

Company Coach 
Steven Lammertink 
The Cirqle

University Coach 
Jun Hu 
Eindhoven University of Technology 

Summary
Startups often operate in uncertainty with customers, product requirements and objectives

susceptible to rapid change. To be able to be responsive to this uncertainty, startups often need to

gain agility by intentionally occurring a limited amount of technical debt. This process allows

companies to develop software faster, with the understanding that compromises made will

negatively affect the product quality and thus the User Experience (UX).

The lack of an integrated user-centered design approach managing the impact of this debt poses a

risk to both the product and the company as a whole; it leads to a fragmented UX, lack of

consistency in the User Interface (UI), and a disconnect from changing user needs. Over time, the

accumulation of this debt becomes a great weight that slows down growth and may cause users to

seek out competitors.

The project outlined in this report describes the process of introducing a design system at The Cirqle

to address uncovered UX gaps in the products while pro-actively reducing the amount of debt

introduced into the UX design and UI development process. An initial research phase, followed by

two case studies illustrate the implementation and use of the design system, together with the

learnings and insights acquired through this process.

The design system had a considerable impact on the way products are designed and built at The

Cirqle. Products showed an increase in design consistency and redundancies in the design and

development process were reduced. Furthermore, this led to an increase of the team’s efficiency;

more resources could be dedicated to user-centered design activities and experiments, new features

were released at a faster pace and the team was able to iterate faster on the design of features.

The current implementation of the design system can be considered to be in its early stages of

maturity. Meticulous documentation of design decisions, UI components, and overarching design

patterns is likely to further increase the product quality. Additionally, the introduction of both unit

and visual regression testing of the building blocks of the design system would allow the team to

release and update the design system with more confidence as the system scales.

1 Introduction 1
1.1 About The Cirqle 1

1.2 Project Goal 3

1.3 Project Approach 3

2 UX Debt in startups 4
2.1 Classifications of UX debt 4

2.2 Reasons for UX debt at startups 5

2.3 Risks of UX debt 6

2.4 Uncovering UX Debt 7

3 Design Systems 10
3.1 Modular Interface development 10

3.2 Rise in popularity 11

3.3 Assets of a Design System 12

4 Design 16
4.1 Initial Implementation 16

5 Case Study: User Sign Up Flow 21
5.1 Conceptual Design 22

5.2 Design 25

5.3 Outcome 28

6 Case study: Content Approval 30
6.1 Conceptual Design 30

6.2 First design 31

6.3 Second design 32

6.4 Outcome 33

7 Discussion & Reflection 35

8 Conclusion 37

9 References 38

1 Introduction
The Cirqle is an Amsterdam based marketing technology startup with a focus on influencer

marketing. As of January 2018, I have started working at the company as a UX designer. During my

first seven months at The Cirqle, I performed an innovation project in collaboration with the

Professional Doctorate in Engineering (PDEng) program User System Interaction (USI) at Eindhoven

University of Technology (TU/e). This report outlines the project’s approach, research, and

implementation based on two case studies.

1.1 About The Cirqle
The Cirqle offers brands and marketing agencies, further in this report referred to as clients, a

platform to manage data-driven influencer marketing campaigns at scale. The platform enables

clients to establish their online social presence through the world’s most influential bloggers,

creatives and social media influencers. At the time of writing, The Cirqle consists out of a

multidisciplinary team of 15 people. The employees operate out of the headquarters in Amsterdam

together with regional operations in both New York and Shanghai.

A typical marketing campaign run at The Cirqle starts by defining the campaign objectives and Key

Performance Indicators (KPIs) in collaboration with the client. These goals are translated into a

campaign brief, which is sent out to a curated network of 13 000 content creators and social media

influencers. Comparable to a job description, a campaign brief highlights what the campaign is

about; it includes requirements, deliverables, and incentives for influencers.

Influencers that are interested in collaborating with the client can opt-in to the campaign by applying

to the brief. From all incoming applications, a limited set of influencers that fit the requirements set

by the client is selected. These selected influencers create user-generated content (UGC) that is later

distributed on their own social media channels to engage and activate the predetermined target

audience.

 1

The Product

The typical campaign described above is produced and managed by a campaign manager working at

The Cirqle. The company developed a platform in-house to support the internal team to deliver on

the above. The long-term strategy of The Cirqle, however, entails licensing this platform to third

parties as a Software as a service (Saas) product. There are three distinct components to the

platform:

A P P S F O R I N F LU E N C E R S A N D CO N T E N T C R E ATO R S

The apps for influencers and content creators connect users with clients; influencers can view and

apply for campaigns, compose personal profiles and manage their account. The company currently

maintains apps for three platforms: a responsive web application and a mobile app for both iOS and

Android devices.

DAS H B OA R D F O R C L I E N TS

Clients can draft, edit and approve campaign briefs, select influencers they would like to collaborate

with and track the performance of their campaigns through a web dashboard.

A D M I N DAS H B OA R D F O R C A M PA I G N M A N AG E R S

The admin dashboard offers campaign managers and employees at The Cirqle the tools measure,

analyze and report on the results of influencer campaigns and to manage influencers and clients.

The Team

The main departments at the Cirqle are as follows:

- Sales and Account Management: manages the relationships with clients

- Campaign Management: creates marketing strategies and coordinates campaigns

- Influencer Management: ensures collaboration with the right influencers

- Engineering: designs and develops the platform

 2

The engineering team at The Cirqle that is responsible for developing the platform consists out of

two back-end developers, two full-stack developers and myself as a UX designer. As an employee of

The Cirqle, I am leading the User Experience (UX) and design efforts while contributing to the

development of products described above.

1.2 Project Goal
Startups in search for product-market fit often operate in uncertainty with customers, product

requirements and objectives susceptible to rapid change (Andreesen, 2007; Blank, 2006; Ries, 2011).

To be able to be responsive to this uncertainty, startups often need to gain agility by intentionally

occurring a limited amount of technical debt (Nilsson & Petersson, 2013). In short, technical debt is

the result of shortcuts taken during the software development process in order to achieve rapid

gains (Cunningham, 1992, Kruchten et al., 2012). The impact this technical debt has on the

experience of the end user, referred to as UX debt, is often left unacknowledged. Leaving UX debt

unaddressed does not only make the product harder to use over time but may also limit product

adoption, cause users to seek out competitors or may cause potential bottlenecks in future product

development (Dunwoody & Teague, 2015; Moffett, 2016; Wright, 2014).

This report focuses on the implementation of a design system in order to address UX debt

systematically at startups, as they potentially offer a modular and flexible solution to the problem.

The ultimate goal of this project is to enable the company to speed up the product development

pace using a maintainable and robust design system that can swiftly address gaps in UX.

1.3 Project Approach
The project is divided into two phases: a research phase with an introduction to UX debt and an

overview on current and best practices of implementing design systems, and a design phase with an

initial technical implementation of a design system and two case studies conducted at The Cirqle.

  

 3

2 UX Debt in startups
The metaphor technical debt was first coined about two decades ago by Ward Cunningham, one of

the authors of the Agile Manifesto. The concept reflects the additional development work needed to

maintain software due to technical compromises made during the development process

(Cunningham, 1992, Kruchten et al., 2012). Kerievsky later extended the technical debt metaphor to

UX design (Dunwoody & Teague, 2015). Similarly to technical debt, UX debt is an accumulation of

mainly design – but also development – decisions that negatively impact the users of a product or

service (Moffett, 2016).  
Although technical debt itself is not part of the scope of this report, it’s worth noting that the build-

up of technical debt itself also negatively impacts UX. On the one hand, cutoffs may be made while

implementing new designs. On the other hand, technical debt may possibly impact the performance

or maintainability of the system, and thus cause a negative impact on the user experience (Knight,

2016).

2.1 Classifications of UX debt
Kruchten et al. (2012) define two types of technical debt: visible debt, debt that can be identified by

people that aren’t software developers, and invisible debt, debt that can only be identified by software

developers. Although invisible debt such as bad architecture or code complexity may negatively

impact the UX of the product in the long term, UX debt is mainly situated in the first category of

visible debt.

Figure 1. Visible and Invisible Technical Debt, from Kruchten et al. (2012).

