) (NCSS Statistical 
Software, n.d.). Hence, it was decided to use two SVRs for 
Taaldiertje. Regression has several methods of prediction 
including linear and nonlinear regression. Linear regression does 
not have to be linear in its plot, but it is always linear in its 
parameters. Consequently, the linear regression line could fit other 
shapes of data (U-form) since the independent variables could be 
squared in the formula, while the parameters will have a linear 
relation (NCSS Statistical Software, n.d.). Still, linear regression 
is mostly applied to get an estimation of a relation or when there 
is certainty that the relation will be linear. For more complex 
problems which do not fit a linear model, a nonlinear regression 
should be used (NCSS Statistical Software, n.d.). As there was no 
indication that the data would behave linearly the decision was 
made to use a nonlinear regression model.  



The two regression models will be trained on general user data. 
After deployment they will be partially fitted with the data from 
the specific user, to get more accurate results for each individual 
student. 
 
2.1.2  Inputs & Outputs 
Seven inputs have been defined for the AI, with two 
corresponding outputs, one for each regressor (Appendix IV). 
These inputs were selected as they are easily accessible within the 
online environment, and because we suspected they would be 
indicative of the selected outputs: 

• Proficiency Level   [1 or 2] 

• Dutch   [true or false] 

• English   [true or false] 

• Amount of Words   [n] 

• Previous Time   [in minutes] 

• Times Practiced   [n] 

• Percentage Correct   [in %] 

 
The input ‘Proficiency Level’ specifies at which speed the student 
learns either Dutch or English words, depending on the list at 
hand, and is determined by the teacher (ScienceGuide, 2017).  
Level 1 means that the student will need relatively much time to 
learn words of the corresponding language, while level 2 means 
the student will learn this language relatively efficiently. Due to 
how the education program of Dutch preliminary schools is set 
up, the language choices are limited to two inputs, namely ‘Dutch’ 
and ‘English’ (Persson, 2017). Dutch word lists are used for 
vocabulary training using synonyms, and English lists are used for 
learning English translations. Within the current AI there is no 
distinction between the different learning directions (English to 
Dutch, or Dutch to English). As regressors do not accept 
categories as inputs, the languages each have an individual 
column with true (1) or false (0) as inputs. 
 
Further, the inputs ‘Amount of Words’, ‘Previous Time’, ‘Times 
Practiced’ and ‘Percentage Correct’ are used since these are 
suspected to correlate with the predicted time and score. For 
example, it is plausible that it takes more time to master a list with 
more words, because the list is actually longer and the student has 
to memorize more words. 
 
2.1.3  Datafile 
In order to train the AI, a datafile was generated. WRTS was 
contacted for potentially providing statistics of learning 
performances as a precedent for the generation of this datafile, but 
unfortunately could not share it with us. Additionally, there was 
no literature found that could provide the specific information 
needed. Hence, the datafile was generated based on personal 
experience. Furthermore the datafile is relatively small to test the 
performance of the AI with limited training data. Although it is  
not ideal to use a made-up dataset, it could give an indication 
whether the selected model would be suitable for the task at hand. 
 
The nonlinear regression was implemented using Jupyter 
Notebook 5.0.0 with Python 3 (Pérez & Granger, 2015). With the 
pandas library (The pandas development team, 2020), a data 
frame was created. The variables were further converted to 

NumPy arrays to obtain a readable format. The use of other 
libraries and the working of the learning algorithm will be 
explained in the next section (2.2 Learning Algorithm).  
 
2.1.4 Web application 
For the embodiment of the learning algorithm, a webapp with an 
avatar was created (Figure 1). The advantages of using a webapp 
is that it provides a very controlled environment, in which the AI 
can directly obtain its necessary inputs, and external interaction 
with the agent is inherently limited. The webapp is made using 
NodeJS (OpenJS Foundation, 2020), ReactJS (ReactJS, 2020), 
MongoDB, Express (Express, 2020), Redux (Redux, 2020), and 
Bootstrap (Bootstrap, 2020).  

The avatar was created to represent the learning algorithm itself: it 
was opted to go for cartoon animal, as it can convey information 
through different cues (e.g. gaze, facial expression, pointing), and 
as we suspect it to be easier for the child to question its advice: we 
wanted the child to explore what he/she thinks is best, even if this 
does not align with the AI’s advice. This way the child would 
have room to learn from his/her mistakes (Dinkmeyer & Dreikurs, 
2000). 

 
Figure 1: Web application showing the implementation of the AI. 

2.2 Learning algorithm 
2.2.1  Machine Learning 
As mentioned previously, the optimal solution for predicting the 
time estimation and the score prediction after practicing a list is 
through a regression. Several options within regression were 
explored, but due to the nature of the problem a decision was 
made to use Support Vector Machine (SVM) (Noble, 2006). The 
opportunities of this method include the opportunity to use 
different dimensions of data and it does not suffer massively from 
limited samples (Durgesh & Lekha, 2010). Furthermore the 
method has proven to provide excellent accuracy on well-defined 
problems with clear inputs and outputs (Son, Kim & Kim, 2012). 
For these reasons the choice was made to implement SVM 
learning into the planning AI used in Taaldiertje. 
 
