
Pictorials DIS 2016: Fuse, Brisbane, Australia

Chirstian Sivertsen
S167916
c.sivertsen@student.tue.nl

Simone Rietmeijer
S153538
s.z.rietmeijer@student.tue.nl

Mick Haegens
S165003
m.w.heagens@student.tue.nl

Davide José Nogueia Amorim
S162143
d.j.nogueira.amorim@student.tue.nl

Abstract
In this report the use of reinforcement learning in house-
hold items is explored through the implementation of the
algorithm in a lamp. The lamp, named Skip, was designed
to be able to distinguish different situations with the use of
multiple sensors and can be reinforced through voice com-
mands. A learning algorithm inspired by Q-learning was
written to train the lamp, resulting in a working and learn-
ing prototype. No extended user testing has taken place
in actual household settings yet. It therefore is unclear
whether the lamp trumps an old fashioned one, but initial
experiences are promising.

Authors Keywords
Lamp; reinforcement learning; learning algorithm

Introduction
Artificial Intelligence. In 1956 the first seminar on this top-
ic was organized. A few years earlier, in 1950, a paper by
Alan Turing was published in which he explores the notion
of machines with the ability to simulate human beings,
including the ability to learn (Turing, 1950). A little over
sixty years later, artificial intelligence is becoming increas-
ingly present. People using an IPhone can ask their virtual
assistant all about the nearest restaurants, upcoming ap-
pointments and the fastest way back home. Spotify has
great suggestions to expand your music collection based
on what you’re currently listening and Tesla’s autopilot
keeps steering the car even when you remove your hands
from the steering wheel.

Skip: The learning lamp

1

Eindhoven University of Technology Industrial Design, 2017: M1.1 / Design Intelligence in Interaction

Early artificial intelligence mainly focused on creating so
called ‘expert systems’, in which the machine had access
to large amounts of knowledge and rules provided by do-
main experts in order to solve specific problems (Hawkins
& Dubinsky, 2016). One of the fields where the main ad-
vantages took place over the last sixty years, is that of ma-
chine learning (Smith, 2006). Where fifty years ago people
worked on industrial robots, fully pre programmed, the
current focus is on self learning robots that can work with
humans and understand their intentions (Engels, 2013).

Field pioneer Tom M. Mitchel (1997, p.2) defines machine
learning as follows: “A computer program is said to learn
from experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T, as
measured by P, improves with experience E.” This can be
accomplished through various learning algorithms, ranging
from supervised to unsupervised learning. Where human
beings have a vast amount of control in supervised learn-
ing, they have no influence on the learnings of a machine
once it starts an unsupervised learning trajectory.

It is important to ask ourselves if unsupervised learning is
what we, the users of this ever growing field of technologi-
cal devices, actually want. Do we trust our devices to clas-
sify our behaviour without human intervention? A machine
sorting various types of apples in a warehouse may use an
unsupervised learning algorithm without any infringement
of human autonomy, but what if these types of learning
algorithms are used inside our houses?

Supervised learning puts control back into the hands of the
teachers, the users in this case. But is that what we want
then? For supervised learning, a training session is needed
and one would not be able to buy a device and benefit from
it immediately. An alternative is reinforcement learning, a
learning algorithm that balances the input from the user

and the initiative from the device. The device does not learn
on it’s own, but neither does it require a training session.
It proposes a certain action and learns from the teachers
reinforcement, that can be either positive or negative.

In this paper the use of reinforcement learning in household
items is explored through the implementation of the algo-
rithm in a lamp.

Reinforced learning
To find a learning algorithm that comes natural to people,
the idea of teaching a dog came to mind. This project there-
fore started by exploring Skinner’s theory of operant condi-
tioning. For the implementation of operant conditioning in a
device, Q-learning was recommended.

Operant conditioning explains how consequences lead to
change in voluntary behaviour by using reinforcement and
punishment. Reinforcement makes a behaviour more likely
to be repeated, while punishment makes it less likely to be
repeated (B. F. Skinner Foundation, 2016).

