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Abstract
In this report the use of reinforcement learning in house-
hold items is explored through the implementation of the 
algorithm in a lamp. The lamp, named Skip, was designed 
to be able to distinguish different situations with the use of 
multiple sensors and can be reinforced through voice com-
mands. A learning algorithm inspired by Q-learning was 
written to train the lamp, resulting in a working and learn-
ing prototype. No extended user testing has taken place 
in actual household settings yet. It therefore is unclear 
whether the lamp trumps an old fashioned one, but initial 
experiences are promising.
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Introduction
Artificial Intelligence. In 1956 the first seminar on this top-
ic was organized. A few years earlier, in 1950, a paper by 
Alan Turing was published in which he explores the notion 
of machines with the ability to simulate human beings, 
including the ability to learn (Turing, 1950). A little over 
sixty years later, artificial intelligence is becoming increas-
ingly present. People using an IPhone can ask their virtual 
assistant all about the nearest restaurants, upcoming ap-
pointments and the fastest way back home. Spotify has 
great suggestions to expand your music collection based 
on what you’re currently listening and Tesla’s autopilot 
keeps steering the car even when you remove your hands 
from the steering wheel.

Skip: The learning lamp
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Early artificial intelligence mainly focused on creating so 
called ‘expert systems’, in which the machine had access 
to large amounts of knowledge and rules provided by do-
main experts in order to solve specific problems (Hawkins 
& Dubinsky, 2016). One of the fields where the main ad-
vantages took place over the last sixty years, is that of ma-
chine learning (Smith, 2006). Where fifty years ago people 
worked on industrial robots, fully pre programmed, the 
current focus is on self learning robots that can work with 
humans and understand their intentions (Engels, 2013). 

Field pioneer Tom M. Mitchel (1997, p.2) defines machine 
learning as follows: “A computer program is said to learn 
from experience E with respect to some class of tasks T and 
performance measure P if its performance at tasks in T, as 
measured by P, improves with experience E.” This can be 
accomplished through various learning algorithms, ranging 
from supervised to unsupervised learning. Where human 
beings have a vast amount of control in supervised learn-
ing, they have no influence on the learnings of a machine 
once it starts an unsupervised learning trajectory.

It is important to ask ourselves if unsupervised learning is 
what we, the users of this ever growing field of technologi-
cal devices, actually want. Do we trust our devices to clas-
sify our behaviour without human intervention? A machine 
sorting various types of apples in a warehouse may use an 
unsupervised learning algorithm without any infringement 
of human autonomy, but what if these types of learning 
algorithms are used inside our houses?

Supervised learning puts control back into the hands of the 
teachers, the users in this case. But is that what we want 
then? For supervised learning, a training session is needed 
and one would not be able to buy a device and benefit from 
it immediately. An alternative is reinforcement learning, a 
learning algorithm that balances the input from the user 

and the initiative from the device. The device does not learn 
on it’s own, but neither does it require a training session. 
It proposes a certain action and learns from the teachers 
reinforcement, that can be either positive or negative.

In this paper the use of reinforcement learning in household 
items is explored through the implementation of the algo-
rithm in a lamp.    

Reinforced learning
To find a learning algorithm that comes natural to people, 
the idea of teaching a dog came to mind. This project there-
fore started by exploring Skinner’s theory of operant condi-
tioning. For the implementation of operant conditioning in a 
device, Q-learning was recommended. 

Operant conditioning explains how consequences lead to 
change in voluntary behaviour by using reinforcement and 
punishment. Reinforcement makes a behaviour more likely 
to be repeated, while punishment makes it less likely to be 
repeated (B. F. Skinner Foundation, 2016). 

Q-learning is a reinforcement learning algorithm based on a 
relation between a state of the system and the possible ac-
tions that are available. All actions from a state are weight-
ed in relation to how efficient they are at reaching a specific 
goal (Harmon & Harmon, 1996). Similarly to the behavior 
of a dog, behavior that was earlier punished in a certain 
situation is less likely to be repeated. While behavior that 
received praise is more likely to be repeated.