2.2.2  Scikit-learn 
Scikit-Learn (Sklearn) is an open source, commercially usable 
library developed to implement machine learning in the Python 
programming environment (Pedregosa et al, 2011). Sklearn is 
developed to be used both by experienced and inexperienced 
programmers and provides the user with examples for their 
different regression, classification and clustering algorithms. The 
SVM example code provided a strong and verified basis for the 



creation of the Taaldiertje planning AI (Pedregosa et al, n.d.-a). 
Both fitting the data and predicting outputs based on training data 
was already functional. Simply inserting the training data, based 
on the planning problem which this paper focuses on, immediately 
provided the opportunity to predict outputs based on inputs. This 
provided room to focus on the optimization of the AI, by 
investigating the effect of the Regularization parameter and the 
Epsilon parameter (See chapter 2.2.3 & 2.2.4). 
 
2.2.3 Optimization of Regularization parameter (C) 
The model can be optimized on two main parameters. The first 
parameter is the Regularization parameter (C). This influences the 
model complexity, increasing C will force the model to attempt to 
incorporate individual data entries more in the prediction of the 
model (Zhang, Li & Tsai, 2010). This means the model will be 
altered to prevent underfitting. Complexity is increased by being 
more precise, straying away from an averaging prediction curve. 
This allows it to better predict inputs similar to existing training 
data. This however comes at the cost of risking overfitting 
(Zhang, Li & Tsai, 2010). Putting a higher importance on 
incorporating individual data points means that the model could 
simply output the learning data output and not adapt to new 
inputs. This obviously leads to increased error rates as new inputs 
do include a certain randomness based on human inconsistency.   
 
Due to the fairly simple model combined with the small datafile 
the optimal Regularization parameter (C) can be found by 
monitoring the R^2 value while systematically changing the C 
value. The model is tested using the same method used to test the 
initial model (see chapter 3.3.1 Validation). In Figure 2 the results 
for the optimization of the predicted score SVM is visualized. The 
optimal C value for the predicted score model is C=1024|R2=.94. 
In Figure 3 the results for the optimization of the predicted time 
required for practicing the list is visualized. The optimal C value 
for the practice time estimation model is C=64|R2=.91. The 
improvement from the base model is significant and provides the 
model with trustworthy validated results. 

 
Figure 2: Test results of the Influence of the Regularization parameter in the score 
prediction SVM model. The R2 error calculated using LeaveOneOut is visualized 
against the different tested regularization parameters. 

 
Figure 3: Test results of the Influence of the Regularization parameter in the time 
prediction SVM model. The R2 error calculated using LeaveOneOut is visualized 
against the different tested regularization parameters. 

2.2.4  Optimization of the Epsilon parameter (e) 
The second free parameter in SVM models is the Epsilon 
parameter. This variable influences the free play that is allowed 
within the model before a penalty is applied. This allows the 
model more freedom to find patterns and prevent overfitting. The 
optimal value for this variable can be found through an algorithm 
specialized in discovering the clusters in the training data (Ester, 
Kriegel, Sander, & Xu, 1996). Alternatively similar to the 
Regularization parameter the method of trial and error can be used 
to monitor the error rates while inserting different e values. 

In order to find the optimal Epsilon value for the prediction model 
the method proposed by Ester, et al (1996) was used. Within 
Python this is implemented by looking at the clusters with 
arbitrary shapes (Maklin, 2019). This resulted in the output shown 
in Figure 4. The optimal Epsilon value is defined at the place in 
the graph where the incline changes, for this analysis epsilon=7. 

 
Figure 4: Calculating the optimal epsilon value using the method proposed by Ester, 
et al (1996) 

However, when rerunning the model with the new defined epsilon 
value showed an increase in error from 
Rscore2(epsilon=default(.1))=.94 to Rscore2(epsilon=.1)=.88. 
And Rtime2(epsilon=default(.1))=.91 to Rtime2(epsilon=.1)=.41. 
For this reason the decision was made to optimize epsilon through 
model testing and again a for loop was created testing different 
epsilon values. The optimal epsilon value found for the score 
prediction model is epsilon=.1| Rscore2=0.94 (Figure 5.). The 
optimal epsilon value for the time prediction is  epsilon=.65| 
Rtime2=.92 (Figure 6.). 



 
Figure 5: Testing the influence of the epsilon parameter on the score prediction SVM 
model. The R2 error calculated using LeaveOneOut is visualized against the different 
tested Epsilon parameters. 

 
Figure 6: Testing the influence of the epsilon parameter on the time prediction SVM 
model. The R2 error calculated using LeaveOneOut is visualized against the different 
tested Epsilon parameters. 

 

2.2.5  Comparative formula 
A comparative algorithm was created to determine the ‘decision-
making’ process of the AI, when defining a suggestion. It is 
important that the agent, Taaldiertje, will first make sure that 
every list is mastered sufficiently (60% in this design, however 
changeable according to teacher input). Although, regression and 
the comparative algorithm could work with multiple outputs; the 
decision was made to work with two separate outputs. This is 
because of the small dataset, which will then be run twice for each 
output; to get a more accurate result. 
 
The output of the comparative algorithm is combined and then 
weighed against important classifiers that arrange the different 
lists that the student has to master on improvement potential. This 
is to make sure that students who excel in a certain learning task 
don’t get advised to spend too much time learning this as the 
trade-off would be racking up insufficient grades on more difficult 
tasks. 
 
2.2.5.1 Formula parameters  
The comparative algorithm includes the following elements: 
Current score percentage, Predicted score percentage, estimated 
time and the amount of words in the list. The formula is optimized 
through examples. Inputs are generated by the programmers 
which are then inserted into the formula. The results are examined 
and the formula altered accordingly. Below the formula will be 
explained. 