�

 4

According to McConnel (2007) however, can technical debt also be regarded as either intentional or

unintentional. Many authors have extended these categories to UX debt (Nilsson & Petersson, 2013).

Intentional or strategic UX debt, on the one hand, is a result of decisions made based on project

constraints while unintentional UX debt on the other is collected due to misconceptions or false

assumptions made about users and due to changes in the user’s needs and expectations over time.

2.2 Reasons for UX debt at startups
Moffett (2016) states that UX debt is particularly common in enterprise contexts due to their product

and organizational complexity. However, there are some characteristics typically associated with

startups that make these young and fast-paced companies susceptible to collecting UX debt over

time.

2.2.1 Shifts in Requirements

Startups often know rapid changes in requirements that can be attributed to the search for product/

market fit (Andreessen, 2017). Finding this fit is a step in between customer validation and customer

creation, and is of the utmost importance for startups, as it’s often a precondition for successfully

growing the company (Blank, 2006; Ellis, 2009).

In order to achieve product/market fit, feedback from customers and prospects who go through the

sales pipeline is extremely valuable input to steer the direction of the product roadmap (Snyder,

2018). Startups often need to adjust their roadmap to see what gains traction and iterate on existing

features. When developing new features, speed and agility are important to keep a competitive edge;

this way a company might release a product with technical or UX debt in order to meet strategic

timelines (Moffet, 2016). However, when this debt is not repaid shortly after the release, or when the

process doesn’t account for timely refactoring, UX debt gets accumulated (Chen, 2011, 2015; Gothelf,

2016).

 5

2.2.2 Early Stage of UX Maturity

Just as any other company, startups progress through a sequence of fairly universal stages in order

to potentially become a fully user-centered organization (Nielsen, 2006a, 2006b). Each organization

moves through these steps at their own pace, with some sources suggesting that progressing

through each stage may take up to 2 to 3 years (Buttiglieri, 2012). Startups move, generally speaking,

from a development centered or ad hoc approach to design in the early stages to a more rigid UX

process once they achieve product-market fit (Giacoppo, 2013). The lack of an integrated user-

centered design approach to manage accumulated debt leads to an incoherent UX and, possibly, a

misunderstanding of the end users of the product.

2.3 Risks of UX debt
Both intentional technical and UX debt allow companies to develop software faster, with the

understanding that compromises made will negatively affect the product quality and the user

experience (Huffine, 2017).

The buildup of UX debt over time often poses a risk for both the product and the company as a

whole. Unaddressed UX debt leads to a fragmented UX, lack of consistency in the User Interface (UI)

and more importantly, a disconnect from changing user needs (Dunwoody & Teague Rector, 2015;

Moffet, 2016). Over time, the accumulation of this debt becomes a great weight that slows down

growth (Suarez et al., 2017).

Unintentional UX debt is arguably the worst type of UX debt to collect, as the disconnect with users

naturally grows bigger over time (Wright, 2014). We should, therefore, aim to minimize the intentional

technical debt while avoiding unintentional debt altogether (Moffet, 2016).

 6

2.4 Uncovering UX Debt
Dunwoody and Teague Rector (2015) recommend different approaches to uncover UX debt,

depending on the UX maturity of the organization and the product. Most features of the product

didn’t have any formative usability data available; the majority of these features were situated at the

Ad-Hoc level, few at the Intentional level of UX maturity (Buttiglieri’s, 2012). The first activity I

performed upon joining the company was a heuristic evaluation of the current products to

familiarize myself with the platform and discover potential usability problems.

2.4.1 Heuristic Evaluation

Typically, this method involves having a small group of usability experts evaluate a user interface

using a set of guidelines (Lauesen & Musgrove, 2005). In this scenario, I was the only expert

reviewing the interface. The guidelines used for this evaluation were a combination of Shneiderman's

‘Eight Golden Rules of Interface Design’ (1986) and Nielsen and Molich’s (1990) ’10 Heuristics for User

Interface Design’ (1990).

Since all products were fully operational, a task-based evaluation could be carried out (Lauesen &

Musgrove, 2005). These tasks replicated typical tasks a user might carry out using the platform. The

Figure 2. A summary of UX Debt by Maturity Level, from Dunwoody and Teague Rector (2015).

�

 7

users were assumed to have a basic understanding of (influencer) marketing and the relevant

terminology.

A N A LYS I S

The following phase of the evaluation involved the analysis of the listed problem descriptions. The

discovered potential problems were rated using a five-point scale. All the potential problems were

initially captured in a separate spreadsheet on a product basis but were later also combined to

explore if there were recurring or overlapping problems.

According to Nielsen (1995), the severity of can best be judged by the following three factors: the

frequency of the problem in the interface, the impact of it and whether or not users are able to overcome

the issue, and lastly the persistence of the problem.

The severity ratings were used to allocate resources to immediately address the most serious

problems. Furthermore, they also provided a rough estimate of the need for additional usability

efforts (Nielsen, 1995).

R E S U LTS

Overall, the evaluation identified 32 total usability problems on average per product. Moffet’s (2016)

classifications of types of UX debt provided a structure to categorize the overarching issues. After

consolidation, seven overarching issues emerged across all products:

- Features that are regularly used are tucked away layers deep in the UI. A confusing information

architecture may fail to represent the user's mental model of the product. (Functional UX debt)

- Although the needs and priorities of the users may have changed over time, old features were

still present in the platform. (Functional UX debt)

- Lack of brand and visual UI consistency in regards to color, spacing and, typography.

Additionally, three different icon fonts were used throughout the platform. (Visual UX debt)

- As the platform grew, the number of influencers and the data campaign managers have to

manage increased exponentially. Efficient tools to handle this data, e.g. performing bulk

actions, searching, sorting and filtering, are lacking or used inconsistently across screens.

(Functional UX debt)

- Lack of consistency and conventions in the navigation patterns between screens and pages.

Interactions differ on a feature basis. (Behavioral UX debt)

 8

- The language used in the copywriting may be confusing for new users. Additionally,

notifications and error messages lack descriptive feedback. (Visual UX debt)

- Lack of error handling and descriptive error messages. (Behavioral UX debt) 

 9

3 Design Systems
A design system offers a library of interconnected visual guides, UI components and patterns

documented and released by an organization as tools for designers and/or developers so that

adopting products can be more efficient and cohesive (Curtis, 2017a; Kholmatova, 2017).

Design systems are mainly being developed at large organizations considering they require a

considerate amount of organizational buy-in, investment, coordination and knowledge sharing

(Curtis, 2017c; Ruissalo, 2018). However, the advantages offered by a design system provide a

solution to the gaps in UX uncovered by the initial heuristic evaluation and potentially address the

needs of startups that are searching for product/market fit or startups trying to scale and mature.

Due to the increase in efficiency and consistency in the product development process, design

systems could potentially offer a sustainable approach to managing UX debt at startups.

3.1 Modular Interface development
The usage and development of design systems in software design gained significant traction in

recent years, but the usage of patterns in design disciplines is not novel.

The idea of a pattern library was first introduced by the architect Christopher Alexander. In his book

'A Pattern Language' (1977), Alexander attempted to answer why certain buildings feel great to be in

while others may feel dull or lifeless. He argues that the feeling is based on a result of certain

tangible and specific patterns, rather than on subjective emotions (Alexander, et al., 1977). Each one

of the 253 architectural design patterns defined in the book, describes a problem and it's solution in

such a way it can be used in a repeatedly.

The publications of the books Design Patterns: Elements of Reusable Object-Oriented Software

(Gamma et al. 1994) and Common Ground (Tidwell, 2015) later introduced the idea of modular

patterns to software engineering and Human-Computer Interaction. When applied to building

interfaces, design patterns capture common solutions to design tensions or user needs

(Kholmatova, 2017; van Welie & Traetteberg, 2000).

 10

In 2006, Yahoo! released the Yahoo! Design Pattern Library, the first pattern library for the web. The

library communicated design ideas, interaction design idioms that were new to the web (e.g., drag

and drop) and discussed interface patterns commonly used by the company (Scott & Malone, 2006).

The processes and considerations in this work are familiar to popular design systems created today

such as Google's Material Design and the Salesforce Lightning Design System.