Why is the dog a good metaphor for a lamp like 
this?
The strong connection between dogs and people affects 
their familiarity with interacting with these animals. Most 
people have some experience with dogs, and have seen 
how they can be trained by disciplining or giving them 
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treats. Thus we consider it an appropriate image for our 
model of learning. As the goal is to make machine learn-
ing transparent, approachable and comprehensible, the fa-
miliarity of the dog training might be beneficial. The user 
will recognize that when unwanted behavior of occurs, the 
reason is generally a lack of training for the current situa-
tion, and that it can be resolved by reinforcing the behavior 
appropriately.

SKIP

Design
Skip is a smart lamp that is able to adjust its intensity of 
light and the position of his head. It learns how to behave 
in certain situations through receiving (negative and posi-
tive) feedback from its users. It relates the feedback from 
the user to certain states of its environment.

Skip’s body is made up of multiple 4 mm MDF panels that 
fit each other like a puzzle. These MDF boards were cut 
by a laser cutter. All the electronical parts in the lamp are 
connected to an Arduino Uno microprocessor. It uses sen-
sors to get input from the environment and actuators to 
respond to it. Skip is made out of three main parts:

The head
This part of the lamp is designed in a way that it is able to 
point upwards and downwards. When the head is pointing 
downwards it acts like a desk lamp and when the head is 
pointing upwards it creates ambient light by reflecting líght 
off nearby walls and ceiling. The movement of the head is 
controlled by a 5V analog servo motor that is able rotate 
180 degrees. It also consist of 32 programmable RGB LEDs  
that are programmed to create four different types of light 
intensities: none, low, medium and high. Furthermore it 
has an LDR sensor which is placed on the frontside of the 

head, so that it measures the light of the surrounding en-
vironment.

The stem
The stem is designed to cover up the wires and to hold the 
head of the lamp. For aesthetic reasons, the stem has the 
same width as the head of the lamp. The four vertically 
oriented plates of the stem all have a hole in which a PIR 
sensor is placed. These PIR sensors detect motion around 
the lamp.

Fig. 1 - SKIP, the physical prototype.
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The base
The lower part of Skip is designed in a way that it would 
be able to fit an Arduino, a breadboard and the necessary 
electronics (e.g. sensors, capacitors, resistors) and in the 
back there is a hole for the power cable. The base harbors 
three sensors. The first is a temperature sensor that is able 
to measure the temperature of the environment. To be able 
to properly measure this, three side panels of the base 
are perforated. The second sensor placed in the base is a 
microphone sound sensor. It is placed with the microphone 
facing the front side of the lamp allowing the user to to give 

feedback with his or her voice.

Implementation of the learning algorithm
To implement the learning algorithm in the device, it needs 
to be programmed in the software of the device. On the in-
ternet, various examples of a programmed q-learning algo-
rithm can be found. Most of the examples feature a mouse 
trying to find a piece of cheese that is placed in a certain 
place on a grid (Studywolf, 2012). The mouse (or robot in 
other examples) has a certain state, it is in a certain situa-
tion, and tries to reach a piece of cheese (or beer, as in the 
example of Kunuk Nykjaer, 2012) by trying various actions. 
If the action leads to the cheese, this action is reinforced. 
This not only occurs when an action leads directly to the 
reward, but also when it leads to a ‘better’ situation, closer 
to the reward. This is accomplished through backpropaga-
tion: once the reward is reached, the previous actions are 
reinforced as well.

Although Skip also learns through reinforcement and has 
multiple states in which various actions are possible, there 
are some differences between the concept of Skip and Q-
learning. One of the differences is that in the Q-learning ex-
amples, such as that of the mouse, actions lead the mouse 
from one situation to another. Harmon and Harmon (1996) 
introduce Q-learning as a learning algorithm in which a giv-
en action in a given state leads to a successor state. This 
differs from Skip, where the state (the situation) is deter-
mined by the input sensors and is not influenced by actions 
from the device itself. It therefore cannot be ‘on a right 
track’ and backpropagation is not relevant.

A second difference is that Skip not only learns from direct 
reinforcement on a certain situation-action pair, whereas 
this is the case for Q-learning (Harmon & Harmon, 1996). 

Fig. 2 - Implementation of the electronics in the lamp.
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Based on the absolute difference in inputs, the reinforce-
ment is partially transferred to the same actions in similar 
situations. This only occurs in situations close to the cur-
rent state and the effect decreases with an increase in 
difference. By transferring the reinforcement, Skip learns 
faster than otherwise would be the case.