 
First the improvement is calculated by subtracting the current 
score from the predicted score after practicing the list:  
 

 
 

 
This improvement is sent to a conditional formula, which favours 
lists which currently score insufficient (below 60% correct) over 
lists that already have a passing grade (over 60% correct). This is 
to make sure the student does not prioritize the lists in which he 
makes progress quickest. Furthermore the effect is also solidified 
in the multiplication factor, which decreases if the old score is 
higher. This effect also applies above 60% correct.    

 

 

 

Next the amount of words is included in the classification. 
Students who improve a list by 5% which contains 20 words are 
inferior to students improving 5% on a list containing 50 words. 
 

The final score that will be used to indicate which list improves 
the most in the set amount of time is calculated here. All previous 
calculations are compensated for the time it takes the student to 
practice the list. This way the AI of Taaldiertje is able to optimize 
the time the student has available to receive the best result. 
 

 

3.     DESIGN 

3.1   Design of the interaction 
The design of the interaction with the webapp takes place in the 
classroom: every week (or other set period of time), the child has 
to learn a set of wordlists in either Dutch or English. At the end of 
the week, the child will have a test on all these lists. During the 
week, the child will have fixed time available to learn the lists, but 
is free to choose what lists to prioritize. By doing so, the child 
gradually learns how to determine which lists to prioritize, and 
estimate how long it would take to finish the corresponding task. 
The tasks consist of an automatically generated exercise based on 
the selected word list, which he/she can then practise with. 
 
On the first day of the week the child receives all the lists, and is 
able to view them. The child can then go to the planning interface, 
where it will see Taaldiertje, together with the lists that have to be 
learned. Students are encouraged to practise all the lists at least 
once, to give the AI a baseline but also for their own 
understanding of the task at hand. Taaldiertje embodies the AI, 



and the information on the lists which is displayed on the page is 
also the information that is sent to the AI. Based on this 
information, Taaldiertje calculates which list would be most 
beneficial to learn first. It then uses its gaze to subtly provide hints 
to the user. The child is free to plan whatever lists it thinks are 
best by dragging it to the planning, and entering how much time 
he/she thinks the exercise would take. The planning fills up 
according to how much time the child thinks it will take to do the 
exercises. When the child deems the planning ready, he/she can 
click on next, where Taaldiertje will give suggestions on whether 
it thinks the time estimations are feasible/accurate. The child can 
choose either to ignore them or change the times accordingly.  
 
The child can then proceed to doing their exercises: after the child 
selects a wordlist, the web app will automatically create an 
exercise in which every word is presented and the child has to 
give the translation. If the answer is right, the next word is 
displayed; if it is wrong, the webapp shows the correct answer, 
and will present that specific word again after the other words 
have been practised. This repeats until the child has answered all 
the words correctly. At the end of the exercise, the total time is 
displayed together with a score based on the total amount the 
student had correct the first try. If the list had been practiced 
before, previous results are shown as well.  

 

3.2    Intelligent Behaviour and Embodiment 
In this concept, the avatar is the embodiment of the AI, and 
mainly responsible for all explainability surrounding the AI: it 
makes the algorithm more transparent, as everything the avatar 
sees, the AI can also “see” and is used as input; it creates 
awareness of where the AI is functioning, through the avatars 
presence; it makes the systems behaviour interpretable, though the 
explanations given by the avatar; it shows the accountability lies 
with the child, as it ultimately has to make the decision whether to 
accept or reject the suggestions. 
 
As described before the datafile is created without a reliable 
connection to learning performances. In the actual design context, 
it is proposed to get access towards general statistics about 
learning performances of the target group. This way, a formula 
could be defined to create a datafile based on realistic learning 
performances. This datafile will function as a baseline for 
suggestions when a student uses the AI for the first time. The 
avatar could intuitively look more or less confident about the 
suggestion, which is further supported with an optional text 
explanation; to make the student aware of the suggestion’s 
correctness. The suggestions’ quality will increase when the AI is 
more acquainted with a specific user’s learning performances and 
preference of suggestions. Meaning, the general baseline gets 
adapted due to the learning behaviour of the AI. The validation of 
the learning algorithm will be discussed in the next section (3.3 
Test and Analysis).  
 
3.2.1 State Diagram 
This design is validated based on a state machine. In order to 
visualize this, a state diagram was created (Figure 7, 8 and 9). It 
presents the function and change in states of the AI with regard to 
specific user actions.  The decision was made to use a state 
diagram validation instead of a flowchart, because the design is 
based on explicit events and not on nodes (flowchart). Hence, the 
state machine performs actions in response to explicit events that 
can be detected as sensory readings of the cure state, instead of 

making ‘automatic’ node to node transitions. This diagram 
supports the possibility of going back and forth between states, 
with an explicit definition of these states.       
 
With regard to the learning algorithm used in this project, the state 
diagram shows the state changes of the AI. The explicit state of 
the agent pointing at the favoured list, is based on previous 
information that was fed back via the personalized list scores. 
Both states of accepting or rejecting the AI’s suggestion will be 
fed back to the personalized AI prediction. Additionally, this 
happens with the previous score and other inputs; which makes 
sure that the AI learns from a specific student’s performances. 
 
The state diagrams shows the behaviour of the agent during the 
students planning and reflecting stage. The agent based on 
previously mentioned inputs gazes at the optimal list to practise. 
This remains the case until the student makes his decision. At this 
point the AI recalculates the optimal list which means the gaze 
could change, but also remain the same if that list is best to 
practise twice. This same behaviour occurs when the student 
reviews his planning during the reflecting phase, however here the 
virtual agent directly points at a list. 