3.2 Rise in popularity
The wide adoption of design systems across large organizations can be attributed to the advantages

design systems were offering in comparison to the current tools:

O F F E R S CO N S I ST E N CY

Providing a consistent UI, UX and branding across all platforms are vitally important to organizations;

a cohesive experience is more easily understood by their users (Bailey, 2016; Saarinen, 2016).

In an industry research, 59% of the interviewed enterprises report that improving consistency is a

relevant problem to them (UXPin, 2018). In many organizations, UX and UI design are still bespoke;

teams offer tailor-made solutions to individual problems (Suarez et al., 2017). Although shipping one-

off solutions in software development and design is not inherently bad, it often leads to

inconsistencies and the accumulation of both technical and design debt when the solutions aren’t

built upon a solid foundation (Saarinen, 2016).

E N A B L E S S C A L A B I L I T Y O R G A N I Z AT I O N S

Scaling a consistent UI and UX design across a multitude of teams and different platforms has

become a new challenge in the software industry (Rohde, 2014; Suarez et al., 2017). As an

organization grows, it’s common for designers to focus on discrete areas of the product. This can

lead to an inconsistent user experience across the platform (Suarez et al., 2017). Design systems

enable teams to easily scale a product by using design standards and patterns (Curtis, 2010; Rohde,

2014). Having a set of standards in place also helps to mitigate impacts of reduced face-to-face

collaboration in large, distributed teams.

 11

I N C R E AS E S S P E E D & E F F I C I E N CY

Using a design system helps teams to build a cohesive product at a faster pace as it helps reduce

redundancies and inconsistencies in design and engineering implementations and gives teams a

common language to work with (Kholmatova, 2017; Saarinen, 2016).

Many teams have reported achieving a more efficient implementation process, savings, and better

design (Curtis, 2010). Common metrics to calculate this benefit from an organizational perspective

include the time saved per feature, increased delivery, reduction in the number of bugs reported and

improved the internal satisfaction of the design and development team (Martin, 2018). In a case

study, Loomer (n.d.) highlighted a decrease of 50% of the time to market, while reducing software

development costs and customer support tickets by 20% and 52% respectively.

T E C H N O LO GY

In addition to these benefits, more component-driven web standards, development libraries, and

frameworks made the technical implementation of end-to-end design systems more effective

(Lambert, 2016; Priego, 2017). Popular JavaScript frameworks such as Angular and React encourage

developers to create encapsulated UI components that manage their own state and can be

combined to build up complex interfaces (React, 2018).

3.3 Assets of a Design System
To gain a better understanding of what a design system in practice consists out of, five existing

design systems where analyzed: Salesforce Lightning, Shopify Polaris, WeWork Plasma, Atlassian’s

Design Language, and IBM Carbon (see Appendix 1). These examples were selected based on their

current popularity in the UX design community (UXPin, 2018; Walrack, 2018).

 12

3.3.1 Style Guide

Style guides and design systems are often wrongfully confused with each other. While style guides

are static artifacts of the design process, design systems can be perceived as a living product serving

an ecosystem of products with explicitly defined design patterns (Griffiths et al. 2000; Curtis, 2017).

All analyzed examples include a style guide that lays the foundation for the design system. Style

guides often provide brand-defined visual attributes, such as colors, typography, spacing, icons and

visual style elements, and guidelines on how to achieve visual and functional consistency (Gale,

1996). Traditionally, style guides and their graphical assets would be defined by designers and

implemented by developers. This means a designer is a dependant on a member of the

development team to implement even relatively minor design decisions (Chenais, 2018):

1. The designer updates the color in the design tool.

2. This design update is shared with the developer.

3. The developer updates the value in the code.

4. The designer can see the result in a development environment.

This workflow has several drawbacks:

- It slows down the development and design process (Chenais, 2018)

- The implemented visual design may differ from the style guidelines defined by designers (Gale,

1996)

- designers and developers would speak with different terminology (Ruissalo, 2018)

To address these potential pitfalls, there are industry recommendations to define visual UI styles as

design tokens (Rohde, 2014). Tokens are code-level attributes that store a style value. The separation

of the name and the content allows the token to be used independently of the value it represents

throughout the entire design system; changes to the value of a design token will propagate through

all products (Ruissalo, 2018). Using design tokens, or variables, to represent visual styles in a design

system is a necessity for scalability, consistency, and maintainability as it creates a single source of

truth for the entire system (Rohde, 2014). Additionally, naming conventions for design tokens offer

context to all users involved, enabling designer and developers alike to use the same terminology

(Ruissalo, 2018; Suarez et al., 2017).

 13

3.3.2 User Interface Components

UI components are the technical implementation of user interface patterns. Components allow

designers and developers to break up the UI into independent, self-contained, reusable parts and

think about each piece in isolation (React, 2018). This abstraction enables teams to build large-scale

applications in a modular way (Vue.js, 2018).

A library of UI components enables one of the key objectives of a design system; it discourages the

use of one-off solutions and thus reduces inconsistencies in the UI and improves reusable of design

and code solutions across products (Kholmatova, 2017; Suarez et al., 2017).

Most design systems rely on a variation of the Atomic Design methodology introduced by Frost

(2013) to bring structure to their collection of components. Frost lays out a systematic approach for

creating a component-based pattern library, and in turn design system. He argues that interfaces

should be thought of as a hierarchy of elementary building blocks, rather than uniform or isolated

pages.

The name atomic design refers to the metaphor he puts in place to refer to these building blocks. In

this metaphor, the most basic building blocks, called atoms, are progressively used and grouped

together to form increasingly larger concepts such as molecules and organisms, before being used

to construct templates, and finally pages from those templates.

- Atoms: foundational building blocks that comprise all user interfaces

- Molecules: simple groups of UI elements functioning together as a unit

- Organisms: more complex UI components composed of groups of molecules, atoms or other

organisms

- Templates: page-level objects that place components into a layout and articulate the design’s

underlying content structure.

- Pages: specific instances of templates that show what a UI looks like with real representative

content in place

 14

Airbnb takes a different approach to design and develop their design system. Saarinen (2016),

Principal Designer at Airbnb, argues that building a user interface from atoms only works well in

theory. He explains that an atom based design system initially allows teams to design a coherent and

flexible product, but that individual atoms also leave room for interpretation and that re-usable

atoms often end up being used in many different ways. Moreover, he claims that this approach leads

to disjointed experiences and a codebase that is hard to maintain.

Rather than various atoms, the Airbnb component library only consists of elements (comparable to

molecules in the atomic design paradigm) that are iteratively developed to fit the product’s needs.

The contents of these components, however, are based on a static style guide.

3.3.3 Documentation & Design Principles

Documentation, design principles and guidelines offer team members across the organization more

insight into how a particular design pattern, UI component or design solution should be used. While

UI components ensure consistency across the smaller elements in the product, documentation

provides guidelines and best practices on how they should be implemented (Connolly, 2018; Suarez

et al., 2017).

Figure 3. Atomic Design methodology as illustrated by Frost (2013).

�

 15

4 Design
This chapter goes into more depth on how a design system was implemented and used at The

Cirqle. The chapter consists of the initial implementation of a design system tailored to the

company’s needs and based on the knowledge gathered during the initial research phase.

Furthermore, two case studies offer insight as to how the system was later used in the product

development process and matured over time. These case studies include a comprehensive

description of the design process and reflect on the use of the design system during the design and

development phase.

4.1 Initial Implementation
The objective of the initial implementation was to lay the groundwork for the iterative development

of the design system. As the first step in building a design system, most resources recommend

starting with composing a UI inventory first (Treder, 2017). Frost (2013) defines a UI inventory as “a

comprehensive collection of the bits and pieces that make up your interface.”

Rather than starting by creating such an inventory, however, the team was aiming to iteratively

develop the design system based on the core workflows, tasks, and feedback collected from users.

For a design system to be purposeful, the contents need to solve specific problems and be inspired

by user-centered design activities (Ruissalo, 2018; Wroblewski, 2018).

The main objective of a design system should not be achieving agility, efficiency, and consistency, but

rather leveraging these advantages to create meaningful experiences (Kholmatova, 2017; Madsen,

2017).