After exploring the various options to alter existing pieces 
of programming code to fit our purposes, we decided to 
write our own code instead. We used our knowledge of 
the learning algorithm and the inspiration we got from re-
viewing the online examples to program Skip in a manner 
that exactly aligns with our intentions. 

Our code
The full code that defines Skips behaviour can be found 
in Appendix 1. In the following explanation, the numbers 
between brackets refer to specific parts of the code in the 
appendix. 
[1] When the program starts, all possible situations are 

defined. In each situation, there are eight possible actions, 
since there are two variations in direction and four in bright-
ness. Each situation-action pair has an initial value ‘0’. 
[2] The program listens to the sensor information that the 
Arduino sends it through the Serial communication line. 
When the situation changes, this sensor information chang-
es too. This triggers the program to change the action of 
the lamp, choosing the action with the highest value in the 
new situation. 
[3] Aside from listening to the sensor information, the pro-
gram also listens to hear when Skip is being reinforced. The 
moment this happens, the value of the current situation-
action pair is altered. In case of a positive reinforcement it 
is raised by 100, in case of a negative reinforcement it is 
lowered by 100. The same action is also reinforced in simi-
lar situations by going through all possible situations while 
calculating the absolute difference from the current situa-
tion for the properties time, light, temperature and pres-
ence. The smaller the difference, the higher the value with 
which it is reinforced.  
[4] When the lamp receives a negative reinforcement, a 
new action is triggered. This also happens when the action 
that received the negative reinforcement is still the action 
with the highest value for the current situation. 
Although the lamp functions with solely the use of negative 
reinforcement, positive reinforcement was added to speed 
up the learning process and strengthen learned behaviour 
over time. A convenient side effect is that the possibility to 
positively reinforce Skip strengthens the metaphor, since 
praise is also used when training a dog.

Since the concept assumes the owner of the lamp knows 
the possible actions and his or her preference, it does not 
require explorative actions from the lamp to find an even 
better solution. The lamp will therefore immediately try the 
highest valued action in a certain state and only change 

Fig. 3 - Each situation contains all possible actions that 
the lamp can take. Each action is weighted individually 
for the specific situation. 
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when it is negatively reinforced (or when the situation 
changes). When no positive reinforcement is used, over 
time this will result in not more than a minor difference 
in value between the preferred action and the other ac-
tions. When in case of an exception the lamp is used 
differently in the same situation, the new preference will 
get the highest value for the current situation and the 
preference for all the time before is ‘forgotten’. This does 
not happen when positive reinforcement is introduced as 
well. One can positively reinforce the lamp as often as he 
or she wants, thereby raising the value and widening the 
gap between the current action and other actions in the 
same situation.

This way, over time Skip will truly learn one’s preferenc-
es. It does not only immediately try the highest valued 
action for the current situation, but also take a smart 
second guess based on previous experiences when the 
proposed action is being negatively reinforced. Like a 
dog, Skip will retain the behavior it has learned before, 
even when on a special occasion one’s preferences are 
different than usual. It will obey one’s orders for this spe-
cial occasion and the next day, when everything is back 
to normal, it will go back to the usual pattern.

Discussion
As we have not studied long-term use of the lamp it is 
hard to say exactly how it would adapt to fit real human 
lives. We chose four parameters for determining the situ-
ation in which the lamp is being used, but it is question-
able whether the combination of these factors consis-
tently represent a certain context in relation to lamp use. 
It might turn out that time of day, ambient light, tem-
perature and presence are irrelevant measures. Maybe it 
would be more useful to determine who is present and 
what activity they are currently undertaking, however 
understanding such complex parameters are outside the 
scope of this project. 

We must also question how voice recognition works as a 
means for interaction for desk lamps. While the dog meta-
phor might help making it a meaningful interaction, it is 
however worth considering if talking to a lamp might turn 
out to be even more awkward than talking to smart assis-
tants like Amazon Echo or Apple’s Siri can be at times. 

For a simple application like this lamp, it would be reason-
able to argue that the job of controlling the light would have 
been achieved just as efficiently by controlling it with a dial 
and a button. These interactions could even have been cap-
tured and fed to a unsupervised learning algorithm that 
could take over control of the lamp after a learning period. 