Figure 7: State diagram going from inactive to initial planning 
phase to reflecting on planning 

Figure 8:State diagram during student planning phase. This circular state 
diagram also applies to the pointing behaviour during the reflecting on the 

created planning phase. 

 

Figure 9: Student can ask for additional explanation by clicking on 
the virtual agent. The student can ask for additional information in 

both in planning phase and reflecting on planning phase. 



3.3    Testing and analysis 
3.3.1    Validation 
Validation of the created AI is done through the cross validation 
method LeaveOneOut (Pedregosa et al, n.d.-b). This method 
extracts each unique input/output combination from the training 
data and tests this against the predicted variable based on the 
remaining variables trained model. Due to the looping nature of 
this method it works best for relatively small datasets, which is 
applicable to the training data used in the Taaldiertje concept 
validation. When the data set increases this method could be 
converted to approaches that apply more random testing, since 
validity then follows through the randomness in larger datafiles. 
Examples within the Sklearn library that can be used to validate 
larger datasets are KFold, ShuffleSplit or StratifiedKFold 
(Pedregosa et al, n.d.-b). 
 

4.     CONCLUSIONS 
In this paper, we presented Taaldiertje, a web app aimed to help 
primary school students effectively plan and learn word lists. We 
have demonstrated the functionality of this web app together with 
an extensive validation of the machine learning implemented. 
Currently, the prototype is split up in two parts: the Web App 
running in NodeJS and the AI running in Python, and are nearly 
ready to be combined.  
 
The SVM regressors were optimized and reached an accuracy 
score of R2= .94 and R2 = .92 for the score- and time-predictions 
respectively. These scores were calculated using the Leave-One-
Out validation method. 
 
A virtual agent, Taaldiertje, is used to make the algorithm 
comprehensible for the students. The information that is fed to the 
AI is “visible” both to the agent as well as the student, as they are 
displayed on the same page. In future iterations, it is envisioned to 
have Taaldiertje also give a written explanation of what variables 
it based its decision on. 
 
The Web App is in a state near completion. Currently, the 
researchers have to input the word lists manually, and the 
connection to the Python environment is not yet fully functioning 
due to library issues. Once these issues are addressed, the Web 
App would be ready for deployment, and validation with the 
target user group could start. 
 

5.     DISCUSSION 
Currently, the prototype is split up in two parts: the Web App 
running in NodeJS and the AI running in Python, and are nearly 
ready to be put together. 
 
The SVM regressors were optimized and reached an accuracy 
score of R2= .94 and R2 = .92 for the score-prediction and time-
prediction regressors respectively. These are respectable scores, 
and indicate that the AI should generally give accurate 
predictions.  
 
The Web App is in a state near completion. Currently, the 
researchers have to input the word lists manually, and the 
connection to the Python environment is not yet fully functioning 
due to library issues. Apart from this, it has all necessary features: 
the child can log in, see which wordlists they have to learn, plan 
the wordlists, get feedback from Taaldiertje generated by the 
Python scripts, train on wordlists, and see results. We therefore 

see this as a partial success, as it is very near completion, but not 
finished or validated yet.   
 

5. 1    Limitations 

Although the initial results of the SVM regressor are promising, it 
is important to keep in mind it was trained with a simulated 
dataset. To see whether the model truly works as intended, 
sufficient data from actual users should be collected, and the 
model should be retrained, optimized, and validated accordingly. 
Furthermore, the current model does not make the distinction 
between the different directions of learning the language, i.e. 
translating from Dutch to English is seen as the same as 
translating from English to Dutch.  
 
Furthermore, when optimizing the SVM, optimal results were 
found with relatively high C values, which could indicate the 
simulated data did not have sufficient variance. Also, the epsilon 
calculation method which was backed up by research did not give 
the expected results: the error did not improve but worsened when 
using this technique for validation, so instead another for loop was 
used to determine the epsilon value.  
 
As mentioned before, the web app still needs some alterations 
before completion, and needs to be validated. The way we 
envision this validation can be found in the future work section of 
this paper. 
 

5.2    Future work 

We think Taaldiertje’s virtual embodiment still has opportunities 
for AI explainability: Taaldiertje could intuitively show its current 
confidence level through e.g. facial expressions and more 
confident body language. This is a proposed improvement when 
this design is used in context, which has not yet happened due to 
time constrictions. 
 
For the validation of the Web App, we envision an experiment in 
which one or two classrooms of 10-12 year old primary school 
students are split up. One group of children will be the control 
group, which will receive the Taaldiertje Web App without the 
Taaldiertje agent giving suggestions about their planning, but with 
the AI monitoring their planning and result from behind the 
scenes. The other group will receive Taaldiertje in its completed 
form with both the AI and the Taaldiertje agent present, which 
will give suggestions about the planning like currently envisioned. 
This way, the functionality and possible benefit of the Taaldiertje 
agent can be researched.  
 
If Taaldiertje is successfully deployed within a primary school 
setting to students, it will be able to relieve some of the workload 
for the teachers. Since the act of planning can be simplified into 
improvement and time, the AI can predict these scores with high 
accuracy. Students will be more efficient when it comes to 
planning their school work and thereby be better prepared for a 
future in the information age. 
 