Q-learning is a reinforcement learning algorithm based on a
relation between a state of the system and the possible ac-
tions that are available. All actions from a state are weight-
ed in relation to how efficient they are at reaching a specific
goal (Harmon & Harmon, 1996). Similarly to the behavior
of a dog, behavior that was earlier punished in a certain
situation is less likely to be repeated. While behavior that
received praise is more likely to be repeated.

Why is the dog a good metaphor for a lamp like
this?
The strong connection between dogs and people affects
their familiarity with interacting with these animals. Most
people have some experience with dogs, and have seen
how they can be trained by disciplining or giving them

2

Eindhoven University of Technology Industrial Design, 2017: M1.1 / Design Intelligence in Interaction

treats. Thus we consider it an appropriate image for our
model of learning. As the goal is to make machine learn-
ing transparent, approachable and comprehensible, the fa-
miliarity of the dog training might be beneficial. The user
will recognize that when unwanted behavior of occurs, the
reason is generally a lack of training for the current situa-
tion, and that it can be resolved by reinforcing the behavior
appropriately.

SKIP

Design
Skip is a smart lamp that is able to adjust its intensity of
light and the position of his head. It learns how to behave
in certain situations through receiving (negative and posi-
tive) feedback from its users. It relates the feedback from
the user to certain states of its environment.

Skip’s body is made up of multiple 4 mm MDF panels that
fit each other like a puzzle. These MDF boards were cut
by a laser cutter. All the electronical parts in the lamp are
connected to an Arduino Uno microprocessor. It uses sen-
sors to get input from the environment and actuators to
respond to it. Skip is made out of three main parts:

The head
This part of the lamp is designed in a way that it is able to
point upwards and downwards. When the head is pointing
downwards it acts like a desk lamp and when the head is
pointing upwards it creates ambient light by reflecting líght
off nearby walls and ceiling. The movement of the head is
controlled by a 5V analog servo motor that is able rotate
180 degrees. It also consist of 32 programmable RGB LEDs
that are programmed to create four different types of light
intensities: none, low, medium and high. Furthermore it
has an LDR sensor which is placed on the frontside of the

head, so that it measures the light of the surrounding en-
vironment.

The stem
The stem is designed to cover up the wires and to hold the
head of the lamp. For aesthetic reasons, the stem has the
same width as the head of the lamp. The four vertically
oriented plates of the stem all have a hole in which a PIR
sensor is placed. These PIR sensors detect motion around
the lamp.

Fig. 1 - SKIP, the physical prototype.

3

Eindhoven University of Technology Industrial Design, 2017: M1.1 / Design Intelligence in Interaction

The base
The lower part of Skip is designed in a way that it would
be able to fit an Arduino, a breadboard and the necessary
electronics (e.g. sensors, capacitors, resistors) and in the
back there is a hole for the power cable. The base harbors
three sensors. The first is a temperature sensor that is able
to measure the temperature of the environment. To be able
to properly measure this, three side panels of the base
are perforated. The second sensor placed in the base is a
microphone sound sensor. It is placed with the microphone
facing the front side of the lamp allowing the user to to give

feedback with his or her voice.

Implementation of the learning algorithm
To implement the learning algorithm in the device, it needs
to be programmed in the software of the device. On the in-
ternet, various examples of a programmed q-learning algo-
rithm can be found. Most of the examples feature a mouse
trying to find a piece of cheese that is placed in a certain
place on a grid (Studywolf, 2012). The mouse (or robot in
other examples) has a certain state, it is in a certain situa-
tion, and tries to reach a piece of cheese (or beer, as in the
example of Kunuk Nykjaer, 2012) by trying various actions.
If the action leads to the cheese, this action is reinforced.
This not only occurs when an action leads directly to the
reward, but also when it leads to a ‘better’ situation, closer
to the reward. This is accomplished through backpropaga-
tion: once the reward is reached, the previous actions are
reinforced as well.