4.1.1 Approach

The team considered two different approaches when implementing the design system: the Big Bang

and the Slow drip approach (Gothelf & Seiden, 2016).

 16

Within the first approach, a team would take a limited time away from product development to

design, develop and implement all the necessary building blocks for the design system. Gothelf and

Seiden (2016) argue that this approach works best for products that are relatively young and simple.

The main drawback, however, is that this approach either halts product development or requires a

dedicated multidisciplinary task force (Curtis, 2017a).

An alternative is the Slow drip approach, in which a team keeps working on the product while

continuously adding components as they go. This approach comes with one big caveat; it could

initially slow down iterations and the development of new features since the system would be

incomplete.

The Big Bang approach seems to be the most common strategy in the industry, with organizations

creating standardized and modular alternatives to their current UI and design elements (Curtis,

2017a; Saarinen, 2006; Treder, 2017). Since none of the team members had experience building a

design system and we didn't want to halt ongoing product developments, we opted for the slow drip

approach.

This approach would allow us to iteratively design and build the design system inspired by user-

centered design activities (Madsen, 2017; Ruissalo, 2018; Wroblewski, 2018). Furthermore, Loranger

(2015) also points out that incremental design changes and continuous improvements are known to

lead to more high-quality products.

4.1.2 Implementation

During the first sprint, we focused on establishing a structure that would allow the team to expand

the design system over time. Since we were planning to design the system iteratively, the design

system would scale both horizontally and vertically; new building blocks will be introduced, while

existing elements will gain more options, versions, and refinements.

D E S I G N TO K E N S

A collection of design tokens was defined to bring the design attributes used in brand guidelines,

marketing materials, and existing interfaces together. Furthermore, meaningful combinations of

different design tokens were grouped together and defined as utility classes; these are layout

 17

specifications that can are often widely used in the development process. Using development classes

creates consistency in the naming, makes the code more readable for developers and creates an

additional level of modularity.

Since there was no need at The Cirqle to create technology-agnostic design tokens, the values of the

style guide were defined as Sass variables. Sass is a CSS preprocessor that enables designers and

developers to use features that don't exist yet in CSS such as variables, nesting, inheritance, etc. To

make the design tokens more accessible, a consistent and descriptive naming pattern was used.

Curtis (2016) promotes the idea to organize tokens in two categories: an option-based naming

describes the value of the design token, while a decision-based naming implies the use case of a

token in the final product.

U I CO M P O N E N TS

The initial implementation of the Design System was structured based on the Atomic Design

methodology introduced in the previous chapter, albeit with a more industry-related naming scheme

that fit the code structure and naming conventions used at The Cirqle prior to the design system

(Kholmatova, 2017; Meier 2017).

At the beginning of 2018, the development team at The Cirqle decided to develop all new products

moving forward using Vue. Vue is an open-source JavaScript framework for building a component-

driven UI (Vue.js, 2018). An interface in Vue is composed based loosely-coupled components.

A Vue component typically consists out of three parts: a template defining the HTML markup, CSS

style definitions and a script tag with JavaScript to define the components’ logic. Collocating and

coupling these three layers in a single component file makes the component more cohesive and

maintainable (Vue.js, 2018).

Figure 4. Example of design tokens at The Cirqle

�

 18

UI screens in Vue are build up using a tree structure of multiple components. This tree structure can

either be achieved by nesting components or by using slots. Slots serve as distribution outlets for

content and are modeled after the current Web Components spec draft. This allows you to

effectively pass DOM elements into a child component.

Suarez recommends using a unique namespace to prefix UI components and CSS classes, e.g. ‘cq-

[component-name]’. This will prevent attribute and class collisions on a page, especially when

working with legacy code (Suarez et al., 2017).

S E L F CO N TA I N E D R E P O S I TO RY

The design system was set up in a source control repository, independent from the main codebases

used at The Cirqle. This allows for both short and long-term benefits:

Versioned releases 
Importing the package through a package manager allows the team to use Semantic Versioning.

Versioning a design system prevents updates from breaking code or functionalities in the respective

products where it is being used (Preston-Werner, n.d.; Suarez et al., 2017).

Shared across multiple products and projects 
The design system's repository is imported as a standalone dependency across all products. A single

change made to the design system automatically propagates through all products and platforms.

Single source of truth 
The design system repository serves as a single source of truth for interface design, containing all

Figure 5. “Composing with Components” as shown on the Vue.js documentation website.

�

 19

the necessary building blocks to construct a UI. The final products' codebases only define the state

of the UI and give context to the design system's assets.

D O C U M E N TAT I O N

The initial implementation of the design system was documented in two places: a Sketch file is

maintained with all the design tokens and UI components and shared documents were used to

communicate the use cases and different variations of UI components.

4.1.3 Reflection

The introduction of the design system to the product development process positively impacted the

product's visual consistency from the beginning. The design tokens enforced a consistent usage of

design attributes, suspended the use of hard-coded values, and offered a shared vocabulary to the

team around all the visual properties.

Keeping the documentation up-to-date with the system's code instantly proved to become a

challenge. Multiple team members were contributing to the design system in parallel at a rapid pace,

causing the documentation to become outdated quickly. This, in turn, led to an inconsistent use of

certain elements, essentially defeating the purpose of creating a design system.

To address this challenge, the next steps were taken during the following sprints:

- Meaningful presets were added to low-level components that are used frequently, e.g. the

button UI component has a ‘save’ preset that automatically defines all the component’s options

to visually style the save button.

- During the design handoff and daily standups, the team discussed what parts of the design

system to use for the implementation of the feature we were working on, keeping all members

in sync.

- If needed, documentation was added co-located to the components code rather than in

separate documents.

- Promoting the use of templates over elements reduced the need for detailed documentation

for developers. Additionally, this also reduces repetition of code, improves visual consistency,

and decreases the amount of time spent on the implementation of the design. 

 20

5 Case Study: User Sign Up
Flow
Influencers and content creators are required to create an account on the platform in order to be

able to view and apply for campaigns. During the signup process, new users complete their personal

profiles and authorize themselves to connect their social accounts and websites. The data collected

from those channels, together with a personal profile highlighting their work and content, is used to

determine if someone would be a great fit for a client or a campaign.

The redesign of sign up flow was part of a complete overhaul of the influencer dashboard. The

process for this redesign was selected as a case study in this report because of the following

reasons:

- The way the sign up workflow is designed is critical, it’s essentially a user’s first impression of

the product (Vijayashanker, 2016)

- A task analysis showed that this is one of the most important tasks on the platform

- A change in user and data requirements leading up to the redesign; the requirements of this

feature differed heavily from the previous implementation

Up until the redesign of this feature, the team’s efforts designing and developing the design system

were mainly focussed on the client dashboard and tools for internal use. A redesign of the influencer

dashboard, together with the design of a new sign up flow, gives us the possibility to evaluate the

already existing UI components with external users.

The main objective of this redesign effort is to iteratively design a new signup flow that increases the

amount and quality of the data that gets collected, increases the number of successful signups and

reduces the amount of time spent by the team to answer recurring questions.

 21

5.1 Conceptual Design

5.1.1 Research

Over the course of 3 months leading up to the redesign effort, we were actively collecting customer

support records and (remote, unmoderated) session recordings from users signing up to the

platform. While the user feedback was immediately captured in the product backlog, the recorded

visitor sessions were later analyzed.

Screen recording allows for an unobtrusive collecting of a rich record of a user interacting with a

system in the natural context (Tang et al., 2006). It is a cost-effective way of collecting a rich record of

data, but it’s worth noting that this approach lacks the qualitative characteristics a typical Contextual

Task Analysis offers; there is no means to interview the user and only the interactions that happen

within the platform itself are recorded.

55 recordings in total were evaluated. During the reviews, special attention was paid to errors users

encountered, screens of the product they would spend a longer than average time on and the

quality of the data they would enter. Two different types of codes were added to every recording; the

area of the product being used in the recording and the possible issues the part of interface element

the users were having problems with.

The results of this analysis can be summarised as follows:

- High churn rate 
38% of users are abandoning the signup process when they land on the profile screen, leading

us to think that the current form might be too lengthy.