This might have been a better approach from the perspec-
tive of creating a good model for the required light setting, 
however the question we are asking here is two-fold. Do ar-
bitrary household objects need to be intelligent? Should the 
user be able to affect what and how our intelligent products 
learn? Neither of the questions are straightforward to an-
swer, but we have proposed a design that takes an ap-
proach that does not rely on hidden capturing of user data 
but provides an understandable model for learning, while 
making sure that the reigns are in the hands of the user.

Conclusion 
This project focused on creating a device to explore re-
inforcement learning algorithms in household items. Dur-
ing the project, a prototype of a learning lamp named Skip 
was created. Skip keeps the user in control while having 
the ability to act autonomously. Through voice recognition 
Skip’s owner can communicate to the lamp what correct 
and incorrect behavior is for a certain situation. The lamp 
then uses a learning algorithm inspired by Q-learning to 
integrate the preferred action in its model for behavior.

Although Skip should be more extensively tested in a 
household environment to make stronger claims about the 
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added value, our initial experiences point in a positive 
direction. The transparency of reinforcement learning as 
implemented in this project gives the user a feeling of 
control and the analogy with the training of a dog makes 
it easy to understand and operate the device for a broad 
target group.
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Appendix

/*
In the following code we are using the work state and situation different from the common convention sur-
rounding Reinforcement Learning. 
Here a situation refers to the combination of environmental factors measured on the Arduino, which is more 
commonly referred to as the state.
Furthermore the state refers to the combination of the lamp brightness and lamp head position, which could 
be likened to the more commonly used action. 
*/

class QLearning {

  // This arraylist contains all possible situations
  ArrayList<Situation> situations;

  // This variables contain the last received values from the Arduino
  int currentTime;
  int currentLight;
  int currentTemp;
  boolean currentPres;

  // ReinforcementVal is the value of which a state in being reinforced
  // either positively or negatively.
  int reinforcementVal = 100;
  // equalPoints are the number of points given for being equal for with the current situation
  // Used when calculating reinforcement for similar situations.
  int equalPoints = 2;

  // Declaring the Serial Interface for communicating with the Arduino
  SerialInterface mySI;

  // Holds information about the current state of the lamp
  State currentState; 

  // Holds information about the current situation
  Situation currentSituation;
  // Temporarily holds a newly received situation update
  Situation incomingSituation;

Here follows the part of our code that relates to Q-learning. We have left out the main class, the class handling serial communi-
cation and all of the Arduino code. 

The code in full is available on https://github.com/CSivertsen/Learning-Lamp 
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  // QLearning constructor
  QLearning() {

    // Initializing Serial interface
    mySI = new SerialInterface(this);
    // Initializing default state and situations before anything is received from
    // the Arduino
    currentState = new State(0, 0);
    incomingSituation = new Situation(0, 0, 0, false);

    // A situation object is created for all possible combinations
    // of the 4 situation parameters and stored in an ArrayList
    situations = new ArrayList();

    //time
    for (int time = 0; time < 4; time++) {
      //light
      for (int light = 0; light < 3; light++) {
        //temp
        for (int temp = 0; temp < 3; temp++) {

//presence
for (int pres = 0; pres < 2; pres++) {

boolean boolPres;
if (pres == 0) {
boolPres = true;

} else {
boolPres = false;

}

situations.add(new Situation(time, light, temp, boolPres));
}

        }
      }
    }
  }

  // This function is called whenever a situation is received from the Arduino
  void updateSituation(Situation incomingSituation) {

    // The incoming situation is compared to all situations in the situations ArrayList
    for (Situation situation : situations) {
      if (incomingSituation.time == situation.time && 
        incomingSituation.light == situation.light && 
        incomingSituation.temp == situation.temp && 
        incomingSituation.presence == situation.presence ) {

        // When the situation have been found that matches the incoming situation we check
        // that this situation isn’t already the active situation. If it isn’t we update
        // the current situation and check for the highest rated state for that situation.
        if (!situation.equals(currentSituation)) {
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currentSituation = situation;
// Printing to console for debugging
println(“Updating situation”);
currentState = currentSituation.findBest(currentState);

        }
      }
    }
  }

  // Called when reinforcement happens
  // The parameter multiply is usually 1 or -1 to switch between positive and negative
  // reinforcement. Can also be used to weight the two types of reinforcements differently.
  void reinforce(float multiply) {