Although Skip also learns through reinforcement and has
multiple states in which various actions are possible, there
are some differences between the concept of Skip and Q-
learning. One of the differences is that in the Q-learning ex-
amples, such as that of the mouse, actions lead the mouse
from one situation to another. Harmon and Harmon (1996)
introduce Q-learning as a learning algorithm in which a giv-
en action in a given state leads to a successor state. This
differs from Skip, where the state (the situation) is deter-
mined by the input sensors and is not influenced by actions
from the device itself. It therefore cannot be ‘on a right
track’ and backpropagation is not relevant.

A second difference is that Skip not only learns from direct
reinforcement on a certain situation-action pair, whereas
this is the case for Q-learning (Harmon & Harmon, 1996).

Fig. 2 - Implementation of the electronics in the lamp.

4

Eindhoven University of Technology Industrial Design, 2017: M1.1 / Design Intelligence in Interaction

Based on the absolute difference in inputs, the reinforce-
ment is partially transferred to the same actions in similar
situations. This only occurs in situations close to the cur-
rent state and the effect decreases with an increase in
difference. By transferring the reinforcement, Skip learns
faster than otherwise would be the case.

After exploring the various options to alter existing pieces
of programming code to fit our purposes, we decided to
write our own code instead. We used our knowledge of
the learning algorithm and the inspiration we got from re-
viewing the online examples to program Skip in a manner
that exactly aligns with our intentions.

Our code
The full code that defines Skips behaviour can be found
in Appendix 1. In the following explanation, the numbers
between brackets refer to specific parts of the code in the
appendix.
[1] When the program starts, all possible situations are

defined. In each situation, there are eight possible actions,
since there are two variations in direction and four in bright-
ness. Each situation-action pair has an initial value ‘0’.
[2] The program listens to the sensor information that the
Arduino sends it through the Serial communication line.
When the situation changes, this sensor information chang-
es too. This triggers the program to change the action of
the lamp, choosing the action with the highest value in the
new situation.
[3] Aside from listening to the sensor information, the pro-
gram also listens to hear when Skip is being reinforced. The
moment this happens, the value of the current situation-
action pair is altered. In case of a positive reinforcement it
is raised by 100, in case of a negative reinforcement it is
lowered by 100. The same action is also reinforced in simi-
lar situations by going through all possible situations while
calculating the absolute difference from the current situa-
tion for the properties time, light, temperature and pres-
ence. The smaller the difference, the higher the value with
which it is reinforced.
[4] When the lamp receives a negative reinforcement, a
new action is triggered. This also happens when the action
that received the negative reinforcement is still the action
with the highest value for the current situation.
Although the lamp functions with solely the use of negative
reinforcement, positive reinforcement was added to speed
up the learning process and strengthen learned behaviour
over time. A convenient side effect is that the possibility to
positively reinforce Skip strengthens the metaphor, since
praise is also used when training a dog.

Since the concept assumes the owner of the lamp knows
the possible actions and his or her preference, it does not
require explorative actions from the lamp to find an even
better solution. The lamp will therefore immediately try the
highest valued action in a certain state and only change

Fig. 3 - Each situation contains all possible actions that
the lamp can take. Each action is weighted individually
for the specific situation.

5

Eindhoven University of Technology Industrial Design, 2017: M1.1 / Design Intelligence in Interaction

when it is negatively reinforced (or when the situation
changes). When no positive reinforcement is used, over
time this will result in not more than a minor difference
in value between the preferred action and the other ac-
tions. When in case of an exception the lamp is used
differently in the same situation, the new preference will
get the highest value for the current situation and the
preference for all the time before is ‘forgotten’. This does
not happen when positive reinforcement is introduced as
well. One can positively reinforce the lamp as often as he
or she wants, thereby raising the value and widening the
gap between the current action and other actions in the
same situation.

This way, over time Skip will truly learn one’s preferenc-
es. It does not only immediately try the highest valued
action for the current situation, but also take a smart
second guess based on previous experiences when the
proposed action is being negatively reinforced. Like a
dog, Skip will retain the behavior it has learned before,
even when on a special occasion one’s preferences are
different than usual. It will obey one’s orders for this spe-
cial occasion and the next day, when everything is back
to normal, it will go back to the usual pattern.

