
Taaldiertje: Using Support Vector Machine learning to
develop student planning skills

ABSTRACT

As we currently live in an information age, it is essential to
prepare the next generation for a professional life characterised by
continuous learning. It is important to teach students at an early
age how they develop themselves to become effective planners
and learners (Christie & Kumar, 2018). However, this is a
daunting task to assign to the primary school teachers, who
already deal with a high workload (Hagen, 2019; TNO, 2019). In
order to relieve some of this workload, Taaldiertje was developed,
with the aim of helping children to learn how to effectively plan
and learn word lists. Taaldiertje’s XAI contains two Support
Vector Regression (SVR) models, each using the same 7 inputs
and generating one of two outputs: a prediction of the score
improvement or a prediction of the amount of time an exercise
would take. These two outputs are fed into a comparative
algorithm, and results in recommendations for the student, which
are presented to the student through a web application running on
NodeJS. The AI has been validated using the LeaveOneOut
method in order to determine the R-squared error values for both
outputs. Taaldiertje is currently not yet a single system, but both
the AI and the web application are functioning and ready for
merging. Once the systems are combined, Taaldiertje will be
ready for deployment, and validation with the target user group
could start.

Keywords
Machine Learning, Explainable Artificial Intelligence, Planning,
Language, Language Learning, Education, Interactive Machine
Learning, Primary School, Reducing Work Load Teacher, Web
Application, Self-Regulated Learning, Life Long Learning

1. INTRODUCTION
1.1 Problem analysis
We currently live in an information age, and in order to keep up
with the constant flow of information thrown at us, we need to
develop skills that help us become lifelong learners (Christie &
Kumar, 2018). In order to prepare the next generation for what is
essentially a life characterised by continuous learning, it is
important to teach children how to become effective planners and
learners from a young age.

Yet, monitoring individual planning skills of each and every
student would be a daunting task. The task could be assigned to
the primary school teachers, however quality is limited by the
busy work schedules of teachers: a questionnaire under eight
groups of people actively in education show that the introduction
of ‘passend onderwijs,’ while having many benefits, has the

downside of increased work pressure on teachers (Dienst
Uitvoering Onderwijs & Algemeen Dagblad, 2015). The survey
included 1668 participants of which 955 were active in primary
school education. The participants concluded that the work
pressure with the introduction of this new format of education has
further increased which means that teachers lack the necessary
time for personalized guidance for all students.

This increased work pressure amongst other factors contributes to
the significant increase in burn-out symptoms among primary
school teachers. Research performed by the TNO for the Dutch
ministry of Education states that 22,1% of all educational workers
have burn-out symptoms compared to 15,6% among other
workers. This research also concludes that the percentage of
educational workers with burn-out symptoms has increased most
significantly among primary school teachers compared to teachers
in other educational environments such as high schools and higher
education (Hagen, 2019; TNO, 2019). Considering these
important factors, we aim to assist primary school teachers in
teaching students how to plan their homework tasks.

To achieve this task, Taaldiertje is developed. By using
explainable artificial intelligence (XAI) integrated in a webapp,
Taaldiertje aims to help students aged 10-12 to effectively plan
and learn word lists. The AI will be able to predict how long a
specific task will take and the potential improvement a student
will make by practising, and give planning recommendations
based on this. When this system will be implemented in a
classroom of primary school students it aims at reducing the
workload of primary school teachers while simultaneously
providing students with the skills they need in their future
professional careers and to fully develop into lifelong learners
which this information age requires them to be.

1.2 Related works
1.2.1 Self-Regulated learning
In general, Self-Regulated learning can be described as the ability
to initiate, regulate and reflect on activities independently and is
based on the interaction between 3 key components: motivation,
cognition and metacognition (Zimmerman, 1990). Motivation
refers to task selection, initiation of the task and the effort and
persistence during the task. Cognition covers conceptual and
strategic knowledge and the ability to apply the right strategies for
the task at hand. Metacognition is the component that refers to
both the knowledge and regulation of the person’s own
cognitions. This also includes the observation and assessment of
one’s own acting and thinking (Dörr & Perels, 2019).

Cnossen, D.
d.cnossen@student.tue.nl
1503383

Muyrers, T.H.C.
t.h.c.muyrers@student.tue.nl
0907928

Stappers, D.R.C.
d.r.c.stappers@student.tue.nl
1256114

Toebosch, R.H.A.
r.h.a.toebosch@student.tue.nl
1235294

Eindhoven University of Technology
Eindhoven, The Netherlands

But up to 2007 it was only researched among upper elementary
grades through college. This was because of the wide belief that
children under 10 years old had difficulty coordinating the
cognitive and metacognitive processes required to complete
complex, multifaceted tasks (Adagideli, Saraç & Ader, 2017).
According to research conducted by Whitebread, Bingham, Grau,
Pino Pasternak and Sangster (Whitebread, Bingham, Grau, Pino
Pasternak, & Sangster, 2007), studies done within a laboratory
setting and other studies based on children’s self-reported data
have been shown to underestimate young children’s abilities when
it comes to self-regulated learning. While studying children in a
natural setting and while performing familiar tasks, it showed that
young children are indeed capable of and engage in self-regulated
learning (Whitebread & Coltman, 2010).

1.2.2 Explainable AI
Research about explainable AI often goes hand in hand with
research looking into making reliable systems that can cooperate
with humans (Tulli, 2020). Making sure that the expected agent
behaviour closely resembles the actual agent behaviour secures a
better cooperation between the human and the system (Rader,
Cotter, & Cho, 2018). Research done by Friedrich and Zanker
(2011, p. 90) classifies AI explanation in two categories: “white
box” and “black box”. How explanations describe a “white box”
system and explains elements such as inputs and outputs and what
the system does to get to particular outcomes. These explanations
bridge the gap between the working system and the user
interacting with the system. Why explanations treat the system as
a “black box”, justifying the system’s actions and choices, but
these explanations do not explain how the system comes to certain
conclusions. Why explanations do help the user determine
whether their goals match the system’s goals, and when users feel
like they understand a system’s recommendations, they’ll be more
comfortable following these recommendations for themselves
(Sinha & Swearingen, 2002).

The research done by Rader, Cotter, and Cho (2018) also
describes different functions of transparency within systems:
creating awareness that there’s a working algorithm in a system,
evaluate the correctness of the outputs users might experience
when working with a system, making the system’s behaviour
interpretable and helping users feel comfortable acting on the
outputs and governing a system through accountability.

1.2.3 Existing solutions
JARET is an AI powered web application designed to help
students create a homework and study schedule (Schwabe, 2020).
The interface is a weekly calendar view where students can
double click to add events and goals such as classes, tests and due
dates. The student can also add an estimate for the required time
this task will take. JARET also has settings where students can
indicate certain preferences such as when they want to study
(morning/evening) or when to review knowledge for tests (in
advance/hours before). JARET’s AI system will then recommend
a schedule based on the student’s inputs and preferences, which
students can edit and then load into their personal calendar app.
JARET is currently still in development and they are working on
self-reflection and finer adjustments.

JARET is capable of generating a planning based on a set amount
of inputs in combination with user preferences. What JARET
lacks is a system to automatically keep track of results of the

performed tasks. Since Taaldiertje is aimed at younger students,
result tracking might be beneficial to them in order for Taaldiertje
to effectively help these students. Furthermore, JARET is a tool
which can propose a planning students can then import into their
own personal calendar, where primary school students might
benefit from a Taaldiertje system where everything is in the same
place.