    // Printing to console for debugging
    println(“Reinforcement: “ + multiply );

    // This for-loop runs through all the possible situations and compares them to the current 
    // situation. If a property is equal the value equalPoints is given, otherwise the difference in sub-
tracted.
    for (Situation situation : situations) {
      float timePoints = equalPoints - (abs(situation.time - currentSituation.time));
      float lightPoints = equalPoints - (abs(situation.light - currentSituation.light));
      float tempPoints = equalPoints - (abs(situation.temp - currentSituation.temp));

      // For presence equalPoints are given for being equal. Otherwise 0 points are given.
      float presPoints = 0;
      if (situation.presence == currentSituation.presence) {
        presPoints = equalPoints;
      }

      // The total amount of points are being calculated and the final score becomes a percentage of the re-
inforcementValue.
      // currentSituation where all properties are equal will thus be reinforcementValue * 1 and a situation 
that is different
      // on all parameters will be reinforcementValue * 0. 
      float totalPoints = (reinforcementVal/(equalPoints * 4)) * (timePoints + lightPoints + tempPoints + 
presPoints) * multiply;

      // The current state for every situation is being reinforced with the calculated value 
      situation.updateStateVal(totalPoints, currentState);

    } 

    // If the reinforcement was negative, the best state for the current situation is being activated.
    if (multiply < 0){
      currentState = currentSituation.findBest(currentState);
    }
  }

  // Diplays a crude visualization of the lamp state to enable easier debugging and testing. 
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  void display() {

    fill(currentState.brightness);
    if (currentState.position == 0) {
      rect(0, height/2, width, height/2);
    } else {
      rect(0, 0, width, height/2);
    }
  }

  // Prints the weight for all states in the current situation to the console. 
  void showPolicy() {
    println(“Policy:”);

    for ( int i = 0; i < currentSituation.states.length; i++) {
      println(currentSituation.states[i].weight);
    }
  }
}

class Situation {

  // All situation object contains an array of the possible states. 
  final State stateA = new State(0, 0);
  final State stateB = new State(75, 0);
  final State stateC = new State(160, 0);
  final State stateD = new State(255, 0);
  final State stateE = new State(0, 1);
  final State stateF = new State(75, 1);
  final State stateG = new State(160, 1);
  final State stateH = new State(255, 1);

  State[] states;

  int time;
  int light;
  int temp; 
  boolean presence; 

  // The situation constructor requires values for the ambient parameters
  Situation (int _time, int _light, int _temp, boolean _presence) {
    time = _time;
    light = _light;
    temp = _temp;
    presence = _presence; 

    states = new State[]{stateA, stateB, stateC, stateD, stateE, stateF, stateG, stateH};
  }

  // This function is called from the reinforce() function in the QLearning class. 
  // The received val is the calculated points for a particular state in this situation.
  void updateStateVal(float val, State currentState) {
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    // Looks up the right state in the state array
    for (State state : states) {      
      if (currentState.brightness == state.brightness &&
        currentState.position == state.position) {

        // When the right state is found the calculated points are being added to the existing weight  
        state.addVal(val);
      }
    }
  }

  // This function returns the currently highest weighted state for this situation
  // except if the highest rated state is the one that was passed to it. Then it 
  // will return the second best. This is to avoid that the lamp does not seem to 
  // respond when a highly weighted state in being negatively reinforced. 
  State findBest(State currentState) {
    ArrayList<State> highValueStates = new ArrayList();
    float highestValue = -1000000; 

    // The loop runs through the state array and finds the highest value
    // skipping the state that was passed to the function. 
    for (State state : states) {      

      if (!state.equals(currentState)) {

        if (state.getWeight() > highestValue) {
highestValue = state.getWeight();

        }
      }
    } 

    // The array is now looped through a second time to find all states 
    // that has the same value as the highestValue. The most highest rated
    // state are put into an ArrayList. 
    for (State state : states) {
      if (!state.equals(currentState)) {
        if (state.getWeight() == highestValue) {

highValueStates.add(state);
        }
      }
    }

    // One of the highest rated value are chosen at random. 
    // This is done to handle the case when several cases are 
    // rated equally high. 
    int pick = int(random(highValueStates.size()));

    // The function returns the highest rated state in the Situation
    return highValueStates.get(pick);
  }
}