- Confusing data entry 
The screen recordings showed some users were struggling entering the necessary data.

Possible causes for these problems include: lack of descriptive labels and input validation on

some of the input fields

- Lack of clear call to actions 
Lack of distinct call to actions (CTA) in the signup flow, causing users to leave the flow or

encountering errors they couldn’t recover from. Some users would revert to the customer

support, leading to a very time-consuming process for both the development team, the

 22

support team, and the end users. 

5.1.2 Stakeholder Requirements

I conducted several informal interviews with the product owner of the influencer dashboard and

other stakeholders within the company. These interviews were set up to understand better what

challenges they were facing from an operational perspective with the current design, what data they

expected from influencers and what the long-term goals are for the product. Defining a long-term

vision for software products is essential to not create any bottlenecks early on in the project that

may hinder product development down the road (Bricklin, 2004).

The list of data collection requirements was categorised into logical groupings:

5.1.3 Best Practices

An analysis of different signup flows showed the following set of shared characteristics and best

practices across competitors and online services that was not present in the current design:

- Lengthy forms are chunked 
Signup flows are often chunked into different steps focussing on only one type of data input at

the same time. Dividing a form up into multiple steps helps to keep the number of input fields

shown to a minimum, reduces the workload for users and increases the completion rate

(Tidwell, 2005; Formstack, 2015).

PERSONAL
INFORMATION

PROFESSIONAL
INFORMATION

CHANNELS LEGAL

Name

Location

Gender

Age

Phone number

Email address

Type of content they
produce

Brief introduction

only required for users
registered as a company:

Invoicing details

VAT number

Connect social
accounts

Website

Accept Privacy Policy

Agreement with Terms
and Conditions

 23

- Only necessary fields are included 
Only the necessary steps are included to keep the form as short as possible. Reducing the

number of fields increases the conversion of a form (Kirkpatrick, 2011; Gardner, 2013).

Optional fields are should be left out as much as possible, reducing the length of the form.

Checkboxes to accept Terms and Conditions and Privacy Policies would often be omitted.

However, with GDPR regulations becoming active in 2018 this was no longer possible.

- Definition of the value proposition 
Explaining the user what is expected from them and communicating why they need to fill in the

questions asked helps to build trust. (Rao, 2018)

5.1.4 Conceptual Design

A digital low fidelity prototype of a potential solution was created based on the problems identified

with the current design, opportunities for improvement, and the updated data requirements.

The signup form was chunked into meaningful steps based on the logical groupings defined above to

set the flow of the form up as a conversation (Barry, 2012; Wroblewski, 2008). Each step is build up

Figure 6. A screen (step 3/7) of the low fidelity prototype for the redesigned signup flow.

�

 24

using a conversational tone and offers the user a clear heading and information about why the type

of data is required (Barry, 2012). The steps were sorted based on the perceived difficulty of the data

entry and the importance of the entered data to the stakeholders. For some users signing up,

specific steps could be left out of the signup process, showing only relevant input fields.

A pilot test was conducted with five employees of The Cirqle. The results can be summarized as

follows:

- Users understood how the interaction of the flow worked, but were lacking the ability to move

backward and forward between steps

- Users were unsure if they could also connect multiple channels

- Users were confused that, after clicking the ‘finish’ button, they would immediately be

redirected to the homepage of the dashboard

- The panels on the right explaining the value to the user were not perceived as useful for every

step

- Some form sections were still too lengthy (see figure 4), especially on mobile screens where the

fields at the bottom of the form and the primary CTA would appear below the fold

5.2 Design
The steps that were perceived as too lengthy were chunked down even further based on the

feedback from the pilot test. The copywriting on the additional panels was made more concise and

replaced with relevant images where possible. Additional help text was added were users showed

uncertainty.

As a next step, I implemented the design and the structure for the signup process in code. This

would allow us to carry out an interactive user test; we first conducted another pilot test with

members of the team and later evaluated the flow with external users.

The majority of the necessary visual UI components to build up this flow was already defined in code,

allowing us to skip the sprint to define the high fidelity design. The time saved on this step was later

used to improve the interaction design, form validation, and error handling.

 25

5.2.1 Implementation Using the DS

The following section gives a detailed overview of how the design was implemented using the design

system.

A form pattern component lays out a form header, an array of input fields, and form actions on a

screen. This assures consistent layout of all input forms across the platform and handles form

validation, form submission and error handling.

The different forms that make up the steps of the signup flow are displayed on the screen using a

wizard component. A wizard design pattern is best suited for tasks that are either unfamiliar or are

very complex. It enables untrained users to achieve a goal by splitting up the task into a sequence of

steps and by only responsively disclosing to the user what is expected (Tidwell, 2015). Both the client

and the influencer dashboard contain some steps that are necessary to complete a marketing

campaign, but aren’t used frequently throughout the customer journey. Iteratively designing such an

interface pattern as part of the design system showed great potential to improve the usability and

UX for multiple features across different products, while improving the maintainability and

consistency of the product. 

Figure 7. Wireframe showing how a UI component (pattern) distributes content on a page.

�

 26

5.2.2 User Evaluation

An on-site user test was conducted with 5 users of the platform. Three of the users that were invited

were recent signups, 2 of them were long-term users. All of the participants were also using other

platforms from competitors. This type of users is interesting to include in tests since end-user tend

to compare the experience with similar applications they have used in the past (Sakhardande &

Thanawala, 2014). As the study was conducted with five participants, we aimed to gather qualitative

results by asking the participants to think out loud and explain the reasons behind their actions. We

ended the user tests with a semi-structured interview. The results from the user test can be

summarized as follows:

- The buttons in the navigation at the top of the wizard were not immediately noticed by desktop

users; on a mobile device the buttons were clear, but desktop users had trouble locating the

'next' button. To accommodate this, an additional button was added at the bottom of the

screen after the form has been successfully validated.

Figure 8. Wireframe of the wizard component. Any other UI element can be slotted into the content section.

�

 27

- The length of the signup process was not clear to users when they landed on the page; a

progress bar was present, but went unnoticed. The visual design of the progress bar was

changed to make the progress more clear.

- The flow seemed to match the mental model of the users. All of the users were able to

successfully complete the steps.

- Users preferred having images on the right side of the screen over text.

- The signup process explains why certain data is collected, but does not show to users how

their data is displayed to clients. Users have access to their profile however, but only after they

complete the signup flow. Images and screenshots of these profiles were included in the

signup flow later.

- Users actively compared the wording and industry terminology the platform used in the signup

flow with the terms used by competitors. The copywriting was found confusing when it did not

match with the wordings they were used to.

5.3 Outcome
The first month after launching the updated sign up flow, the platform saw an increase of 82.3% of

successful signups. The second month after the redesign signups were 66.31% higher than prior to

the redesign.

Reflection on the Use of the Design System

The redesign of the signup process was part of a larger project, in which we refactored the entire

influencer web application using existing assets from the design system. It was the first time that UI

components were included across different products.

Changes made to UI components propagate through all products. This is often beneficial as

improvements to the UI and UX are immediately present in other products. In this case, e.g. the

additions to the form validation and error handling are immediately present in the client dashboard,

without the need for additional design or development work. However, it is easy to lose oversight of

 28

the content of the design system when multiple designers and developers contribute to it

simultaneously.

This led to the following challenges:

- Bugs, either visual or functional, in assets of the UI components are present in all products

when they occur in the design system.

- Visual changes are hard to track; it's hard to predict or evaluate how the changes to the styling

of a component will impact other screens.

- When a component requires a fundamental change, all other screens containing that

component need to be refactored.

 29

6 Case study: Content
Approval
The online platform was set up to automate influencer marketing campaigns from start to finish. One

of the steps in the campaign process is making sure that the quality of the published content is up to

par with the client’s expectation while guaranteeing the creative freedom of influencers. On the one

hand, clients often require strict control over the content that is published, while influencers want to

retain their creative freedom and want the content to appear organically within their feeds.

Up until now, this process was managed manually by campaign managers, which led to a substantial

amount of emails back and forth between them, the influencers and clients. Campaign managers

had to log every request and every update in a lengthy spreadsheet while going back and forth

communicating over different channels with all parties involved. This proved to be a cumbersome,

time consuming and repetitive task.