Discussion
As we have not studied long-term use of the lamp it is
hard to say exactly how it would adapt to fit real human
lives. We chose four parameters for determining the situ-
ation in which the lamp is being used, but it is question-
able whether the combination of these factors consis-
tently represent a certain context in relation to lamp use.
It might turn out that time of day, ambient light, tem-
perature and presence are irrelevant measures. Maybe it
would be more useful to determine who is present and
what activity they are currently undertaking, however
understanding such complex parameters are outside the
scope of this project.

We must also question how voice recognition works as a
means for interaction for desk lamps. While the dog meta-
phor might help making it a meaningful interaction, it is
however worth considering if talking to a lamp might turn
out to be even more awkward than talking to smart assis-
tants like Amazon Echo or Apple’s Siri can be at times.

For a simple application like this lamp, it would be reason-
able to argue that the job of controlling the light would have
been achieved just as efficiently by controlling it with a dial
and a button. These interactions could even have been cap-
tured and fed to a unsupervised learning algorithm that
could take over control of the lamp after a learning period.

This might have been a better approach from the perspec-
tive of creating a good model for the required light setting,
however the question we are asking here is two-fold. Do ar-
bitrary household objects need to be intelligent? Should the
user be able to affect what and how our intelligent products
learn? Neither of the questions are straightforward to an-
swer, but we have proposed a design that takes an ap-
proach that does not rely on hidden capturing of user data
but provides an understandable model for learning, while
making sure that the reigns are in the hands of the user.

Conclusion
This project focused on creating a device to explore re-
inforcement learning algorithms in household items. Dur-
ing the project, a prototype of a learning lamp named Skip
was created. Skip keeps the user in control while having
the ability to act autonomously. Through voice recognition
Skip’s owner can communicate to the lamp what correct
and incorrect behavior is for a certain situation. The lamp
then uses a learning algorithm inspired by Q-learning to
integrate the preferred action in its model for behavior.

Although Skip should be more extensively tested in a
household environment to make stronger claims about the

6

Eindhoven University of Technology Industrial Design, 2017: M1.1 / Design Intelligence in Interaction

added value, our initial experiences point in a positive
direction. The transparency of reinforcement learning as
implemented in this project gives the user a feeling of
control and the analogy with the training of a dog makes
it easy to understand and operate the device for a broad
target group.

References
1. B. F. Skinner Foundation. (2016). The B. F. Skinner

foundation. Retrieved from http://www.bfskinner.
org/

2. Engels, J. (2013, January 24). Een goede robot
hoeft niet slim te zijn. Trouw. Retrieved from http://
www.trouw.nl/tr/nl/6700/Wetenschap/article/de-
tail/3382326/2013/01/24/Een-goede-robot-hoeft-
niet-slim-te-zijn.dhtml

3. Hawkins, J., & Dubinsky, D. (2016, March 24).
What is machine intelligence vs. machine learning
vs. deep learnign vs. artificial intelligence (AI). Re-
trieved from http://numenta.com/blog/2016/01/11/
machine-intelligence-machine-learning-deep-learn-
ing-artificial-intelligence/

4. Mitchell, T. M. (1997). Machine learning. New York,
NY: McGraw-Hill.

5. Nykjaer, K. (2012, January 14). Q-learning library
example with C#. Retrieved from https://kunuk.
wordpress.com/2012/01/14/q-learning-library-ex-
ample-with-csharp/

6. Smith, C. (2006). The history of artificial intelligence
(University of Washington). Retrieved from http://
courses.cs.washington.edu/courses/csep590/06au/
projects/history-ai.pdf

7. Studywolf. (2012, November 25). Reinforcement
learning part 1: Q-learning and exploration. Retrieved
from https://studywolf.wordpress.com/2012/11/25/
reinforcement-learning-q-learning-and-exploration/

8. Turing, A. M. (1950). Computing machinery and intel-
ligence. Mind, 59, 433-460.

9. Harmon, M. E., & Harmon, S. S. (1996). Reinforce-
ment learning: A tutorial. (Wright State University).
Retrieved from http://www.cs.toronto.edu/~zemel/
documents/411/rltutorial.pdf

7

J. Hu, B. van der Vlist, G. Niezen, W. Willemsen, D. Willems, and L. Feijs,
“Designing the Internet of Things for learning environmentally responsible
behaviour,” Interactive Learning Environments, pp. 211-226, 2013.