// A State object holds a certain combination of lamp position and brightness
// as well as a how highly it is weighted. 
class State {
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  int brightness; 
  int position;
  float weight;

// Constructor requires a brightness and position value. The default weight is 0.
State(int b, int p) {
  brightness = b;
  position = p;
  weight = 0;
}

// Used to change the weight when reinforcing
void addVal(float val){
  weight += val;
}

// Returns the current weight of the state
float getWeight(){
  return weight;
}

}
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Personal Reflection, Christian Sivertsen - 
S167916

I have been following the application of machine learning 
and artificial intelligence in consumer products closely in 
the last few years. However I did not have any practical 
experience with the field before starting this course, and 
thus neural networks, reinforcement learning and other 
concepts could seem a bit “magical”. I wanted to gain more 
knowledge about the inner working of intelligent systems to 
be able to critically evaluate its implementation in products 
and thus I chose to follow this course. This also aligns with 
my goals for developing my skills in the expertise areas 
technology and realization and math, data and computing. 

Early on in the course, inspired by the two first lectures, 
I became interested in how intelligence could be used di-
rectly in the interaction with the product. Therefore I sug-
gested to my group that we looked into this area, and af-
ter some back and forth we chose to base the interaction 
with our product on a real-life interaction with (somewhat) 
intelligent beings, namely dogs. We became interested in 
how humans interacting with dogs, could be used in mod-
elling an interaction with an intelligent product. Based on 
this model we looked further into operant condition and 
reinforcement learning as a way of implementing this. Our 
subject for this interaction became a desk lamp. 

In the group I spent most of my time implementing our 
reinforcement algorithm in Processing code. Early on we 
spent time on trying to understand and adapt examples 
on Q-learning that were available on the internet to fit our 
purpose. However after we had gained a throughout under-
standing of the concepts of Q-learning, we chose to write 
our code from scratch. This was mainly done in collabora-
tion with Simone from the group. I implemented our new 

adapted algorithm, tested and tweaked it on several pa-
rameters so it would exhibit the behavior we wanted. Ex-
amples of such changes was reinforcement of similar situ-
ations, and experimenting with how the lamp would react 
immediately after being reinforced. Finally I made the serial 
communication interfaces that allowed the Processing pro-
gram and our Arduino to exchange information, allowing us 
to test and demonstrate the product behavior live in class.

After following this course I have now gained an overview 
of several different approaches to intelligence and machine 
learning that allows me to consider these approaches for 
use in projects later on. More specifically I have gained 
practical knowledge with reinforcement learning, and its 
qualities and limitations when used in a household product 
such as our desk lamp.

Most importantly I have through the product offered a 
suggestion for how intelligent behavior in products can be 
made transparent for the user, rather being a black boxed. 
In a situation where we as consumers are constantly be-
ing measured and gauged to allow for adaptive behavior 
in products and services, I believe that it is important to 
consider how this process can be transparent and allow 
the user to have the ultimate say, even when products are 
behaving autonomously. This reflection is in line with my 
designerly vision of keeping users in control of the techno-
logical products that surround them. With the knowledge 
gained in this course I have better means for evaluating 
how different approaches to intelligence in interaction stim-
ulate or limit the autonomy of the user.
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Personal reflection, Simone Rietmeijer - 
s153538

It was with full commitment that I subscribed to the course 
Designing Intelligence in Interaction. The overview that the 
course was said to give strongly aligned with my need to 
learn more about this field of design. Thus far my learning 
path in Industrial Design has been far from regular and I 
feel like there are some gaps in my knowledge. A course 
offering an overview of intelligence in interaction was ex-
actly what I thought I needed. Looking back now, I am 
very happy to realize that I was right. This course gave me 
the overview I was looking for and I now feel confident to 
continue my study with the knowledge of the possibilities of 
intelligence in interaction.

One of the features of this course that appealed to me, was 
the diversity of the lectures. With my background in Com-
munication science, I could relate to the lecture of prof. dr. 
Rauterberg and this formed a pleasant bridge to the other 
lectures, which focused more on the technological aspects. 
The lecture that inspired me most was that on adaptivity in 
games. This probably has to do with my interest in serious 
games. Thus far, I did not have the chance to learn more 
about serious games in a project or elective, which made 
me appreciate the attention for it in this course even more. 
The lecture by dr. Van der Spek feels as a good starting 
point from which to overthink applications and implementa-
tions of and possibilities in games in future projects.  