6.1 Conceptual Design
Together with the campaign management team we brainstormed on how we might improve this

process so that users are more efficient and have to spend less time managing the process rather

than focussing on the quality of the content produced. During interview sessions with influencers, we

discussed how this approval process fits into their workflow and how they keep track of all the

content that needs to be submitted and reviewed on their end.

We defined high-level objectives and desired outcomes, that were captured as user stories

(Appendix 2). Based on this list, we prioritised a set of functionalities that would be fundamental to

create a minimal viable product (MVP). Ries defines an MVP as the version of a new product which

allows a team to collect the maximum amount of validated learning about customers with the least

effort (Ries, 2009).

- upload content

- View the content that was submitted

- Approve content

 30

- Communicate feedback

- Edit content

A clickable prototype was designed to evaluate the feasibility of the product with the campaign

management team. Although some minor improvements had to be made to the UI, the internal

stakeholders acknowledged the current design's potential.

6.2 First design
Based on the conceptual design, we built a coded version of the feature using existing components.

This allowed us to not only test the workflow, interaction and functionality of the feature, but also

evaluate the visual design and brand elements present in the product.

Influencers are able to submit their deliverables using a form that consisted out of an upload button

and input fields to add a description and related information to the content. Following this, campaign

managers and clients are able to view submitted deliverables, communicate feedback, approve the

deliverables or request additional changes.

Figure 9. First design of the content approval feature in the client dashboard.

�

 31

The first design was evaluated by a client and two internal campaign managers running a marketing

campaign with 40 influencers that had to deliver two items of content each. At the end of the

campaign, we set up a feedback session with the client and sent out questionnaires to influencers.

The results can be summarised as follows:

- While most influencers successfully managed to submit their content, they argued there was

insufficient guidance when uploading their deliverables.

- Both the client and the campaign managers also made similar remarks; it was not always clear

to them what actions they had to take next. Additionally, they mentioned it was challenging for

them to keep track of changes; by only displaying the most recent version of the content it was

challenging to keep track of changes.

- Campaign managers found the feature helpful but were often bumping up against the limits of

the scope of the MVP. Functionalities to handle edge cases were not included yet.

- When we initially evaluated the wireframes internally, the design did not anticipate for the

amount of content that would be submitted. The client explained the need to filter or sort the

submitted content.

6.3 Second design
The feedback we collected from the MVP was prioritized using a prioritization matrix. In this decision-

making exercise, possible actions are weighted against each other based on two factors: the effort

required to implement and the potential impact (Gibbons, 2018).

Based on the problems we identified in the first iteration, the prioritisation resulted in the following

steps to be taken:

- Using the wizard style interface we discussed above, we were aiming to offer influencers better

guidance while submitting content. Since this process is clearly more sequential than the

already existing signup flow, a stepper indicator was added to the UI pattern. 
The functionality of the upload component was expanded; users are now able to upload

multiple files of any filetype, disregard previously uploaded files and view and playback any

uploaded content in a lightbox.

- The submitted content and chat messages are being displayed in the same chronological

overview. By capturing the revision history of the content together with the feedback, users are

 32

able to see the progress of a deliverable over time. Changes made to the content are being

highlighted.

- Status messages are added to the bottom of the conversation. These messages explain the

current state of the approval process and show the relevant call to actions.

- Real-time notifications have been added, notifying users about feedback and status changes to

the deliverables. Additionally, users would receive email notifications about updates.

- The overview of the submitted content is now organized in a vertical list. The user is able to

sort, search and filter the list in order to find the deliverables that are relevant to them.

6.4 Outcome
The usability of the second design was assessed using the System Usability Scale (SUS). SUS is a 10-

item scale and an effective and reliable tool for measuring the usability; scores have a range of 0 to

100 (Brooke, 1996). In total, 22 participants evaluated the content approval feature after using it for

the first time. In this evaluation, the mean SUS score was 78.5, with a standard deviation of 14,7.

Figure 10. Second design of the content approval feature in the client dashboard.

�

 33

Reflection on the Use of the Design System

Having already a set of components in place allowed us to create a working MVP in under two weeks.

This way, we could create a fully functional working prototype that replicates the design and behavior

of other features in the platform and connects to live data. This helped us to evaluate the feasibility

and user flow of the feature but did not necessarily warrant a great user experience. Ruissalo (2018)

also touches on this matter; having a component library may help a team achieve efficiency or

consistency, but designers should not lose track of the different contexts and the user’s job to be

done they’re designing for.

The design system also had a clear influence on the prioritization exercise described in the chapter

above; some costly ideas became less expensive to implement thanks to readily available UI

components in the design system. The design and development work needed to create a submission

flow that offers influencers more guidance could clearly be reduced due to already existing

components.

Alternately, ideas with a seemingly smaller impact on this particular feature were rated with a higher

priority. Improving the way notifications are handled on the platform and visualizing status messages

would know a bigger long-term payoff because of their reusability across the product.

Although this approach did not impact the prioritization for critical UX or usability issues, it would

affect prioritization for uncovered issues with a lower potential impact on the feature.

 34

7 Discussion & Reflection
The design system had a considerable impact on the way products are designed and built at The

Cirqle. Products showed an increase in design consistency, and redundancies in the design and

development process were reduced. Furthermore, this led to an increase of the team’s efficiency;

more resources could be dedicated to user-centered design activities, new features were released at

a faster pace and the team was able to iterate faster on the design of features.

As the current implementation of the design system can be considered to be in its early stages of

maturity (Beck, 2017; Somers, 2015), there are still some challenges left to be addressed. Most

elements of the design system are left insufficiently documented. While we made efforts to

document the design system using written documents, this turned out to be very time consuming

due to the rapid pace of iterations. Therefore, limited documentation of design decisions during the

design and development process of the design system’s assets is currently included in the code files.

This keeps documentation, design, and code closely connected, but fails to offer a holistic overview

of the design systems and makes the documentation of overarching design patterns that include

multiple assets challenging. Although this didn’t cause any bottleneck in the development process so

far, this approach might fail to provide sufficient clarity to new members that are being introduced to

the team and might slow down future development as the system grows larger. The design system

could benefit from a documentation tool that automatically generates use cases, sample code, and

annotations.

Better documentation of overarching design patterns will further increase the consistency of the

usage of UI components and interaction design patterns across products. The initial structure of the

design system was based on the Atomic Design principles, leading to an abundance of modular UI

components and a project structure and naming that was considered to be both limiting and

confusing for developers. This would lead to an incoherent usage of UI components, opening the

door for inconsistent UX and essentially defeating the purpose of having a design system.

Another challenge that was not fully addressed is the need for governance of the design system. Due

to the fast development pace of the organization, the system is being designed and developed in

parallel. While it’s very positive that multiple team members contribute to the system, it also makes it

hard to track changes and predict the impact of changes being made to UI components. Since UI

components are being used so interconnectedly, updates to design components propagate to all

screens that make use of that component. The majority of large organizations have a dedicated

 35

product team that governs the (design) quality of the design system, with the team being the only

one responsible for developing and maintaining the design system. Additionally, Suarez et al. (2018)

recommend the introduction of both unit and visual regression testing in order to release

components with more confidence.

 36

8 Conclusion
This report demonstrates the usage of a design system to reduce UX debt at startups. This design

system was iteratively designed and developed based on user-centered activities. The design and

development of the design system described in this report paves the way for a more systematic and

scalable approach to design at The Cirqle. The usage of a single source of truth for all design

elements (design tokens, UI elements, and UI patterns) promotes consistency throughout the

interface and helps to reduce redundancies in design and engineering implementations. This

increase in efficiency resulted in a more effective design process that allowed the team to reduce the

time to market, design features more iteratively through user-centered design efforts and pay back

UX debt over time.

Unintentional UX debt, as described earlier in this report, was addressed with additional user

research and a more lean design process (see Gothelf, 2016). The resources saved through a more

efficient design process freed up valuable resources to conduct user research, leading to a better

understanding of the end users. The findings of these research efforts could be put into practice

more easily by utilizing a readily available component library; functional prototypes and assumption

could be evaluated by end users through the creation of MVPs. Furthermore, when MVPs were

received positively, the design and development required little additional effort due to the reuse of

production ready UI components. The amount of intentional debt, however, is often inherently

reduced through the reuse of the assets of the design system. Still, when UX debt occurs the team

has a more systematic way to resolve it. Through the reuse of UI components, we described earlier

that components are constantly undergoing revisions. For these revisions to be successful, however,

they need to be based on user-centered design activities.