If all of this goes to plan, Taaldiertje will be able to give insights 
into how (explainable) AI can help students with their ability to 
plan and regulate their learning. This knowledge can help 
researchers to design for young children to help them learn the 
valuable skill of self-regulated learning with the help of AI. 
Providing feedback while allowing students to learn from their 
mistakes will have a positive effect on the development of 
students during the rest of their professional career. 
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Appendix I: Python code 
 

[1] import numpy as np 

[2] import pandas as pd 

[3] import matplotlib.pyplot as plt 

[4] import seaborn as sns 

[5] import matplotlib.lines as mlines 

[6] import matplotlib.transforms as mtransforms 

[7]  

[8]  

[9] from sklearn.svm import SVR 

[10] from sklearn.model_selection import LeaveOneOut 
[11] from sklearn.metrics import accuracy_score 
[12] from sklearn.metrics import r2_score 
[13] from sklearn.neighbors import NearestNeighbors 
[14] from sklearn.cluster import DBSCAN 
[15]  
[16] sns.set() 
[17]  
[18] #The training data gets loaded 
[19] df = pd.read_excel (r'C:\Users\Tim\Documents\Master\Q1\DBM140 Embodying Intelligent behavior in 

social context\input_data.xlsx') 

[20]  
[21] #Training data gets sorted into input variables and predictor variables 
[22] x=[df.Level, df.Dutch, df.English, df.Amount_of_Words, 

df.Previous_Time,df.Times_Practiced,df.Percentage_Correct_Previous_Session] 

[23] Y1=df.O1_Correct 
[24] Y2=df.O2_Time 
[25]  
[26] #Changing the format of the variables to correctly load them into the regressor 
[27] y1 = np.asarray(Y1).transpose() 
[28] y2 = np.asarray(Y2).transpose() 
[29] X = np.asarray(x).transpose() 
[30]  
[31] #Showing how the training data looks 
[32] #print(X)  
[33] #print(y1) 
[34] #print(y2) 
[35]  
[36] print("Fitting data to model") 
[37]  
[38] #Here we twice load in the regression model and fit the training data to the two seperate regressors 
[39] regr1 = SVR(kernel='rbf') 
[40] regr1.fit(X, y1) 
[41] regr2 = SVR(kernel='rbf') 
[42] regr2.fit(X, y2) 



[43]  
[44] print("Fitting data to model completed") 
[45]  
[46]  
[47] Level_i=2 ##Input from webpage 
[48] Dutch_i=1 ##Input from webpage 
[49] English_i=0 ##Input from webpage 
[50] Amount_of_Words_i=20 ##Input from webpage 
[51] Previous_Time_i=12 ##Input from webpage 
[52] Times_Practiced_i=2 ##Input from webpage 
[53] Percentage_Correct_Previous_Session_i=35 ##Input from webpage 
[54] X_i=[Level_i, Dutch_i, English_i, Amount_of_Words_i, Previous_Time_i, Times_Practiced_i, 

Percentage_Correct_Previous_Session_i] 

[55]  
[56] # Here the model predicts the outcomes  
[57] Output_Score=regr1.predict([X_i]) 
[58] Output_Time=regr2.predict([X_i]) 
[59]  
[60] # Both outputs get show in textual form 
[61] print("Predicted percentage correct after practising") 
[62] print(regr1.predict([X_i])) 
[63] print("Predicted time required for practising the list") 
[64] print(regr2.predict([X_i])) 
[65]  
[66] # Since the algoritm has a preference of getting positives grades first over optimizing one list that 

might be easier 

[67] # for the student, it here uses a comparative formula, where factors like improvement, time, amount 
of words learned all 

[68] # influence the outcome of the reward score. The AI will choose the highest reward score and advice 
that list to learn. 

[69]  
[70] if Percentage_Correct_Previous_Session_i<60: 
[71]     R1=2*((2*(1-(Percentage_Correct_Previous_Session_i/100)))*(Output_Score-

Percentage_Correct_Previous_Session_i)) 

[72]      
[73] else:  
[74]     R1=((2*(1-(Percentage_Correct_Previous_Session_i/100)))*(Output_Score-

Percentage_Correct_Previous_Session_i)) 

[75]      
[76] R2=2*R1*(Amount_of_Words_i/10) 
[77] Reward_Final=R2/Output_Time 
[78]  
[79] #Reward_final is the output of the whole AI. The highest number of a list will mean the student can 

best learn this list 

[80] print("Number used to choose which list to practise (higher is better):") 
print(Reward_Final) 

 

 



[81] # LeaveOneOut will be used to extract  
[82] LOO = LeaveOneOut() 
[83]  
[84] # This is where we create a list containing the true y1 values and the values the model predicts 
[85] # These will be used to run the r^2 validation on 
[86] y1_true, y1_pred = list(), list() 
[87] for train_ix, test_ix in LOO.split(X): 
[88]     X_train, X_test = X[train_ix, :], X[test_ix, :] 
[89]     y1_train, y1_test = y1[train_ix], y1[test_ix] 
[90]     # We use the model that was fitted above 
[91]     regr1.fit(X_train, y1_train) 
[92]     # evaluate model 
[93]     yhat = regr1.predict(X_test) 
[94]     # store 
[95]     y1_true.append(y1_test[0]) 
[96]     y1_pred.append(yhat[0]) 
[97]     # calculate accuracy 
[98]      
[99]  
[100] # This is where we create a list containing the true y2 values and the values the model predicts 

[101] # These will be used to run the r^2 validation on 

[102] y2_true, y2_pred = list(), list() 

[103] for train_ix, test_ix in LOO.split(X): 

[104]     X_train, X_test = X[train_ix, :], X[test_ix, :] 

[105]     y2_train, y2_test = y2[train_ix], y2[test_ix] 