Another lecture that aligned with my interests was the lec-
ture of dr. ir. Barakova. Last year I attended her course 
Intelligent Products and the use of learning algorithms in-
trigued me. Although I understood the basic principles, I 
could not completely grasp the translation to ‘computer 
language’ by the end of that bachelor course. During the 

first meeting with our team for DIII, I was happy to learn 
that my fellow team members preferred to work with the 
implementation of a learning algorithm. I decided to use 
this opportunity to expand my knowledge and learn how to 
make this translation to computer language.

From the start, our team worked together smoothly. We 
divided the project in two teams: one focusing on the con-
struction of the lamp, one focusing on the implementation 
of the learning algorithm. Together with Christian I worked 
on the latter. We first tried to alter existing programs to fit 
our purposes, but at one point we realized that it might 
be better to write our own code from the start. For the 
most part, we did this together behind one computer. While 
Christian brought his expertise in programming, I contrib-
uted with my knowledge of the learning algorithm. Since I 
have some basic programming skills as well, it was easy to 
communicate and discuss the code while working on it. This 
way we could work in a highly efficient manner and I very 
much enjoyed it. I not only trained myself in programming 
learning algorithms, but, by watching Christian code, I also 
trained my skills in programming itself.

In future projects, I hope to implement learning algorithms 
again. Before taking this course I was not a big fan of in-
telligent products and systems. It felt scary and out of my 
reach to realize that all those devices gather personal data 
without me knowing what happens with it. This changed 
during the course. I now see the benefits of, for example, 
a learning system, especially when this is combined with 
user-friendly interfaces.

The way in which learning capabilities can discard the need 
to preprogram a device now appeals to me, especially when 
considering less technological literate target groups. A good 
example is our lamp. One could program a lamp to behave 
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according to ones preferences, for example with the use of 
a timer. Experience learns however, that for many people 
this is not as easy as it seems. And when one wants more 
parameters than just the time of day to influence the lamp 
and the lamp can have multiple states, this will become 
increasingly complicated. A learning algorithm like the one 
we used not only simplifies it for many users, I believe it 
can enable people to use an adaptable device who other-
wise could not do so.

That being said, I strongly believe that it is important to 
make the intelligence transparent. People have the right 
to know when their behavior is being recorded. This does 
not have to be overly complicated and I believe it does not 
even need to be explicitly stated everywhere. Instead of 
a clear-cut message or warning sign, the project in this 
course made me realize that it could also be implemented 
in the interaction. When one teaches a device by praise and 
punishment, he or she implicitly knows this reinforcement 
is being recorded.

To conclude, I enjoyed taking this course. The overview 
that was given filled a gap in my knowledge and I feel I now 
have a strong starting point from which I can explore vari-
ous ways of using intelligence in my designs. The course 
helped to shape my vision on intelligence in interaction and 
I look forward to use everything I learned in future projects!
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Personal reflection, Mick Haegens - S165003
This was my first semester at the Tue. Before I started this 
master I completed the bachelor Entrepreneurship, Innova-
tion and Technique which focuses mostly on the Business and 
Entrepreneurship competence area as known at the Indus-
trial Design department of the TUe. One important reason for 
me to subscribe for the Designing Intelligence in Interaction 
course is because I decided to focus on technology during my 
master and because I wanted to learn about intelligence in 
design.

This course provided me with a clear overview of different 
theories related to intelligence in design. Among other things, 
I learned about intelligence optimization, information pro-
cessing, intelligence in games, pattern recognition and neural 
networks. Besides all these theories that were addressed dur-
ing the course, there were also practical lectures that showed 
me how to bring these theories to practice. 

One of the lectures during this course that got my interest 
was that of dr. ir. Barakova about learning algorithms. The 
different learning algorithms (e.g. pattern recognition, clas-
sification) gave me insight in how these learning algorithms 
work. I thought it would be much harder for me to understand 
how these would work, but this lecture made me realize that 
I could be able to create a learning algorithm myself! To be 
able to do this I still have to work on my programming skills 
during the rest of my master, but it got me motivated to come 
up with a plan to improve on my programming skills.