FRACTOS focuses on the mathematical problem of fractions, and
aims to help children with this mathematical challenge by
providing a virtual peer and a system based on simplifying
fractions using LEGO style blocks in order to help the child
(Krishna, Pelachaud, & Kappas, 2020). This system is also
heavily based on self-regulated learning and aims to emphasize
the child on the different phases such as planning, performance
and reflection. FRACTOS is a Unity3d built game that can be
played on a tablet together with a virtual tutor and a robot peer
which are both partially controlled by a human wizard to make
sure the interaction stays on topic. The system was showcased to
the public for a pilot interaction with 25 children at a science
festival. It gathered positive feedback on agent perception and
task engagement. Their next step is to deploy FRACTOS in
primary schools.

FRACTOS provides a proper interaction between the child and
the system which remains on topic. Furthermore it focuses on the
mathematical problem of fractions, which means that the setting is
very on topic and controlled when using the system since it
doesn’t divert to various different other topics within
mathematical knowledge.

2. METHOD & MATERIALS
The related Dutch word-learning platform WRTS, was considered
as a source of inspiration for this project (WRTS, n.d.). Within
this methodology, it will be explained how our regressor predicts
the time and the score of the next learning session through two
separately trained models. These outputs are necessary to
determine the optimal planning for the student. The aim of the AI
is that the student should master each list sufficiently, with a
preference for the list(s) that the student will achieve most
progress.

2.1 Methods & Approach
2.1.1 Regression
A Support Vector Regression (SVR) is used for multiple
independent variables (inputs) that have a plausible correlation
with one or more dependent variables (outputs) (NCSS Statistical
Software, n.d.). Hence, it was decided to use two SVRs for
Taaldiertje. Regression has several methods of prediction
including linear and nonlinear regression. Linear regression does
not have to be linear in its plot, but it is always linear in its
parameters. Consequently, the linear regression line could fit other
shapes of data (U-form) since the independent variables could be
squared in the formula, while the parameters will have a linear
relation (NCSS Statistical Software, n.d.). Still, linear regression
is mostly applied to get an estimation of a relation or when there
is certainty that the relation will be linear. For more complex
problems which do not fit a linear model, a nonlinear regression
should be used (NCSS Statistical Software, n.d.). As there was no
indication that the data would behave linearly the decision was
made to use a nonlinear regression model.

The two regression models will be trained on general user data.
After deployment they will be partially fitted with the data from
the specific user, to get more accurate results for each individual
student.

2.1.2 Inputs & Outputs
Seven inputs have been defined for the AI, with two
corresponding outputs, one for each regressor (Appendix IV).
These inputs were selected as they are easily accessible within the
online environment, and because we suspected they would be
indicative of the selected outputs:

• Proficiency Level [1 or 2]

• Dutch [true or false]

• English [true or false]

• Amount of Words [n]

• Previous Time [in minutes]

• Times Practiced [n]

• Percentage Correct [in %]

The input ‘Proficiency Level’ specifies at which speed the student
learns either Dutch or English words, depending on the list at
hand, and is determined by the teacher (ScienceGuide, 2017).
Level 1 means that the student will need relatively much time to
learn words of the corresponding language, while level 2 means
the student will learn this language relatively efficiently. Due to
how the education program of Dutch preliminary schools is set
up, the language choices are limited to two inputs, namely ‘Dutch’
and ‘English’ (Persson, 2017). Dutch word lists are used for
vocabulary training using synonyms, and English lists are used for
learning English translations. Within the current AI there is no
distinction between the different learning directions (English to
Dutch, or Dutch to English). As regressors do not accept
categories as inputs, the languages each have an individual
column with true (1) or false (0) as inputs.

Further, the inputs ‘Amount of Words’, ‘Previous Time’, ‘Times
Practiced’ and ‘Percentage Correct’ are used since these are
suspected to correlate with the predicted time and score. For
example, it is plausible that it takes more time to master a list with
more words, because the list is actually longer and the student has
to memorize more words.

2.1.3 Datafile
In order to train the AI, a datafile was generated. WRTS was
contacted for potentially providing statistics of learning
performances as a precedent for the generation of this datafile, but
unfortunately could not share it with us. Additionally, there was
no literature found that could provide the specific information
needed. Hence, the datafile was generated based on personal
experience. Furthermore the datafile is relatively small to test the
performance of the AI with limited training data. Although it is
not ideal to use a made-up dataset, it could give an indication
whether the selected model would be suitable for the task at hand.

The nonlinear regression was implemented using Jupyter
Notebook 5.0.0 with Python 3 (Pérez & Granger, 2015). With the
pandas library (The pandas development team, 2020), a data
frame was created. The variables were further converted to

NumPy arrays to obtain a readable format. The use of other
libraries and the working of the learning algorithm will be
explained in the next section (2.2 Learning Algorithm).

2.1.4 Web application
For the embodiment of the learning algorithm, a webapp with an
avatar was created (Figure 1). The advantages of using a webapp
is that it provides a very controlled environment, in which the AI
can directly obtain its necessary inputs, and external interaction
with the agent is inherently limited. The webapp is made using
NodeJS (OpenJS Foundation, 2020), ReactJS (ReactJS, 2020),
MongoDB, Express (Express, 2020), Redux (Redux, 2020), and
Bootstrap (Bootstrap, 2020).

The avatar was created to represent the learning algorithm itself: it
was opted to go for cartoon animal, as it can convey information
through different cues (e.g. gaze, facial expression, pointing), and
as we suspect it to be easier for the child to question its advice: we
wanted the child to explore what he/she thinks is best, even if this
does not align with the AI’s advice. This way the child would
have room to learn from his/her mistakes (Dinkmeyer & Dreikurs,
2000).

Figure 1: Web application showing the implementation of the AI.

2.2 Learning algorithm
2.2.1 Machine Learning
As mentioned previously, the optimal solution for predicting the
time estimation and the score prediction after practicing a list is
through a regression. Several options within regression were
explored, but due to the nature of the problem a decision was
made to use Support Vector Machine (SVM) (Noble, 2006). The
opportunities of this method include the opportunity to use
different dimensions of data and it does not suffer massively from
limited samples (Durgesh & Lekha, 2010). Furthermore the
method has proven to provide excellent accuracy on well-defined
problems with clear inputs and outputs (Son, Kim & Kim, 2012).
For these reasons the choice was made to implement SVM
learning into the planning AI used in Taaldiertje.

2.2.2 Scikit-learn
Scikit-Learn (Sklearn) is an open source, commercially usable
library developed to implement machine learning in the Python
programming environment (Pedregosa et al, 2011). Sklearn is
developed to be used both by experienced and inexperienced
programmers and provides the user with examples for their
different regression, classification and clustering algorithms. The
SVM example code provided a strong and verified basis for the

creation of the Taaldiertje planning AI (Pedregosa et al, n.d.-a).
Both fitting the data and predicting outputs based on training data
was already functional. Simply inserting the training data, based
on the planning problem which this paper focuses on, immediately
provided the opportunity to predict outputs based on inputs. This
provided room to focus on the optimization of the AI, by
investigating the effect of the Regularization parameter and the
Epsilon parameter (See chapter 2.2.3 & 2.2.4).