[106]     # We use the model that was fitted above 

[107]     regr2.fit(X_train, y2_train) 

[108]     # evaluate model 

[109]     yhat = regr2.predict(X_test) 

[110]     # store 

[111]     y2_true.append(y2_test[0]) 

[112]     y2_pred.append(yhat[0]) 

[113]     # calculate accuracy 

[114]     

[115] # Calculation the R2 score for both models 

[116] y1_r2 = r2_score(y1_true, y1_pred) 

[117] y2_r2 = r2_score(y2_true, y2_pred) 

[118]  

[119] # Showing the errors numerically  

[120] print("Error in percentage correct prediction (R^2)") 

[121] print(y1_r2) 

[122] print("Error in task time estimation (R^2)") 

[123] print(y2_r2) 

[124]  

[125] # Showing the errors in plot form  



[126] fig, ax = plt.subplots() 

[127] plt.gray() 

[128] ax.scatter(y1_true, y1_pred) 

[129] line = mlines.Line2D([0, 1], [0, 1], color='red') 

[130] transform = ax.transAxes 

[131] line.set_transform(transform) 

[132] ax.add_line(line) 

[133] plt.xlabel("True correct after practising score") 

[134] plt.ylabel("Predicted correct after practising score") 

[135] plt.show()   

[136]  

[137] fig, ax = plt.subplots() 

[138] plt.gray() 

[139] ax.scatter(y2_true, y2_pred) 

[140] line = mlines.Line2D([0, 1], [0, 1], color='red') 

[141] transform = ax.transAxes 

[142] line.set_transform(transform) 

[143] ax.add_line(line) 

[144] plt.xlabel("True time spent on practising") 

[145] plt.ylabel("Predicted time spent on practising") 

[146] plt.show()   

[147] # Now the model is trained and validated. Now the model can be used to predict on new inputs 

[148] # Here we input the new input variables to use in the predictor algoritm 

 

 

[149] #C_val = [2,4,8,16,32,64,128,256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072] 

[150] C_val = [2,4,8,16,32,64,128,256] 

[151]  

[152] r1_R2_C_val = [] 

[153]  

[154]  

[155] for i in range(len(C_val)): 

[156]     regr1 = SVR(kernel='rbf', C=C_val[i]) 

[157]      

[158]     # LeaveOneOut will be used to extract  

[159]     LOO = LeaveOneOut() 

[160]  

[161]     # This is where we create a list containing the true y1 values and the values the model 
predicts 

[162]     # These will be used to run the r^2 validation on 

[163]     y1_true, y1_pred = list(), list() 

[164]     for train_ix, test_ix in LOO.split(X): 

[165]         X_train, X_test = X[train_ix, :], X[test_ix, :] 

[166]         y1_train, y1_test = y1[train_ix], y1[test_ix] 

[167]         # We use the model that was fitted above 



[168]         regr1.fit(X_train, y1_train) 

[169]         # evaluate model 

[170]         yhat = regr1.predict(X_test) 

[171]         # store 

[172]         y1_true.append(y1_test[0]) 

[173]         y1_pred.append(yhat[0]) 

[174]         # calculate accuracy 

[175]  

[176]     y1_r2 = r2_score(y1_true, y1_pred) 

[177]  

[178]     print("Error in percentage correct prediction (R^2) at " + str(C_val[i])) 

[179]     print(y1_r2) 

[180]     r1_R2_C_val.append(y1_r2) 

[181]      

[182] r2_R2_C_val = [] 

[183]  

[184] for i in range(len(C_val)): 

[185]     regr2 = SVR(kernel='rbf', C=C_val[i]) 

[186]      

[187]     # LeaveOneOut will be used to extract  

[188]     LOO = LeaveOneOut() 

[189]  

[190]     # This is where we create a list containing the true y1 values and the values the model 
predicts 

[191]     # These will be used to run the r^2 validation on 

[192]     y2_true, y2_pred = list(), list() 

[193]     for train_ix, test_ix in LOO.split(X): 

[194]         X_train, X_test = X[train_ix, :], X[test_ix, :] 

[195]         y2_train, y2_test = y2[train_ix], y2[test_ix] 

[196]         # We use the model that was fitted above 

[197]         regr2.fit(X_train, y2_train) 

[198]         # evaluate model 

[199]         yhat = regr2.predict(X_test) 

[200]         # store 

[201]         y2_true.append(y2_test[0]) 

[202]         y2_pred.append(yhat[0]) 

[203]         # calculate accuracy 

[204]  

[205]     y1_r2 = r2_score(y2_true, y2_pred) 

[206]  

[207]     print("Error in percentage correct prediction (R^2) at " + str(C_val[i])) 

[208]     print(y1_r2) 

[209]     r2_R2_C_val.append(y1_r2) 

[210]  

         



 

[211] # Showing the errors in plot form  

[212] fig, ax = plt.subplots() 

[213] plt.gray() 

[214] ax.scatter(y1_true, y1_pred) 

[215] line = mlines.Line2D([0, 1], [0, 1], color='red') 

[216] transform = ax.transAxes 

[217] line.set_transform(transform) 

[218] ax.add_line(line) 

[219] plt.xlabel("True correct after practising score") 

[220] plt.ylabel("Predicted correct after practising score") 

[221] ax.set_ylim(30, 100) 

[222] ax.set_xlim(30, 100) 

[223] plt.show()   

[224]  

[225] fig, ax = plt.subplots() 

[226] plt.gray() 

[227] ax.scatter(y2_true, y2_pred) 

[228] line = mlines.Line2D([0, 1], [0, 1], color='red') 

[229] transform = ax.transAxes 

[230] line.set_transform(transform) 

[231] ax.add_line(line) 

[232] plt.xlabel("True time spent on practising") 

[233] plt.ylabel("Predicted time spent on practising") 

[234] ax.set_ylim(0, 28) 

[235] ax.set_xlim(0, 28) 

[236] plt.show()   

[237]  # Now the model is trained and validated. Now the model can be used to predict on new inputs 

 

[237] fig, ax = plt.subplots()  

[238] ax.plot(C_val, r1_R2_C_val)  # Plot some data on the axes. 