Another lecture that I found interesting was that of Dr. Funk 
about the design of intelligent systems. Creating a system 
while working with the OOSCI library showed me the possi-
bilities creating a smart system. I really enjoyed the exercises 
that we did during the lecture with the OOSCI library. The 
reasons mentioned above made me decided to ask Dr. Funk 
to become my new mentor, so that I could relate my upcom-
ing research project to intelligent systems. 

Because my non-industrial background and my lack of skills 
to make my ideas physical, I decided to mainly focus on 
building the physical prototype (together with Davide) dur-
ing the project of this course. 
David and I took responsibility for designing and creating 
the prototyping, where my main focus was on the electron-
ics and writing the Arduino code. I learned how to work with 
different sensors and actuators and also how write a proper 
Arduino code. Also did I learn how to make a prototype by 
using a laser cutter. 

Despite the fact that Simone and Christian were mainly 
responsible for the learning algorithm of our project, they 
made sure that Davide and me were closely involved with 
their process. They frequently updated us with their current 
progress, explained clearly each function of a specific part of 
the code and they constantly let us take part in the decision 
making process. This way I learned how I could program a 
learning algorithm.

To conclude, this course gave me a good overview of the 
possibilities of creating intelligence in design and it made me 
realize in what types of intelligence I am interested. Further-
more I learned how to make ideas physical and how I could 
program a learning algorithm!
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Personal reflection, Davide Amorim - S162143

Few years ago, during the projects of my bachelor’s pro-
gramme I was designing objects through a process that was 
more concerning about aesthetics, materials, ergonomics or 
even technology available to produce those same objects. At 
the time, I wondered about how technologies are built into 
objects and how that influences the way people experiences 
products. About three years over, I enrolled in a project that 
enables me to understand how can I create, interact or im-
plement intelligence in everyday things.  

I believe that the learning path of a designer must be con-
tinuous, and in this course I was interested to explore and 
understand a new paradigm in product design, the needed 
to design for intelligent products. Although, before the start 
of this course my knowledge of intelligent objects was very 
limited, I must say that throughout the lectures I was able 
to enrich my knowledge in this field. As, I am a person more 
connected to a practical approach and the use of tools to 
explore my creativity, I would like to point out two lectures 
that I found it really interesting. Firstly, supporting the de-
sign of intelligent systems with OOCSI by dr. M. Funk and 
Pattern recognition and secondly, neural network by dr. J. 
Hu. However, in this group project we did not made use of 
these tools, I will definitely, be interested to explore them in 
future projects. 

Concerning to the group project, we decided to built and 
intelligent lamp that could be trained as a dog. Therefore, 
we splitted in two groups, the first focused in the implemen-
tation of learning algorithm in the lamp and the second on 
the building of the model and electronics parts of the lamp. 
Even though, I have the interest to develop my program-
ming and electronic skills, in this project my interest relied 
on the electronics part. Together with Mick, I was able to 

explore and learn about different sensors and actuators to 
use them as inputs to create a communication between user 
and the lamp. Although, me and Mick were not responsible 
for the implementation of the algorithm in the lamp, as the 
group was well structured and the communication was very 
clear, the two members of the group responsible for that 
part helped us to understand and let us know how the theory 
and practice  behind the algorithm they were writing works. 
Therefore, I was able to learn the structure of an algorithm 
code.  

With regard to the outcome learning of the whole project, 
it is my belief that if we create a more transparent commu-
nication between people and intelligent objects, there will 
be a better tendency for people accept them. I believe this 
project is a good starting point to explore new approaches 
towards user interaction with intelligent devices. 

Overall, the course gave me access to a wide range of topics. 
From pattern recognition to adaptivity in games or even ac-
quire knowledge of tools such as OOCSI library for systems 
synchronization or Neuroph studio to build neural networks. 
Although, I did not had the time to explore all the content 
this course could offer me I must say that I feel that all 
this information gathered along the theoretical and practical 
lectures will be very welcome to explore in future projects. 
Moreover, intelligent objects it is something that I definite-
ly want explore in my future projects and the theories and 
tools this course gave me will be reflected in those future 
projects.
To finalize, if a few years ago my mind was wondering about 
how complex could it be for me to use advanced technol-
ogy such as learning algorithms or pattern recognition in 
my design projects, this course came to substitute previous 
questions to answers.
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