2.2.3 Optimization of Regularization parameter (C)
The model can be optimized on two main parameters. The first
parameter is the Regularization parameter (C). This influences the
model complexity, increasing C will force the model to attempt to
incorporate individual data entries more in the prediction of the
model (Zhang, Li & Tsai, 2010). This means the model will be
altered to prevent underfitting. Complexity is increased by being
more precise, straying away from an averaging prediction curve.
This allows it to better predict inputs similar to existing training
data. This however comes at the cost of risking overfitting
(Zhang, Li & Tsai, 2010). Putting a higher importance on
incorporating individual data points means that the model could
simply output the learning data output and not adapt to new
inputs. This obviously leads to increased error rates as new inputs
do include a certain randomness based on human inconsistency.

Due to the fairly simple model combined with the small datafile
the optimal Regularization parameter (C) can be found by
monitoring the R^2 value while systematically changing the C
value. The model is tested using the same method used to test the
initial model (see chapter 3.3.1 Validation). In Figure 2 the results
for the optimization of the predicted score SVM is visualized. The
optimal C value for the predicted score model is C=1024|R2=.94.
In Figure 3 the results for the optimization of the predicted time
required for practicing the list is visualized. The optimal C value
for the practice time estimation model is C=64|R2=.91. The
improvement from the base model is significant and provides the
model with trustworthy validated results.

Figure 2: Test results of the Influence of the Regularization parameter in the score
prediction SVM model. The R2 error calculated using LeaveOneOut is visualized
against the different tested regularization parameters.

Figure 3: Test results of the Influence of the Regularization parameter in the time
prediction SVM model. The R2 error calculated using LeaveOneOut is visualized
against the different tested regularization parameters.

2.2.4 Optimization of the Epsilon parameter (e)
The second free parameter in SVM models is the Epsilon
parameter. This variable influences the free play that is allowed
within the model before a penalty is applied. This allows the
model more freedom to find patterns and prevent overfitting. The
optimal value for this variable can be found through an algorithm
specialized in discovering the clusters in the training data (Ester,
Kriegel, Sander, & Xu, 1996). Alternatively similar to the
Regularization parameter the method of trial and error can be used
to monitor the error rates while inserting different e values.

In order to find the optimal Epsilon value for the prediction model
the method proposed by Ester, et al (1996) was used. Within
Python this is implemented by looking at the clusters with
arbitrary shapes (Maklin, 2019). This resulted in the output shown
in Figure 4. The optimal Epsilon value is defined at the place in
the graph where the incline changes, for this analysis epsilon=7.

Figure 4: Calculating the optimal epsilon value using the method proposed by Ester,
et al (1996)

However, when rerunning the model with the new defined epsilon
value showed an increase in error from
Rscore2(epsilon=default(.1))=.94 to Rscore2(epsilon=.1)=.88.
And Rtime2(epsilon=default(.1))=.91 to Rtime2(epsilon=.1)=.41.
For this reason the decision was made to optimize epsilon through
model testing and again a for loop was created testing different
epsilon values. The optimal epsilon value found for the score
prediction model is epsilon=.1| Rscore2=0.94 (Figure 5.). The
optimal epsilon value for the time prediction is epsilon=.65|
Rtime2=.92 (Figure 6.).

Figure 5: Testing the influence of the epsilon parameter on the score prediction SVM
model. The R2 error calculated using LeaveOneOut is visualized against the different
tested Epsilon parameters.

Figure 6: Testing the influence of the epsilon parameter on the time prediction SVM
model. The R2 error calculated using LeaveOneOut is visualized against the different
tested Epsilon parameters.

2.2.5 Comparative formula
A comparative algorithm was created to determine the ‘decision-
making’ process of the AI, when defining a suggestion. It is
important that the agent, Taaldiertje, will first make sure that
every list is mastered sufficiently (60% in this design, however
changeable according to teacher input). Although, regression and
the comparative algorithm could work with multiple outputs; the
decision was made to work with two separate outputs. This is
because of the small dataset, which will then be run twice for each
output; to get a more accurate result.

The output of the comparative algorithm is combined and then
weighed against important classifiers that arrange the different
lists that the student has to master on improvement potential. This
is to make sure that students who excel in a certain learning task
don’t get advised to spend too much time learning this as the
trade-off would be racking up insufficient grades on more difficult
tasks.

2.2.5.1 Formula parameters
The comparative algorithm includes the following elements:
Current score percentage, Predicted score percentage, estimated
time and the amount of words in the list. The formula is optimized
through examples. Inputs are generated by the programmers
which are then inserted into the formula. The results are examined
and the formula altered accordingly. Below the formula will be
explained.

First the improvement is calculated by subtracting the current
score from the predicted score after practicing the list:

This improvement is sent to a conditional formula, which favours
lists which currently score insufficient (below 60% correct) over
lists that already have a passing grade (over 60% correct). This is
to make sure the student does not prioritize the lists in which he
makes progress quickest. Furthermore the effect is also solidified
in the multiplication factor, which decreases if the old score is
higher. This effect also applies above 60% correct.

Next the amount of words is included in the classification.
Students who improve a list by 5% which contains 20 words are
inferior to students improving 5% on a list containing 50 words.

The final score that will be used to indicate which list improves
the most in the set amount of time is calculated here. All previous
calculations are compensated for the time it takes the student to
practice the list. This way the AI of Taaldiertje is able to optimize
the time the student has available to receive the best result.

3. DESIGN

3.1 Design of the interaction
The design of the interaction with the webapp takes place in the
classroom: every week (or other set period of time), the child has
to learn a set of wordlists in either Dutch or English. At the end of
the week, the child will have a test on all these lists. During the
week, the child will have fixed time available to learn the lists, but
is free to choose what lists to prioritize. By doing so, the child
gradually learns how to determine which lists to prioritize, and
estimate how long it would take to finish the corresponding task.
The tasks consist of an automatically generated exercise based on
the selected word list, which he/she can then practise with.

On the first day of the week the child receives all the lists, and is
able to view them. The child can then go to the planning interface,
where it will see Taaldiertje, together with the lists that have to be
learned. Students are encouraged to practise all the lists at least
once, to give the AI a baseline but also for their own
understanding of the task at hand. Taaldiertje embodies the AI,

and the information on the lists which is displayed on the page is
also the information that is sent to the AI. Based on this
information, Taaldiertje calculates which list would be most
beneficial to learn first. It then uses its gaze to subtly provide hints
to the user. The child is free to plan whatever lists it thinks are
best by dragging it to the planning, and entering how much time
he/she thinks the exercise would take. The planning fills up
according to how much time the child thinks it will take to do the
exercises. When the child deems the planning ready, he/she can
click on next, where Taaldiertje will give suggestions on whether
it thinks the time estimations are feasible/accurate. The child can
choose either to ignore them or change the times accordingly.

The child can then proceed to doing their exercises: after the child
selects a wordlist, the web app will automatically create an
exercise in which every word is presented and the child has to
give the translation. If the answer is right, the next word is
displayed; if it is wrong, the webapp shows the correct answer,
and will present that specific word again after the other words
have been practised. This repeats until the child has answered all
the words correctly. At the end of the exercise, the total time is
displayed together with a score based on the total amount the
student had correct the first try. If the list had been practiced
before, previous results are shown as well.

3.2 Intelligent Behaviour and Embodiment
In this concept, the avatar is the embodiment of the AI, and
mainly responsible for all explainability surrounding the AI: it
makes the algorithm more transparent, as everything the avatar
sees, the AI can also “see” and is used as input; it creates
awareness of where the AI is functioning, through the avatars
presence; it makes the systems behaviour interpretable, though the
explanations given by the avatar; it shows the accountability lies
with the child, as it ultimately has to make the decision whether to
accept or reject the suggestions.