 37

9 References

Alexander, C., Ishikawa, S., Silverstein, M., & Jacobson, M.
(1977). A Pattern Language. New York, NY: Oxford Univ.
Press.

Andreesen, M. (2007). Product/Market Fit. Retrieved August
29, 2018, from https://web.stanford.edu/class/ee204/
ProductMarketFit.html

Bailey, D. (2016). What is GEL? Retrieved September 10,
2018, from https://www.bbc.co.uk/gel/articles/what-is-gel

Barry, N. (2012). Forms are a Conversation. Retrieved
September 1, 2018, from https://uxmag.com/articles/forms-
are-a-conversation

Beck, C. (2017). The Path to Design System Maturity.
Retrieved September 12, 2018, from https://medium.com/
ux-power-tools/the-path-to-design-system-maturity-
d403daba692a

Blank, S. G. (2006). The Four Steps to the Epiphany.

Bricklin, D. (2004). Software That Lasts 200 Years. Retrieved
from http://www.bricklin.com/200yearsoftware.htm

Brooke, J. (1996). SUS: A Quick and Dirty Usability Scale. In:
P.W. Jordan, B. Thomas, B.A. Weerdmeester & I.L. McClelland
(Eds.), Usability Evaluation in Industry.

Buttiglieri, R. (2012). How UX Evolves At Companies: A New
Look at Maturity Models. Retrieved July 10, from https://
www.slideshare.net/UPABoston/ux-maturity-
modelbuttiglieri.

Chen, A. (2011). When has a consumer startup hit product/
market fit? Retrieved September 4, 2018, from https://
andrewchen.co/when-has-a-consumer-startup-hit-
productmarket-fit/

Chen, A. (2015). Product design debt versus Technical debt.
Retrieved September 4, 2018, from https://andrewchen.co/
product-design-debt-versus-technical-debt/

Chenais, L. (2018). Design tokens for dummies – UX
Collective. Retrieved September 1, 2018, from https://
uxdesign.cc/design-tokens-for-dummies-8acebf010d71

Connolly, E. (2018). The full stack design system - Inside
Intercom. Retrieved September 10, 2018, from https://
www.intercom.com/blog/the-full-stack-design-system/

Cunningham, W. (1992). The WyCash portfolio management
system. In Addendum to the proceedings on Object-
oriented programming systems, languages, and

applications (Addendum) - OOPSLA ’92. ACM Press. https://
doi.org/10.1145/157709.157715

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study of the
software design process for large systems.
Communications of the ACM, 31(11), 1268–1287. https://
doi.org/10.1145/50087.50089

Curtis, N. (2010). So You Wanna Build a Library, Eh?
Retrieved September 1, 2018, from http://
boxesandarrows.com/so-you-wanna-build-a-library-eh/

Curtis, N. (2016). Tokens in Design Systems. Retrieved
September 15, 2018, from https://medium.com/
eightshapes-llc/tokens-in-design-systems-25dd82d58421

Curtis, N. (2017). Defining Design Systems. Retrieved
September 10, 2018, from https://medium.com/
eightshapes-llc/defining-design-systems-6dd4b03e0ff6

Curtis, N. (2017a). Designing a Systems Team. Retrieved
September 1, 2018, from https://medium.com/eightshapes-
llc/designing-a-systems-team-d22f27a2d81d

Curtis, N. (2017b). Defining Design Systems. Retrieved
September 11, 2018, from https://medium.com/
eightshapes-llc/defining-design-systems-6dd4b03e0ff6

Curtis, N. (2017c). Starting a Design System. Retrieved
September 11, 2018, from https://medium.com/
eightshapes-llc/starting-a-design-system-6b909a578325

Dunwoody, K., Teague Rector, S. (2015). UX Debt in the
Enterprise: A Practical Approach. User Experience
Magazine, 15(1). Retrieved July/August, 2018, from http://
uxpamagazine.org/ux-debt-in-the-enterprise/

Ellis, S. (2009). The Startup Pyramid. Retrieved September 4,
2018, from http://www.startup-marketing.com/the-startup-
pyramid/

Fromstack. (2015). Form Conversion Report. Retrieved from
https://www.formstack.com/report/form-conversion-2015.

Frost, B. (2013). Atomic design.

Gale, S. (1996). A collaborative approach to developing style
guides. Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems Common Ground - CHI 96.
doi:10.1145/238386.238572

Gardner, O. (2013). How To Optimize Contact Forms For
Conversions. Retrieved from https://unbounce.com/
conversion-rate-optimization/how-to-optimize-contact-
forms/

 38

Giacoppo, S. (2013). User Experience in Startups, Part I:
Challenges and Realities. Retrieved September 1, 2018,
from https://www.uxmatters.com/mt/archives/2013/02/
user-experience-in-startups-part-i-challenges-and-
realities.php

Gibbons, S. (2018). Using Prioritization Matrices to Inform
UX Decisions. Retrieved September 4, 2018, from https://
www.nngroup.com/articles/prioritization-matrices/

Gothelf, J. (2016). Lean ux. Place of publication not
identified: OReilly Media, Inc, Usa.

Griffiths, R., Pemberton, L., Borchers, J., & Stork, A. (2000).
Pattern languages for interaction design. In CHI ’00
extended abstracts on Human factors in computing
systems - CHI ’00. ACM Press.

Harker, S. D. P., Eason, K. D., & Dobson, J. E. (1993). The
change and evolution of requirements as a challenge to the
practice of software engineering. In [1993] Proceedings of
the IEEE International Symposium on Requirements
Engineering. IEEE Comput. Soc. Press. https://doi.org/
10.1109/isre.1993.324847

Huffine, T. (2017). What is technical debt? And why does
almost every startup have it? Retrieved August 24, 2018,
from https://medium.freecodecamp.org/what-is-technical-
debt-and-why-do-most-startups-have-it-9a54458daabf

Kirkpatrick, D. (2011). Testing Form Field Length Reduces
Cost-Per-Lead By $10.66. Retrieved from https://
marketingexperiments.com/lead-generation/lead-
generation-testing-form-field-length-reduces-cost-per-lead-
by-10-66

Knight, A. (2016). Design debt. Retrieved August 23, 2018,
from https://www.invisionapp.com/blog/design-debt/

Kholmatova, A. (2017), Design Systems: A practical guide to
creating design languages for digital products. Smashing
Media.

Kruchten, P., Nord, R. L., & Ozkaya, I. (2012). Technical Debt:
From Metaphor to Theory and Practice. IEEE Software,
29(6), 18–21. https://doi.org/10.1109/ms.2012.167

Lambert, S. (2016). Styling Web Components Using A
Shared Style Sheet. Retrieved from https://
www.smashingmagazine.com/2016/12/styling-web-
components-using-a-shared-style-sheet/

Lauesen, S., & Musgrove, M. P. (2005). User Interface Design
- A Software Engineering Perspective

Loomer, D. (n. d.). Design Systems. Retrieved from https://
projekt202.com/design-systems/.

Loranger, H. (2015). Radical Redesign or Incremental
Change? Retrieved September 1, 2018, from https://
www.nngroup.com/articles/radical-incremental-redesign/

Madsen, R. (2017). The User Experience Of Design Systems.
Retrieved September 11, 2018, from https://
runemadsen.com/talks/uxcampcph/

Martin, D. (2018). Getting Executive Buy-In For Your Design
System. Retrieved from https://www.invisionapp.com/blog/
getting-executive-ok-design-system/

Meier, D. (2017). Atomic Design Coding Sanity: Naming
Conventions for Easy Recognition. Retrieved September 11,
2018, from https://medium.com/@DaveMeier/simple-rules-
for-atomic-design-coding-sanity-cfc694474dda

Moffet, J. (2016). Eliminate UX Debt. Improving Consistency
and Usability.