[239] plt.xscale("log",basex = 2) 

[240] plt.xlabel("Regularization parameter") 

[241] plt.ylabel("R^2 score of score prediction") 

[242] plt.axvline(x=1024, ymin=0, ymax=0.9351415365438123, linestyle = '--',color='red') 

[243] plt.show() 

[244]  

[245] fig, ax = plt.subplots()  

[246] ax.plot(C_val, r2_R2_C_val)  # Plot some data on the axes. 

[247] plt.xscale("log",basex = 2) 

[248] plt.xlabel("Regularization parameter") 

[249] plt.ylabel("R^2 score of time prediction") 

[250] plt.axvline(x=64, ymin=0, ymax=0.9139674817757812, linestyle = '--',color='red') 

plt.show() 

[251] fig, ax = plt.subplots()  



[252] ax.plot(C_val, r1_R2_C_val)  # Plot some data on the axes. 

[253] plt.xscale("log",basex = 2) 

[254] plt.xlabel("Regularization parameter") 

[255] plt.ylabel("R^2 score of score prediction") 

[256] plt.axvline(x=1024, ymin=0, ymax=0.9351415365438123, linestyle = '--',color='red') 

[257] plt.show() 

[258] fig, ax = plt.subplots()  

[259] ax.plot(C_val, r2_R2_C_val)  # Plot some data on the axes. 

[260] plt.xscale("log",basex = 2) 

[261] plt.xlabel("Regularization parameter") 

[262] plt.ylabel("R^2 score of time prediction") 

[263] plt.axvline(x=64, ymin=0, ymax=0.9139674817757812, linestyle = '--',color='red') 

[264] plt.show() 

 

 

[265] X, y = X, y1 

[266]  

[267] neigh = NearestNeighbors(n_neighbors=2) 

[268] nbrs = neigh.fit(X) 

[269] distances, indices = nbrs.kneighbors(X) 

[270]  

[271] distances = np.sort(distances, axis=0) 

[272] distances = distances[:,1] 

[273] plt.plot(distances) 

[274]  

[275] m = DBSCAN(eps=0.3, min_samples=5) 

[276] m.fit(X) 

[277]  

[278] clusters = m.labels_ 

[279]  

[280] colors = ['royalblue', 'maroon', 'forestgreen', 'mediumorchid', 'tan', 'deeppink', 'olive', 
'goldenrod', 'lightcyan', 'navy'] 

[281] vectorizer = np.vectorize(lambda x: colors[x % len(colors)]) 

[282] plt.scatter(X[:,0], X[:,1], c=vectorizer(clusters))

 

[283] sns.set() 

[284]  

[285] X, y = X, y2 

[286]  

[287] neigh = NearestNeighbors(n_neighbors=2) 

[288] nbrs = neigh.fit(X) 

[289] distances, indices = nbrs.kneighbors(X) 

[290]  

[291] distances = np.sort(distances, axis=0) 

[292] distances = distances[:,1] 



[293] plt.plot(distances) 

[294]  

[295] m = DBSCAN(eps=0.3, min_samples=5) 

[296] m.fit(X) 

[297]  

[298] clusters = m.labels_ 

[299]  

[300] colors = ['royalblue', 'maroon', 'forestgreen', 'mediumorchid', 'tan', 'deeppink', 'olive', 
'goldenrod', 'lightcyan', 'navy'] 

[301] vectorizer = np.vectorize(lambda x: colors[x % len(colors)]) 

[302] plt.scatter(X[:,0], X[:,1], c=vectorizer(clusters)) 

 

[303] eps = [0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 
0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60, 
1.65, 1.70, 1.75, 1.80, 1.85, 1.90, 1.95, 2.00] 

[304] eps_C_val = [] 

[305] for i in range(len(eps)): 

[306]     regr1 = SVR(kernel='rbf', C=1024, epsilon=eps[i]) 

[307]      

[308]     # LeaveOneOut will be used to extract  

[309]     LOO = LeaveOneOut() 

[310]  

[311]     # This is where we create a list containing the true y1 values and the values the model 
predicts 

[312]     # These will be used to run the r^2 validation on 

[313]     y1_true, y1_pred = list(), list() 

[314]     for train_ix, test_ix in LOO.split(X): 

[315]         X_train, X_test = X[train_ix, :], X[test_ix, :] 

[316]         y1_train, y1_test = y1[train_ix], y1[test_ix] 

[317]         # We use the model that was fitted above 

[318]         regr1.fit(X_train, y1_train) 

[319]         # evaluate model 

[320]         yhat = regr1.predict(X_test) 

[321]         # store 

[322]         y1_true.append(y1_test[0]) 

[323]         y1_pred.append(yhat[0]) 

[324]         # calculate accuracy 

[325]  

[326]     y1_r2 = r2_score(y1_true, y1_pred) 

[327]  