As described before the datafile is created without a reliable
connection to learning performances. In the actual design context,
it is proposed to get access towards general statistics about
learning performances of the target group. This way, a formula
could be defined to create a datafile based on realistic learning
performances. This datafile will function as a baseline for
suggestions when a student uses the AI for the first time. The
avatar could intuitively look more or less confident about the
suggestion, which is further supported with an optional text
explanation; to make the student aware of the suggestion’s
correctness. The suggestions’ quality will increase when the AI is
more acquainted with a specific user’s learning performances and
preference of suggestions. Meaning, the general baseline gets
adapted due to the learning behaviour of the AI. The validation of
the learning algorithm will be discussed in the next section (3.3
Test and Analysis).

3.2.1 State Diagram
This design is validated based on a state machine. In order to
visualize this, a state diagram was created (Figure 7, 8 and 9). It
presents the function and change in states of the AI with regard to
specific user actions. The decision was made to use a state
diagram validation instead of a flowchart, because the design is
based on explicit events and not on nodes (flowchart). Hence, the
state machine performs actions in response to explicit events that
can be detected as sensory readings of the cure state, instead of

making ‘automatic’ node to node transitions. This diagram
supports the possibility of going back and forth between states,
with an explicit definition of these states.

With regard to the learning algorithm used in this project, the state
diagram shows the state changes of the AI. The explicit state of
the agent pointing at the favoured list, is based on previous
information that was fed back via the personalized list scores.
Both states of accepting or rejecting the AI’s suggestion will be
fed back to the personalized AI prediction. Additionally, this
happens with the previous score and other inputs; which makes
sure that the AI learns from a specific student’s performances.

The state diagrams shows the behaviour of the agent during the
students planning and reflecting stage. The agent based on
previously mentioned inputs gazes at the optimal list to practise.
This remains the case until the student makes his decision. At this
point the AI recalculates the optimal list which means the gaze
could change, but also remain the same if that list is best to
practise twice. This same behaviour occurs when the student
reviews his planning during the reflecting phase, however here the
virtual agent directly points at a list.

Figure 7: State diagram going from inactive to initial planning
phase to reflecting on planning

Figure 8:State diagram during student planning phase. This circular state
diagram also applies to the pointing behaviour during the reflecting on the

created planning phase.

Figure 9: Student can ask for additional explanation by clicking on
the virtual agent. The student can ask for additional information in

both in planning phase and reflecting on planning phase.

3.3 Testing and analysis
3.3.1 Validation
Validation of the created AI is done through the cross validation
method LeaveOneOut (Pedregosa et al, n.d.-b). This method
extracts each unique input/output combination from the training
data and tests this against the predicted variable based on the
remaining variables trained model. Due to the looping nature of
this method it works best for relatively small datasets, which is
applicable to the training data used in the Taaldiertje concept
validation. When the data set increases this method could be
converted to approaches that apply more random testing, since
validity then follows through the randomness in larger datafiles.
Examples within the Sklearn library that can be used to validate
larger datasets are KFold, ShuffleSplit or StratifiedKFold
(Pedregosa et al, n.d.-b).

4. CONCLUSIONS
In this paper, we presented Taaldiertje, a web app aimed to help
primary school students effectively plan and learn word lists. We
have demonstrated the functionality of this web app together with
an extensive validation of the machine learning implemented.
Currently, the prototype is split up in two parts: the Web App
running in NodeJS and the AI running in Python, and are nearly
ready to be combined.

The SVM regressors were optimized and reached an accuracy
score of R2= .94 and R2 = .92 for the score- and time-predictions
respectively. These scores were calculated using the Leave-One-
Out validation method.

A virtual agent, Taaldiertje, is used to make the algorithm
comprehensible for the students. The information that is fed to the
AI is “visible” both to the agent as well as the student, as they are
displayed on the same page. In future iterations, it is envisioned to
have Taaldiertje also give a written explanation of what variables
it based its decision on.

The Web App is in a state near completion. Currently, the
researchers have to input the word lists manually, and the
connection to the Python environment is not yet fully functioning
due to library issues. Once these issues are addressed, the Web
App would be ready for deployment, and validation with the
target user group could start.

5. DISCUSSION
Currently, the prototype is split up in two parts: the Web App
running in NodeJS and the AI running in Python, and are nearly
ready to be put together.

The SVM regressors were optimized and reached an accuracy
score of R2= .94 and R2 = .92 for the score-prediction and time-
prediction regressors respectively. These are respectable scores,
and indicate that the AI should generally give accurate
predictions.

The Web App is in a state near completion. Currently, the
researchers have to input the word lists manually, and the
connection to the Python environment is not yet fully functioning
due to library issues. Apart from this, it has all necessary features:
the child can log in, see which wordlists they have to learn, plan
the wordlists, get feedback from Taaldiertje generated by the
Python scripts, train on wordlists, and see results. We therefore

see this as a partial success, as it is very near completion, but not
finished or validated yet.

5. 1 Limitations

Although the initial results of the SVM regressor are promising, it
is important to keep in mind it was trained with a simulated
dataset. To see whether the model truly works as intended,
sufficient data from actual users should be collected, and the
model should be retrained, optimized, and validated accordingly.
Furthermore, the current model does not make the distinction
between the different directions of learning the language, i.e.
translating from Dutch to English is seen as the same as
translating from English to Dutch.

Furthermore, when optimizing the SVM, optimal results were
found with relatively high C values, which could indicate the
simulated data did not have sufficient variance. Also, the epsilon
calculation method which was backed up by research did not give
the expected results: the error did not improve but worsened when
using this technique for validation, so instead another for loop was
used to determine the epsilon value.

As mentioned before, the web app still needs some alterations
before completion, and needs to be validated. The way we
envision this validation can be found in the future work section of
this paper.

5.2 Future work

We think Taaldiertje’s virtual embodiment still has opportunities
for AI explainability: Taaldiertje could intuitively show its current
confidence level through e.g. facial expressions and more
confident body language. This is a proposed improvement when
this design is used in context, which has not yet happened due to
time constrictions.

For the validation of the Web App, we envision an experiment in
which one or two classrooms of 10-12 year old primary school
students are split up. One group of children will be the control
group, which will receive the Taaldiertje Web App without the
Taaldiertje agent giving suggestions about their planning, but with
the AI monitoring their planning and result from behind the
scenes. The other group will receive Taaldiertje in its completed
form with both the AI and the Taaldiertje agent present, which
will give suggestions about the planning like currently envisioned.
This way, the functionality and possible benefit of the Taaldiertje
agent can be researched.

If Taaldiertje is successfully deployed within a primary school
setting to students, it will be able to relieve some of the workload
for the teachers. Since the act of planning can be simplified into
improvement and time, the AI can predict these scores with high
accuracy. Students will be more efficient when it comes to
planning their school work and thereby be better prepared for a
future in the information age.

If all of this goes to plan, Taaldiertje will be able to give insights
into how (explainable) AI can help students with their ability to
plan and regulate their learning. This knowledge can help
researchers to design for young children to help them learn the
valuable skill of self-regulated learning with the help of AI.
Providing feedback while allowing students to learn from their
mistakes will have a positive effect on the development of
students during the rest of their professional career.