J. Hu, B. van der vlist, G. Niezen, W. Willemsen, D. Willems,
and L. M. G. Feijs, “Learning from Internet of Things for
Improving Environmentally Responsible Behavior,”
Edutainment Technologies. Educational Games and Virtual
Reality/Augmented Reality Applications, Lecture Notes in
Computer Science Series, M. Chang, W.-Y. Hwang, M.-P. Chen
et al., eds., pp. 292-299: Springer Berlin / Heidelberg, 2011.

S. Alers, and J. Hu, “AdMoVeo: A Robotic Platform for Teaching Creative Programming to Designers,”
Learning by Playing. Game-based Education System Design and Development, Lecture Notes in
Computer Science Series, 5670/2009, M. Chang, R. Kuo, Kinshuk et al., eds., pp. 410-421, Banff,
Canada: Springer Berlin / Heidelberg, 2009.

Eindhoven University of Technology Industrial Design, 2017: M1.1 / Design Intelligence in Interaction

Appendix

/*
In the following code we are using the work state and situation different from the common convention sur-
rounding Reinforcement Learning.
Here a situation refers to the combination of environmental factors measured on the Arduino, which is more
commonly referred to as the state.
Furthermore the state refers to the combination of the lamp brightness and lamp head position, which could
be likened to the more commonly used action.
*/

class QLearning {

 // This arraylist contains all possible situations
 ArrayList<Situation> situations;

 // This variables contain the last received values from the Arduino
 int currentTime;
 int currentLight;
 int currentTemp;
 boolean currentPres;

 // ReinforcementVal is the value of which a state in being reinforced
 // either positively or negatively.
 int reinforcementVal = 100;
 // equalPoints are the number of points given for being equal for with the current situation
 // Used when calculating reinforcement for similar situations.
 int equalPoints = 2;

 // Declaring the Serial Interface for communicating with the Arduino
 SerialInterface mySI;

 // Holds information about the current state of the lamp
 State currentState;

 // Holds information about the current situation
 Situation currentSituation;
 // Temporarily holds a newly received situation update
 Situation incomingSituation;

Here follows the part of our code that relates to Q-learning. We have left out the main class, the class handling serial communi-
cation and all of the Arduino code.

The code in full is available on https://github.com/CSivertsen/Learning-Lamp

8

Eindhoven University of Technology Industrial Design, 2017: M1.1 / Design Intelligence in Interaction

 // QLearning constructor
 QLearning() {

 // Initializing Serial interface
 mySI = new SerialInterface(this);
 // Initializing default state and situations before anything is received from
 // the Arduino
 currentState = new State(0, 0);
 incomingSituation = new Situation(0, 0, 0, false);

 // A situation object is created for all possible combinations
 // of the 4 situation parameters and stored in an ArrayList
 situations = new ArrayList();

 //time
 for (int time = 0; time < 4; time++) {
 //light
 for (int light = 0; light < 3; light++) {
 //temp
 for (int temp = 0; temp < 3; temp++) {

//presence
for (int pres = 0; pres < 2; pres++) {

boolean boolPres;
if (pres == 0) {
boolPres = true;

} else {
boolPres = false;

}

situations.add(new Situation(time, light, temp, boolPres));
}

 }
 }
 }
 }

 // This function is called whenever a situation is received from the Arduino
 void updateSituation(Situation incomingSituation) {

 // The incoming situation is compared to all situations in the situations ArrayList
 for (Situation situation : situations) {
 if (incomingSituation.time == situation.time &&
 incomingSituation.light == situation.light &&
 incomingSituation.temp == situation.temp &&
 incomingSituation.presence == situation.presence) {