[328]     print("Error in percentage correct prediction (R^2) at " + str(eps[i])) 

[329]     print(y1_r2) 

[330]     eps_C_val.append(y1_r2) 

[331]          

[332]          

[333] eps2_C_val = [] 



[334]  

[335] for i in range(len(eps)): 

[336]     regr2 = SVR(kernel='rbf', C=64 ,epsilon=eps[i]) 

[337]      

[338]     # LeaveOneOut will be used to extract  

[339]     LOO = LeaveOneOut() 

[340]  

[341]     # This is where we create a list containing the true y1 values and the values the model 
predicts 

[342]     # These will be used to run the r^2 validation on 

[343]     y2_true, y2_pred = list(), list() 

[344]     for train_ix, test_ix in LOO.split(X): 

[345]         X_train, X_test = X[train_ix, :], X[test_ix, :] 

[346]         y2_train, y2_test = y2[train_ix], y2[test_ix] 

[347]         # We use the model that was fitted above 

[348]         regr2.fit(X_train, y2_train) 

[349]         # evaluate model 

[350]         yhat = regr2.predict(X_test) 

[351]         # store 

[352]         y2_true.append(y2_test[0]) 

[353]         y2_pred.append(yhat[0]) 

[354]         # calculate accuracy 

[355]  

[356]     y1_r2 = r2_score(y2_true, y2_pred) 

[357]  

[358]     print("Error in percentage correct prediction (R^2) at " + str(eps[i])) 

[359]     print(y1_r2) 

[360] eps2_C_val.append(y1_r2) 

     



Appendix II: Data file 
 
Level Dutch English Amount_of_WordPrevious_Time Times_Practiced Percentage_Correct_PO1_Correct O2_Time

1 1 0 20 16 1 35 50 15
1 1 0 20 14 2 50 63 14
1 1 0 20 14 3 65 68 14
1 1 0 20 14 3 69 77 14
1 1 0 20 14 4 75 78 13
1 1 0 20 11 5 77 80 11
1 1 0 20 10 6 78 81 10
1 1 0 25 18 1 33 55 17
1 1 0 25 14 4 67 75 12
1 1 0 30 20 1 29 53 19
1 1 0 30 16 4 65 72 13
1 1 0 40 25 1 31 56 23
1 1 0 40 22 3 65 71 18
1 0 1 20 18 1 36 54 17
1 0 1 20 13 4 71 77 12
1 0 1 20 10 6 82 84 8
1 0 1 25 23 3 68 76 18
1 0 1 30 23 4 64 72 19
1 0 1 40 26 1 28 51 24
1 0 1 40 22 3 64 73 20
2 1 0 20 9 1 40 67 8
2 1 0 20 7 2 68 80 8
2 1 0 20 5 3 79 84 4
2 1 0 20 4 3 82 87 3
2 1 0 20 4 4 84 89 2
2 1 0 20 3 5 88 80 2
2 1 0 20 2 6 91 93 2
2 1 0 25 11 1 42 67 10
2 1 0 25 5 4 83 87 3
2 1 0 30 12 1 39 64 10
2 1 0 30 6 4 80 84 4
2 1 0 40 14 1 38 65 13
2 1 0 40 8 3 78 82 6
1 0 1 20 17 1 37 55 16
1 0 1 20 13 4 71 77 10
1 0 1 20 10 6 82 84 6
1 0 1 25 22 3 68 77 17
1 0 1 30 22 4 70 75 19
1 0 1 40 26 1 33 53 24
1 0 1 40 23 3 69 75 21
1 1 0 20 10 1 25 40 8
1 1 0 20 14 5 75 80 12
1 1 0 20 16 6 85 90 14
1 1 0 20 16 1 20 35 15
1 1 0 20 18 1 25 40 14
1 1 0 40 24 3 45 60 21
1 1 0 40 20 1 15 25 19
1 1 0 30 18 6 75 75 15
1 1 0 30 24 6 70 75 21
1 1 0 25 12 2 45 55 11
1 1 0 25 15 3 50 55 13
1 1 0 20 14 3 55 65 12
1 1 0 20 12 2 50 60 10
2 0 1 20 3 5 92 95 2
2 0 1 20 12 2 65 90 8
2 0 1 30 18 2 60 80 13
2 0 1 25 7 6 95 96 4
2 0 1 40 10 3 75 85 9
2 0 1 20 10 1 40 70 8
2 0 1 40 14 1 36 68 13
2 0 1 20 15 1 75 95 10
2 0 1 20 16 1 75 95 10
2 0 1 20 17 1 80 85 12
2 0 1 25 18 1 68 84 15
2 0 1 25 21 2 84 96 12
2 0 1 20 19 2 90 95 15
2 0 1 30 22 1 80 90 15
2 0 1 25 19 1 84 92 12
2 0 1 20 18 2 95 95 12
2 1 0 20 18 2 95 95 10
2 1 0 25 20 1 84 88 14
2 1 0 30 25 3 70 84 15
2 1 0 30 27 3 80 93 13
2 1 0 35 28 3 66 86 20
2 1 0 20 17 2 70 85 10
2 1 0 40 28 4 60 80 20
2 1 0 20 17 1 85 90 10
2 1 0 25 22 3 88 96 12
2 1 0 30 26 2 83 90 16
2 0 1 20 15 1 75 90 10  



Appendix III: Images webpage 
The webpage is fully functioning, both back-end and front-end and is data is encrypted. 



















 
 
 



 

Appendix IV: Overview Inputs & Outputs 
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