6. REFERENCES
Adagideli, F., Saraç, S., & Ader, E. (2017). Assessing preschool
teachers’ practices to promote self-regulated learning.
International Electronic Journal Of Elementary Education, 7(3),
423-440. Retrieved from
https://www.iejee.com/index.php/IEJEE/article/view/89

Bootstrap (Version v4.5.3) [Open source front end framework
software]. (2020). Retrieved from https://getbootstrap.com

Christie, L. G., & Kumar, G. (2018). THE NEED FOR
LIFELONG LEARNING. International Journal of Learning and
Intellectual Capital, 1(1), 1.
https://doi.org/10.1504/ijlic.2018.10010867

Dienst Uitvoering Onderwijs & Algemeen Dagblad. (2015,
August). Rapportage Onderzoek passend onderwijs. DUO
Onderwijsonderzoek. Retrieved from https://www.duo-
onderwijsonderzoek.nl/wp-content/uploads/2015/08/Rapportage-
Passend-Onderwijs-augustus-2015.pdf

Dinkmeyer, D. C., & Dreikurs, R. (2000). Encouraging children to
learn. Psychology Press. [Page xi]

Dörr, L., & Perels, F. (2019). Improving Metacognitive Abilities
As An Important Prerequisite for Self-Regulated Learning in
Preschool Children. International Electronic Journal of
Elementary Education, 11(5), 449–459.
https://doi.org/10.26822/iejee.2019553341

Durgesh, K. S., & Lekha, B. (2010). Data classification using
support vector machine. Journal of theoretical and applied
information technology, 12(1), 1-7.

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August). A
density-based algorithm for discovering clusters in large spatial
databases with noise. In Kdd (Vol. 96, No. 34, pp. 226-231).

Express (Version v5.0) [Fast, unopinionated, minimalist web
framework for Node.js]. (2020). Retrieved from
https://expressjs.com

Friedrich, G., & Zanker, M. (2011). A Taxonomy for Generating
Explanations in Recommender Systems. AI Magazine, 32(3), 90.
https://doi.org/10.1609/aimag.v32i3.2365

Hagen, K. (2019, June 19). Burn out-probleem groeit snelst in
primair onderwijs. Retrieved 25 October 2020, from
https://www.aob.nl/nieuws/burn-out-probleem-groeit-snelst-in-
primair-
onderwijs/#:%7E:text=In%20het%20primair%20onderwijs%20(p
o,naar%2024%2C1%20in%202017.

Krishna, S., Pelachaud, C., & Kappas, A. (2020). FRACTOS.
Companion of the 2020 ACM/IEEE International Conference on
Human-Robot Interaction, 1.
https://doi.org/10.1145/3371382.3378318
Maklin, C. (2019, July 14). DBSCAN Python Example: The
Optimal Value For Epsilon (EPS). Retrieved October 20, 2020,
from https://towardsdatascience.com/machine-learning-clustering-
dbscan-determine-the-optimal-value-for-epsilon-eps-python-
example-3100091cfbc

MongooseJS (5.10). (2020). [MongoDB object modeling designed
to work in an asynchronous environment.]. MongoDB.
https://mongoosejs.com

NCSS Statistical Software. (n.d.). Chapter 315: Nonlinear
Regression. Retrieved October 25, 2020, from https://ncss-
wpengine.netdna-ssl.com/wp-
content/themes/ncss/pdf/Procedures/NCSS/Nonlinear_Regression.
pdf

Noble, W. S. (2006). What is a support vector machine?. Nature
biotechnology, 24(12), 1565-1567.

OpenJS Foundation (15.0.1). (2020). [Open Source Software].
Joyent Inc. https://nodejs.org/en/

Pedregosa et al. (n.d.-a). Support Vector Machines. Retrieved
October 08, 2020, from https://scikit-
learn.org/stable/modules/svm.html

Pedregosa et al. (n.d.-b). LeaveOneOut . Retrieved October 08,
2020, from https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.Leav
eOneOut.html

Pedregosa et al. (n.d.-c). LeaveOneOut . Retrieved October 08,
2020, from https://scikit-
learn.org/stable/modules/generated/sklearn.svm.SVR.html

Pérez, F., & Granger, B. (2015). Jupyter Notebook (5.0.0) [Python
3]. Project Jupyter. https://jupyter.org/

Persson, L. (2017, March 17). Alvast een nieuwe taal leren op de
basisschool. NEMO Kennislink.
https://www.nemokennislink.nl/publicaties/alvast-een-nieuwe-
taal-leren-op-de-basisschool/

Rader, E., Cotter, K., & Cho, J. (2018). Explanations as
Mechanisms for Supporting Algorithmic Transparency.
Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems - CHI ’18, 103:1-103:13.
https://doi.org/10.1145/3173574.3173677

ReactJS (17.0.1). (2020). [Open Source Software]. Facebook Inc.
https://reactjs.org/

Redux. (2020). Predictable state container for JavaScript apps.
Retrieved from https://redux.js.org

Schwabe, A. (2020). Demo of JARET: A.I. Powered Web App for
Goal Review and Time Management. Proceedings of the Seventh
ACM Conference on Learning @ Scale, 1.
https://doi.org/10.1145/3386527.3405954

Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR
12, pp. 2825-2830, 2011.

Sinha, R., & Swearingen, K. (2002). The role of transparency in
recommender systems. CHI ’02 Extended Abstracts on Human
Factors in Computing Systems - CHI ’02, 1.
https://doi.org/10.1145/506443.506619

Son, H., Kim, C., & Kim, C. (2012). Hybrid principal component
analysis and support vector machine model for predicting the cost

performance of commercial building projects using pre-project
planning variables. Automation in Construction, 27, 60-66.

The pandas development team. (2020). pandas-dev/pandas:
Pandas (latest) [Python library]. Zenodo.
https://pandas.pydata.org/

TNO. (2019, June). WERKDRUK IN HET ONDERWIJS.
Author. Retrieved from
https://www.rijksoverheid.nl/ministeries/ministerie-van-
onderwijs-cultuur-en-
wetenschap/documenten/rapporten/2019/06/06/werkdruk-in-het-
onderwijs

Tulli, S. (2020). Explainability in Autonomous Pedagogical
Agents. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(10), 13738–13739.
https://doi.org/10.1609/aaai.v34i10.7141

Whitebread, D., Bingham, S., Grau, V., Pino Pasternak, D., &
Sangster, C. (2007). Development of Metacognition and Self-
Regulated Learning in Young Children: Role of Collaborative and
Peer-Assisted Learning. Journal of Cognitive Education and
Psychology, 6(3), 433–455.
https://doi.org/10.1891/194589507787382043

Whitebread, D., & Coltman, P. (2010). Aspects of pedagogy
supporting metacognition and self-regulation in mathematical
learning of young children: evidence from an observational study.
ZDM, 42(2), 163–178. https://doi.org/10.1007/s11858-009-0233-
1

WRTS (n.d.). Alle voordelen van WRTS op een
rijtje.https://wrts.nl/voordelen

Zhang, Y., Li, R., & Tsai, C. L. (2010). Regularization parameter
selections via generalized information criterion. Journal of the
American Statistical Association, 105(489), 312-323.

Zimmerman, B. J. (1990). Self-Regulated Learning and Academic
Achievement: An Overview. Educational Psychologist, 25(1),
3–17. https://doi.org/10.1207/s15326985ep2501_2
van der Vlis t , B. J . , Niezen, G. , Hu, J . , & Fei js , L. M. (2010, June) . Semantic connect ions: Exploring and manipulat ing connect ions in smart spaces. In The IEEE symposium on Computers and Communicat ions (pp. 1-4) . IEEE.