Monus, A. (2016). How to Recognize & Manage UX Debt.
Retrieved July 12, 2018, from https://www.hongkiat.com/
blog/managing-ux-debt/

Nielsen, J., & Molich, R. (1990). Heuristic evaluation of user
interfaces. In Proceedings of the SIGCHI conference on
Human factors in computing systems Empowering people -
CHI ’90. ACM Press.

Nielsen, J. (1995). Severity Ratings for Usability Problems.
Retrieved July 12, 2018, https://www.nngroup.com/articles/
how-to-rate-the-severity-of-usability-problems/

Nielsen, J. (2006). Corporate UX Maturity: Stages 1-4.
Retrieved July 10, 2018, from https://www.nngroup.com/
articles/ux-maturity-stages-1-4/

Nielsen, J. (2006). Corporate UX Maturity: Stages 5-8.
Retrieved July 10, 2018, from https://www.nngroup.com/
articles/ux-maturity-stages-5-8/

Nilsson, H., & Petersson, L. (2013). How to Manage
Technical Debt in a Lean Startup.

Priego, P. (2017). CSS Evolution: From CSS, SASS, BEM, CSS
Modules to Styled Components. Retrieved from https://
medium.com/@perezpriego7/css-evolution-from-css-sass-
bem-css-modules-to-styled-components-d4c1da3a659b

Preston-Werner, T. (n.d.). Semantic Versioning 2.0.0.
Retrieved September 15, 2018, from https://semver.org.

Rao, R. (2018). 18 UX Design Tips for Registration and Login
Forms – UX Planet. Retrieved September 11, 2018, from
https://uxplanet.org/18-ux-design-tips-for-registration-and-
login-forms-f897557358ba

React. (2018). A JavaScript library for building user
interfaces. Retrieved September 1, 2018, https://reactjs.org.

Ries, E. (2009, July 23). Retrieved September 1, 2018, from
https://www.youtube.com/watch?v=E4ex0fejo8w

Rohde, S. (2014). Living Design System. Retrieved
September 11, 2018, from https://medium.com/salesforce-
ux/living-design-system-3ab1f2280ef7

 39

Ruissalo, M. (2018). Operating a design system in a large
software company.

Saarinen, K. (2016). Creating the Airbnb Design System.
Retrieved from https://karrisaarinen.com/posts/building-
airbnb-design-system/

Sakhardande, P., Thanawala, R. (2014). UX Maturity Model:
From Usable to Delightful. User Experience Magazine, 14(3).
Retrieved from http://uxpamagazine.org/ux-maturity-
model/

Seckler, M., Heinz, S., Bargas-Avila, J. A., Opwis, K., & Tuch, A.
N. (2014). Designing usable web forms. In Proceedings of
the 32nd annual ACM conference on Human factors in
computing systems - CHI ’14. ACM Press. https://doi.org/
10.1145/2556288.2557265

Scott, B., & Malone, E. (2006). Yahoo! Design Pattern Library
Released. Retrieved September 1, 2018, from https://
yuiblog.com/blog/2006/02/13/yahoo_patterns_released/

Shneiderman, B. (1986). Seven plus or minus two central
issues in human-computer interaction. ACM SIGCHI
Bulletin, 17(4), 343–349.

Somers, M. (2015). A Maturity Model for Design Systems.
Retrieved September 12, 2018, from https://medium.com/
slalom-engineering/a-maturity-model-for-design-
systems-93fff522c3ba

Snyder, B. (2018). Product Design in a Sales-driven
organization – UX Collective. Retrieved September 1, 2018,
from https://uxdesign.cc/product-design-in-a-sales-driven-
organization-43fcdd6f14eb

Suarez, M., Anne, J., Sylor-Miller, K., Mounter, D. and
Stanfield, R. (2017). Design Systems handbook. Retrieved
September 1, 2018, from https://www.designbetter.co/
design-systems-handbook

Tang, J. C., Liu, S. B., Muller, M., Lin, J., & Drews, C. (2006).
Unobtrusive but invasive. In Proceedings of the 2006 20th
anniversary conference on Computer supported

cooperative work - CSCW ’06. ACM Press. https://doi.org/
10.1145/1180875.1180948

Tidwell, J. (2005). Designing Interfaces: Patterns for Effective
Interaction Design.

Treder, M. (2017). Design Systems Sprint 1: The Interface
Inventory. Retrieved from https://medium.com/
@marcintreder/design-systems-sprint-1-the-interface-
inventory-1f78d376e49a

UXPin. (2018). Adele, The repository of publicly available
design systems and pattern libraries. Retrieved April 6,
2018, from https://adele.uxpin.com.

van Welie, M., & Traetteberg, H. (2000). Interaction Patterns
in User Interfaces. In 7th Pattern Languages of Programs
Conference.

Vue.js (2018). Composing with Components. Retrieved
September 1, 2018, https://vuejs.org/v2/guide/.

Vijayashanker, P. (2016). Differentiating with Design.
Retrieved September 1, 2018, from https://articles.uie.com/
differentiating-with-design/

Walrack, J. (2018). 8 Top Design Systems in 2018. Retrieved
from https://blog.brightscout.com/8-top-design-
systems-2018/

Whitenton, K. (2016). Website Forms Usability: Top 10
Recommendations. Retrieved September 11, 2018, from
https://www.nngroup.com/articles/web-form-design/

Wright, A. (2014). User Experience Debt: Creating
awareness and acting on missed opportunities. Retrieved
August 28, 2018, from https://www.slideshare.net/
andr3wjwright/ias14-uxdebt

Wroblewski, L. (2008) Web Form Design, Filling in the
blanks.

Wroblewski, L. (2018). An Event Apart: Scenario-Driven
Design Systems.

Hu, J., & Feijs, L. (2003, July). An agent-based architecture for
distributed interfaces and timed media in a storytelling
application. In Proceedings of the second international joint
conference on Autonomous agents and multiagent systems (pp.
1012-1013). ACM.

Hu, J. (2003). StoryML: Enabling Distributed Interfaces for
Interactive Media. WWW (Posters), 4.

Hu, J., & Feijs, L. M. (2003). An Adaptive Architecture for
Presenting Interactive Media Onto Distributed Interfaces. In
Applied Informatics (pp. 899-904).

Hu, J. (2001). Distributed interfaces for a time-based media
application.

 40

Appendix 1: Comparison of
Design Systems

Appendix 2: User Stories
Content Approval

- As an influencer, I want to know what is expected from me

- As an influencer, I want to upload my content for approval through the platform

- As an influencer, I want to receive updates when I need to take action

- As an influencer, I want to view the feedback on the content I created

- As an influencer, I want to adjust my content if needed

- As an influencer, I want to be able to see what the content will look like when it gets published

- As a client, I want to view the content that is produced

- As a client, I want to approve content that fits the criteria specified up front

- As a client, I want to be able to request revisions if needed

- As a client, I want to get notified when content changes

- As a client, I want to get notified when updates to the content are made

- As a client, I want to be able to download the content that was created

- As a campaign manager, I want to view the content that is produced

- As a campaign manager, I want to keep an overview of what the various stages of the content

approval process per item

- As a campaign manager, I want to be able to communicate with the client

- As a campaign manager, I want to be able to communicate with the influencer

- As a campaign manager, I want to leave feedback on the content

- As a campaign manager, I want to be able to request a revision from the influencer when the

content clearly is inadequate

- As a campaign manager, I want to be able to download the content that was produced

	1 Introduction
	1.1 About The Cirqle
	1.2 Project Goal
	1.3 Project Approach
	2 UX Debt in startups
	2.1 Classifications of UX debt
	2.2 Reasons for UX debt at startups
	2.3 Risks of UX debt
	2.4 Uncovering UX Debt
	3 Design Systems
	3.1 Modular Interface development
	3.2 Rise in popularity
	3.3 Assets of a Design System
	4 Design
	4.1 Initial Implementation
	5 Case Study: User Sign Up Flow
	5.1 Conceptual Design
	5.2 Design
	5.3 Outcome
	6 Case study: Content Approval
	6.1 Conceptual Design
	6.2 First design
	6.3 Second design
	6.4 Outcome
	7 Discussion & Reflection
	8 Conclusion
	9 References