 // When the situation have been found that matches the incoming situation we check
 // that this situation isn’t already the active situation. If it isn’t we update
 // the current situation and check for the highest rated state for that situation.
 if (!situation.equals(currentSituation)) {

9

Eindhoven University of Technology Industrial Design, 2017: M1.1 / Design Intelligence in Interaction

currentSituation = situation;
// Printing to console for debugging
println(“Updating situation”);
currentState = currentSituation.findBest(currentState);

 }
 }
 }
 }

 // Called when reinforcement happens
 // The parameter multiply is usually 1 or -1 to switch between positive and negative
 // reinforcement. Can also be used to weight the two types of reinforcements differently.
 void reinforce(float multiply) {

 // Printing to console for debugging
 println(“Reinforcement: “ + multiply);

 // This for-loop runs through all the possible situations and compares them to the current
 // situation. If a property is equal the value equalPoints is given, otherwise the difference in sub-
tracted.
 for (Situation situation : situations) {
 float timePoints = equalPoints - (abs(situation.time - currentSituation.time));
 float lightPoints = equalPoints - (abs(situation.light - currentSituation.light));
 float tempPoints = equalPoints - (abs(situation.temp - currentSituation.temp));

 // For presence equalPoints are given for being equal. Otherwise 0 points are given.
 float presPoints = 0;
 if (situation.presence == currentSituation.presence) {
 presPoints = equalPoints;
 }

 // The total amount of points are being calculated and the final score becomes a percentage of the re-
inforcementValue.
 // currentSituation where all properties are equal will thus be reinforcementValue * 1 and a situation
that is different
 // on all parameters will be reinforcementValue * 0.
 float totalPoints = (reinforcementVal/(equalPoints * 4)) * (timePoints + lightPoints + tempPoints +
presPoints) * multiply;

 // The current state for every situation is being reinforced with the calculated value
 situation.updateStateVal(totalPoints, currentState);

 }

 // If the reinforcement was negative, the best state for the current situation is being activated.
 if (multiply < 0){
 currentState = currentSituation.findBest(currentState);
 }
 }

 // Diplays a crude visualization of the lamp state to enable easier debugging and testing.

10

Eindhoven University of Technology Industrial Design, 2017: M1.1 / Design Intelligence in Interaction

 void display() {

 fill(currentState.brightness);
 if (currentState.position == 0) {
 rect(0, height/2, width, height/2);
 } else {
 rect(0, 0, width, height/2);
 }
 }

 // Prints the weight for all states in the current situation to the console.
 void showPolicy() {
 println(“Policy:”);

 for (int i = 0; i < currentSituation.states.length; i++) {
 println(currentSituation.states[i].weight);
 }
 }
}

class Situation {

 // All situation object contains an array of the possible states.
 final State stateA = new State(0, 0);
 final State stateB = new State(75, 0);
 final State stateC = new State(160, 0);
 final State stateD = new State(255, 0);
 final State stateE = new State(0, 1);
 final State stateF = new State(75, 1);
 final State stateG = new State(160, 1);
 final State stateH = new State(255, 1);

 State[] states;

 int time;
 int light;
 int temp;
 boolean presence;

 // The situation constructor requires values for the ambient parameters
 Situation (int _time, int _light, int _temp, boolean _presence) {
 time = _time;
 light = _light;
 temp = _temp;
 presence = _presence;

 states = new State[]{stateA, stateB, stateC, stateD, stateE, stateF, stateG, stateH};
 }

 // This function is called from the reinforce() function in the QLearning class.
 // The received val is the calculated points for a particular state in this situation.
 void updateStateVal(float val, State currentState) {

11

Eindhoven University of Technology Industrial Design, 2017: M1.1 / Design Intelligence in Interaction

 // Looks up the right state in the state array
 for (State state : states) {
 if (currentState.brightness == state.brightness &&
 currentState.position == state.position) {

 // When the right state is found the calculated points are being added to the existing weight
 state.addVal(val);
 }
 }
 }