Hu, J . , & Fei js , L. (2003, July) . An agent-based archi tecture for dis t r ibuted interfaces and t imed media in a s torytel l ing appl icat ion. In Proceedings of the second internat ional joint conference on Autonomous agents and mult iagent systems (pp. 1012-1013).

Van der Vlis t , B. , Niezen, G. , Hu, J . , & Fei js , L. (2010). Design semantics of connect ions in a smart home environment . Design and Semantics of Form and Movement (DeSForM 2010), Lucerne, Switzer land, 48-56.

Van Der Vlis t , B. , Van De Westelaken, R. , Bartneck, C. , Hu, J . , Ahn, R. , Barakova, E. , . . . & Fei js , L. (2008, June) . Teaching machine learning to design s tudents . In Internat ional Conference on Technologies for E-Learning and Digi tal Enter tainment (pp. 206-217). Springer , Berl in , Heidelb

7. APPENDIX

Appendix I: Python code
Appendix: II: Datafile
Appendix III: Images webpage
Appendix IV: Overview Inputs & Outputs

Appendix I: Python code

[1] import numpy as np

[2] import pandas as pd

[3] import matplotlib.pyplot as plt

[4] import seaborn as sns

[5] import matplotlib.lines as mlines

[6] import matplotlib.transforms as mtransforms

[7]

[8]

[9] from sklearn.svm import SVR

[10] from sklearn.model_selection import LeaveOneOut
[11] from sklearn.metrics import accuracy_score
[12] from sklearn.metrics import r2_score
[13] from sklearn.neighbors import NearestNeighbors
[14] from sklearn.cluster import DBSCAN
[15]
[16] sns.set()
[17]
[18] #The training data gets loaded
[19] df = pd.read_excel (r'C:\Users\Tim\Documents\Master\Q1\DBM140 Embodying Intelligent behavior in

social context\input_data.xlsx')

[20]
[21] #Training data gets sorted into input variables and predictor variables
[22] x=[df.Level, df.Dutch, df.English, df.Amount_of_Words,

df.Previous_Time,df.Times_Practiced,df.Percentage_Correct_Previous_Session]

[23] Y1=df.O1_Correct
[24] Y2=df.O2_Time
[25]
[26] #Changing the format of the variables to correctly load them into the regressor
[27] y1 = np.asarray(Y1).transpose()
[28] y2 = np.asarray(Y2).transpose()
[29] X = np.asarray(x).transpose()
[30]
[31] #Showing how the training data looks
[32] #print(X)
[33] #print(y1)
[34] #print(y2)
[35]
[36] print("Fitting data to model")
[37]
[38] #Here we twice load in the regression model and fit the training data to the two seperate regressors
[39] regr1 = SVR(kernel='rbf')
[40] regr1.fit(X, y1)
[41] regr2 = SVR(kernel='rbf')
[42] regr2.fit(X, y2)

[43]
[44] print("Fitting data to model completed")
[45]
[46]
[47] Level_i=2 ##Input from webpage
[48] Dutch_i=1 ##Input from webpage
[49] English_i=0 ##Input from webpage
[50] Amount_of_Words_i=20 ##Input from webpage
[51] Previous_Time_i=12 ##Input from webpage
[52] Times_Practiced_i=2 ##Input from webpage
[53] Percentage_Correct_Previous_Session_i=35 ##Input from webpage
[54] X_i=[Level_i, Dutch_i, English_i, Amount_of_Words_i, Previous_Time_i, Times_Practiced_i,

Percentage_Correct_Previous_Session_i]

[55]
[56] # Here the model predicts the outcomes
[57] Output_Score=regr1.predict([X_i])
[58] Output_Time=regr2.predict([X_i])
[59]
[60] # Both outputs get show in textual form
[61] print("Predicted percentage correct after practising")
[62] print(regr1.predict([X_i]))
[63] print("Predicted time required for practising the list")
[64] print(regr2.predict([X_i]))
[65]
[66] # Since the algoritm has a preference of getting positives grades first over optimizing one list that

might be easier

[67] # for the student, it here uses a comparative formula, where factors like improvement, time, amount
of words learned all

[68] # influence the outcome of the reward score. The AI will choose the highest reward score and advice
that list to learn.

[69]
[70] if Percentage_Correct_Previous_Session_i<60:
[71] R1=2*((2*(1-(Percentage_Correct_Previous_Session_i/100)))*(Output_Score-

Percentage_Correct_Previous_Session_i))

[72]
[73] else:
[74] R1=((2*(1-(Percentage_Correct_Previous_Session_i/100)))*(Output_Score-

Percentage_Correct_Previous_Session_i))

[75]
[76] R2=2*R1*(Amount_of_Words_i/10)
[77] Reward_Final=R2/Output_Time
[78]
[79] #Reward_final is the output of the whole AI. The highest number of a list will mean the student can

best learn this list

[80] print("Number used to choose which list to practise (higher is better):")
print(Reward_Final)

[81] # LeaveOneOut will be used to extract
[82] LOO = LeaveOneOut()
[83]
[84] # This is where we create a list containing the true y1 values and the values the model predicts
[85] # These will be used to run the r^2 validation on
[86] y1_true, y1_pred = list(), list()
[87] for train_ix, test_ix in LOO.split(X):
[88] X_train, X_test = X[train_ix, :], X[test_ix, :]
[89] y1_train, y1_test = y1[train_ix], y1[test_ix]
[90] # We use the model that was fitted above
[91] regr1.fit(X_train, y1_train)
[92] # evaluate model
[93] yhat = regr1.predict(X_test)
[94] # store
[95] y1_true.append(y1_test[0])
[96] y1_pred.append(yhat[0])
[97] # calculate accuracy
[98]
[99]
[100] # This is where we create a list containing the true y2 values and the values the model predicts

[101] # These will be used to run the r^2 validation on

[102] y2_true, y2_pred = list(), list()

[103] for train_ix, test_ix in LOO.split(X):

[104] X_train, X_test = X[train_ix, :], X[test_ix, :]

[105] y2_train, y2_test = y2[train_ix], y2[test_ix]

[106] # We use the model that was fitted above

[107] regr2.fit(X_train, y2_train)

[108] # evaluate model

[109] yhat = regr2.predict(X_test)

[110] # store

[111] y2_true.append(y2_test[0])

[112] y2_pred.append(yhat[0])

[113] # calculate accuracy

[114]

[115] # Calculation the R2 score for both models

[116] y1_r2 = r2_score(y1_true, y1_pred)

[117] y2_r2 = r2_score(y2_true, y2_pred)

[118]

[119] # Showing the errors numerically

[120] print("Error in percentage correct prediction (R^2)")

[121] print(y1_r2)

[122] print("Error in task time estimation (R^2)")

[123] print(y2_r2)

[124]

[125] # Showing the errors in plot form

[126] fig, ax = plt.subplots()

[127] plt.gray()

[128] ax.scatter(y1_true, y1_pred)

[129] line = mlines.Line2D([0, 1], [0, 1], color='red')

[130] transform = ax.transAxes

[131] line.set_transform(transform)

[132] ax.add_line(line)

[133] plt.xlabel("True correct after practising score")

[134] plt.ylabel("Predicted correct after practising score")

[135] plt.show()

[136]

[137] fig, ax = plt.subplots()

[138] plt.gray()

[139] ax.scatter(y2_true, y2_pred)

[140] line = mlines.Line2D([0, 1], [0, 1], color='red')

[141] transform = ax.transAxes

[142] line.set_transform(transform)

[143] ax.add_line(line)

[144] plt.xlabel("True time spent on practising")

[145] plt.ylabel("Predicted time spent on practising")

[146] plt.show()

[147] # Now the model is trained and validated. Now the model can be used to predict on new inputs

[148] # Here we input the new input variables to use in the predictor algoritm

[149] #C_val = [2,4,8,16,32,64,128,256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072]

[150] C_val = [2,4,8,16,32,64,128,256]

[151]

[152] r1_R2_C_val = []

[153]

[154]

[155] for i in range(len(C_val)):

[156] regr1 = SVR(kernel='rbf', C=C_val[i])

[157]

[158] # LeaveOneOut will be used to extract

[159] LOO = LeaveOneOut()

[160]

[161] # This is where we create a list containing the true y1 values and the values the model
predicts

[162] # These will be used to run the r^2 validation on

[163] y1_true, y1_pred = list(), list()

[164] for train_ix, test_ix in LOO.split(X):

[165] X_train, X_test = X[train_ix, :], X[test_ix, :]

[166] y1_train, y1_test = y1[train_ix], y1[test_ix]

[167] # We use the model that was fitted above

[168] regr1.fit(X_train, y1_train)

[169] # evaluate model

[170] yhat = regr1.predict(X_test)

[171] # store

[172] y1_true.append(y1_test[0])

[173] y1_pred.append(yhat[0])

[174] # calculate accuracy

[175]

[176] y1_r2 = r2_score(y1_true, y1_pred)

[177]

[178] print("Error in percentage correct prediction (R^2) at " + str(C_val[i]))

[179] print(y1_r2)

[180] r1_R2_C_val.append(y1_r2)

[181]

[182] r2_R2_C_val = []

[183]

[184] for i in range(len(C_val)):

[185] regr2 = SVR(kernel='rbf', C=C_val[i])

[186]

[187] # LeaveOneOut will be used to extract

[188] LOO = LeaveOneOut()

[189]

[190] # This is where we create a list containing the true y1 values and the values the model
predicts

[191] # These will be used to run the r^2 validation on

[192] y2_true, y2_pred = list(), list()

[193] for train_ix, test_ix in LOO.split(X):

[194] X_train, X_test = X[train_ix, :], X[test_ix, :]

[195] y2_train, y2_test = y2[train_ix], y2[test_ix]

[196] # We use the model that was fitted above

[197] regr2.fit(X_train, y2_train)

[198] # evaluate model

[199] yhat = regr2.predict(X_test)

[200] # store

[201] y2_true.append(y2_test[0])

[202] y2_pred.append(yhat[0])

[203] # calculate accuracy

[204]

[205] y1_r2 = r2_score(y2_true, y2_pred)

[206]

[207] print("Error in percentage correct prediction (R^2) at " + str(C_val[i]))

[208] print(y1_r2)

[209] r2_R2_C_val.append(y1_r2)

[210]

[211] # Showing the errors in plot form

[212] fig, ax = plt.subplots()

[213] plt.gray()

[214] ax.scatter(y1_true, y1_pred)

[215] line = mlines.Line2D([0, 1], [0, 1], color='red')

[216] transform = ax.transAxes

[217] line.set_transform(transform)

[218] ax.add_line(line)

[219] plt.xlabel("True correct after practising score")

[220] plt.ylabel("Predicted correct after practising score")

[221] ax.set_ylim(30, 100)

[222] ax.set_xlim(30, 100)

[223] plt.show()

[224]

[225] fig, ax = plt.subplots()

[226] plt.gray()

[227] ax.scatter(y2_true, y2_pred)

[228] line = mlines.Line2D([0, 1], [0, 1], color='red')

[229] transform = ax.transAxes

[230] line.set_transform(transform)

[231] ax.add_line(line)

[232] plt.xlabel("True time spent on practising")

[233] plt.ylabel("Predicted time spent on practising")

[234] ax.set_ylim(0, 28)

[235] ax.set_xlim(0, 28)

[236] plt.show()

[237] # Now the model is trained and validated. Now the model can be used to predict on new inputs

[237] fig, ax = plt.subplots()

[238] ax.plot(C_val, r1_R2_C_val) # Plot some data on the axes.

[239] plt.xscale("log",basex = 2)

[240] plt.xlabel("Regularization parameter")

[241] plt.ylabel("R^2 score of score prediction")

[242] plt.axvline(x=1024, ymin=0, ymax=0.9351415365438123, linestyle = '--',color='red')

[243] plt.show()

[244]

[245] fig, ax = plt.subplots()

[246] ax.plot(C_val, r2_R2_C_val) # Plot some data on the axes.

[247] plt.xscale("log",basex = 2)

[248] plt.xlabel("Regularization parameter")

[249] plt.ylabel("R^2 score of time prediction")

[250] plt.axvline(x=64, ymin=0, ymax=0.9139674817757812, linestyle = '--',color='red')

plt.show()

[251] fig, ax = plt.subplots()

[252] ax.plot(C_val, r1_R2_C_val) # Plot some data on the axes.

[253] plt.xscale("log",basex = 2)

[254] plt.xlabel("Regularization parameter")

[255] plt.ylabel("R^2 score of score prediction")

[256] plt.axvline(x=1024, ymin=0, ymax=0.9351415365438123, linestyle = '--',color='red')

[257] plt.show()

[258] fig, ax = plt.subplots()

[259] ax.plot(C_val, r2_R2_C_val) # Plot some data on the axes.

[260] plt.xscale("log",basex = 2)

[261] plt.xlabel("Regularization parameter")

[262] plt.ylabel("R^2 score of time prediction")

[263] plt.axvline(x=64, ymin=0, ymax=0.9139674817757812, linestyle = '--',color='red')

[264] plt.show()

[265] X, y = X, y1

[266]

[267] neigh = NearestNeighbors(n_neighbors=2)

[268] nbrs = neigh.fit(X)

[269] distances, indices = nbrs.kneighbors(X)

[270]

[271] distances = np.sort(distances, axis=0)

[272] distances = distances[:,1]

[273] plt.plot(distances)

[274]

[275] m = DBSCAN(eps=0.3, min_samples=5)

[276] m.fit(X)

[277]

[278] clusters = m.labels_

[279]

[280] colors = ['royalblue', 'maroon', 'forestgreen', 'mediumorchid', 'tan', 'deeppink', 'olive',
'goldenrod', 'lightcyan', 'navy']

[281] vectorizer = np.vectorize(lambda x: colors[x % len(colors)])

[282] plt.scatter(X[:,0], X[:,1], c=vectorizer(clusters))

[283] sns.set()

[284]

[285] X, y = X, y2

[286]

[287] neigh = NearestNeighbors(n_neighbors=2)

[288] nbrs = neigh.fit(X)

[289] distances, indices = nbrs.kneighbors(X)

[290]

[291] distances = np.sort(distances, axis=0)

[292] distances = distances[:,1]

[293] plt.plot(distances)

[294]

[295] m = DBSCAN(eps=0.3, min_samples=5)

[296] m.fit(X)

[297]

[298] clusters = m.labels_

[299]

[300] colors = ['royalblue', 'maroon', 'forestgreen', 'mediumorchid', 'tan', 'deeppink', 'olive',
'goldenrod', 'lightcyan', 'navy']

[301] vectorizer = np.vectorize(lambda x: colors[x % len(colors)])

[302] plt.scatter(X[:,0], X[:,1], c=vectorizer(clusters))

[303] eps = [0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75,
0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60,
1.65, 1.70, 1.75, 1.80, 1.85, 1.90, 1.95, 2.00]

[304] eps_C_val = []

[305] for i in range(len(eps)):

[306] regr1 = SVR(kernel='rbf', C=1024, epsilon=eps[i])

[307]

[308] # LeaveOneOut will be used to extract

[309] LOO = LeaveOneOut()

[310]

[311] # This is where we create a list containing the true y1 values and the values the model
predicts

[312] # These will be used to run the r^2 validation on

[313] y1_true, y1_pred = list(), list()

[314] for train_ix, test_ix in LOO.split(X):

[315] X_train, X_test = X[train_ix, :], X[test_ix, :]

[316] y1_train, y1_test = y1[train_ix], y1[test_ix]

[317] # We use the model that was fitted above

[318] regr1.fit(X_train, y1_train)

[319] # evaluate model

[320] yhat = regr1.predict(X_test)

[321] # store

[322] y1_true.append(y1_test[0])

[323] y1_pred.append(yhat[0])

[324] # calculate accuracy

[325]

[326] y1_r2 = r2_score(y1_true, y1_pred)

[327]

[328] print("Error in percentage correct prediction (R^2) at " + str(eps[i]))

[329] print(y1_r2)

[330] eps_C_val.append(y1_r2)

[331]

[332]

[333] eps2_C_val = []

[334]

[335] for i in range(len(eps)):

[336] regr2 = SVR(kernel='rbf', C=64 ,epsilon=eps[i])

[337]

[338] # LeaveOneOut will be used to extract

[339] LOO = LeaveOneOut()

[340]

[341] # This is where we create a list containing the true y1 values and the values the model
predicts

[342] # These will be used to run the r^2 validation on

[343] y2_true, y2_pred = list(), list()

[344] for train_ix, test_ix in LOO.split(X):

[345] X_train, X_test = X[train_ix, :], X[test_ix, :]

[346] y2_train, y2_test = y2[train_ix], y2[test_ix]

[347] # We use the model that was fitted above

[348] regr2.fit(X_train, y2_train)

[349] # evaluate model

[350] yhat = regr2.predict(X_test)

[351] # store

[352] y2_true.append(y2_test[0])

[353] y2_pred.append(yhat[0])

[354] # calculate accuracy

[355]

[356] y1_r2 = r2_score(y2_true, y2_pred)

[357]

[358] print("Error in percentage correct prediction (R^2) at " + str(eps[i]))

[359] print(y1_r2)

[360] eps2_C_val.append(y1_r2)

Appendix II: Data file

Level Dutch English Amount_of_WordPrevious_Time Times_Practiced Percentage_Correct_PO1_Correct O2_Time

1 1 0 20 16 1 35 50 15
1 1 0 20 14 2 50 63 14
1 1 0 20 14 3 65 68 14
1 1 0 20 14 3 69 77 14
1 1 0 20 14 4 75 78 13
1 1 0 20 11 5 77 80 11
1 1 0 20 10 6 78 81 10
1 1 0 25 18 1 33 55 17
1 1 0 25 14 4 67 75 12
1 1 0 30 20 1 29 53 19
1 1 0 30 16 4 65 72 13
1 1 0 40 25 1 31 56 23
1 1 0 40 22 3 65 71 18
1 0 1 20 18 1 36 54 17
1 0 1 20 13 4 71 77 12
1 0 1 20 10 6 82 84 8
1 0 1 25 23 3 68 76 18
1 0 1 30 23 4 64 72 19
1 0 1 40 26 1 28 51 24
1 0 1 40 22 3 64 73 20
2 1 0 20 9 1 40 67 8
2 1 0 20 7 2 68 80 8
2 1 0 20 5 3 79 84 4
2 1 0 20 4 3 82 87 3
2 1 0 20 4 4 84 89 2
2 1 0 20 3 5 88 80 2
2 1 0 20 2 6 91 93 2
2 1 0 25 11 1 42 67 10
2 1 0 25 5 4 83 87 3
2 1 0 30 12 1 39 64 10
2 1 0 30 6 4 80 84 4
2 1 0 40 14 1 38 65 13
2 1 0 40 8 3 78 82 6
1 0 1 20 17 1 37 55 16
1 0 1 20 13 4 71 77 10
1 0 1 20 10 6 82 84 6
1 0 1 25 22 3 68 77 17
1 0 1 30 22 4 70 75 19
1 0 1 40 26 1 33 53 24
1 0 1 40 23 3 69 75 21
1 1 0 20 10 1 25 40 8
1 1 0 20 14 5 75 80 12
1 1 0 20 16 6 85 90 14
1 1 0 20 16 1 20 35 15
1 1 0 20 18 1 25 40 14
1 1 0 40 24 3 45 60 21
1 1 0 40 20 1 15 25 19
1 1 0 30 18 6 75 75 15
1 1 0 30 24 6 70 75 21
1 1 0 25 12 2 45 55 11
1 1 0 25 15 3 50 55 13
1 1 0 20 14 3 55 65 12
1 1 0 20 12 2 50 60 10
2 0 1 20 3 5 92 95 2
2 0 1 20 12 2 65 90 8
2 0 1 30 18 2 60 80 13
2 0 1 25 7 6 95 96 4
2 0 1 40 10 3 75 85 9
2 0 1 20 10 1 40 70 8
2 0 1 40 14 1 36 68 13
2 0 1 20 15 1 75 95 10
2 0 1 20 16 1 75 95 10
2 0 1 20 17 1 80 85 12
2 0 1 25 18 1 68 84 15
2 0 1 25 21 2 84 96 12
2 0 1 20 19 2 90 95 15
2 0 1 30 22 1 80 90 15
2 0 1 25 19 1 84 92 12
2 0 1 20 18 2 95 95 12
2 1 0 20 18 2 95 95 10
2 1 0 25 20 1 84 88 14
2 1 0 30 25 3 70 84 15
2 1 0 30 27 3 80 93 13
2 1 0 35 28 3 66 86 20
2 1 0 20 17 2 70 85 10
2 1 0 40 28 4 60 80 20
2 1 0 20 17 1 85 90 10
2 1 0 25 22 3 88 96 12
2 1 0 30 26 2 83 90 16
2 0 1 20 15 1 75 90 10

Appendix III: Images webpage
The webpage is fully functioning, both back-end and front-end and is data is encrypted.

Appendix IV: Overview Inputs & Outputs

	1. INTRODUCTION
	1.1 Problem analysis
	1.2 Related works
	1.2.1 Self-Regulated learning
	1.2.2 Explainable AI
	1.2.3 Existing solutions

	2. METHOD & MATERIALS
	2.1 Methods & Approach
	2.1.1 Regression
	2.1.2 Inputs & Outputs
	2.1.3 Datafile
	2.1.4 Web application

	2.2 Learning algorithm
	2.2.1 Machine Learning
	2.2.2 Scikit-learn
	2.2.3 Optimization of Regularization parameter (C)
	2.2.4 Optimization of the Epsilon parameter (e)
	2.2.5 Comparative formula
	2.2.5.1 Formula parameters

	3. DESIGN
	3.1 Design of the interaction
	3.2 Intelligent Behaviour and Embodiment
	3.2.1 State Diagram

	3.3 Testing and analysis
	3.3.1 Validation

	4. CONCLUSIONS
	5. DISCUSSION
	5. 1 Limitations
	5.2 Future work

	7. APPENDIX
	Appendix I: Python code
	Appendix II: Data file
	Appendix III: Images webpage