 // This function returns the currently highest weighted state for this situation
 // except if the highest rated state is the one that was passed to it. Then it
 // will return the second best. This is to avoid that the lamp does not seem to
 // respond when a highly weighted state in being negatively reinforced.
 State findBest(State currentState) {
 ArrayList<State> highValueStates = new ArrayList();
 float highestValue = -1000000;

 // The loop runs through the state array and finds the highest value
 // skipping the state that was passed to the function.
 for (State state : states) {

 if (!state.equals(currentState)) {

 if (state.getWeight() > highestValue) {
highestValue = state.getWeight();

 }
 }
 }

 // The array is now looped through a second time to find all states
 // that has the same value as the highestValue. The most highest rated
 // state are put into an ArrayList.
 for (State state : states) {
 if (!state.equals(currentState)) {
 if (state.getWeight() == highestValue) {

highValueStates.add(state);
 }
 }
 }

 // One of the highest rated value are chosen at random.
 // This is done to handle the case when several cases are
 // rated equally high.
 int pick = int(random(highValueStates.size()));

 // The function returns the highest rated state in the Situation
 return highValueStates.get(pick);
 }
}

// A State object holds a certain combination of lamp position and brightness
// as well as a how highly it is weighted.
class State {

12

Eindhoven University of Technology Industrial Design, 2017: M1.1 / Design Intelligence in Interaction

 int brightness;
 int position;
 float weight;

// Constructor requires a brightness and position value. The default weight is 0.
State(int b, int p) {
 brightness = b;
 position = p;
 weight = 0;
}

// Used to change the weight when reinforcing
void addVal(float val){
 weight += val;
}

// Returns the current weight of the state
float getWeight(){
 return weight;
}

}

13

Eindhoven University of Technology Industrial Design, 2017: M1.1 / Design Intelligence in Interaction

Personal Reflection, Christian Sivertsen -
S167916

I have been following the application of machine learning
and artificial intelligence in consumer products closely in
the last few years. However I did not have any practical
experience with the field before starting this course, and
thus neural networks, reinforcement learning and other
concepts could seem a bit “magical”. I wanted to gain more
knowledge about the inner working of intelligent systems to
be able to critically evaluate its implementation in products
and thus I chose to follow this course. This also aligns with
my goals for developing my skills in the expertise areas
technology and realization and math, data and computing.

Early on in the course, inspired by the two first lectures,
I became interested in how intelligence could be used di-
rectly in the interaction with the product. Therefore I sug-
gested to my group that we looked into this area, and af-
ter some back and forth we chose to base the interaction
with our product on a real-life interaction with (somewhat)
intelligent beings, namely dogs. We became interested in
how humans interacting with dogs, could be used in mod-
elling an interaction with an intelligent product. Based on
this model we looked further into operant condition and
reinforcement learning as a way of implementing this. Our
subject for this interaction became a desk lamp.

In the group I spent most of my time implementing our
reinforcement algorithm in Processing code. Early on we
spent time on trying to understand and adapt examples
on Q-learning that were available on the internet to fit our
purpose. However after we had gained a throughout under-
standing of the concepts of Q-learning, we chose to write
our code from scratch. This was mainly done in collabora-
tion with Simone from the group. I implemented our new

adapted algorithm, tested and tweaked it on several pa-
rameters so it would exhibit the behavior we wanted. Ex-
amples of such changes was reinforcement of similar situ-
ations, and experimenting with how the lamp would react
immediately after being reinforced. Finally I made the serial
communication interfaces that allowed the Processing pro-
gram and our Arduino to exchange information, allowing us
to test and demonstrate the product behavior live in class.

After following this course I have now gained an overview
of several different approaches to intelligence and machine
learning that allows me to consider these approaches for
use in projects later on. More specifically I have gained
practical knowledge with reinforcement learning, and its
qualities and limitations when used in a household product
such as our desk lamp.

Most importantly I have through the product offered a
suggestion for how intelligent behavior in products can be
made transparent for the user, rather being a black boxed.
In a situation where we as consumers are constantly be-
ing measured and gauged to allow for adaptive behavior
in products and services, I believe that it is important to
consider how this process can be transparent and allow
the user to have the ultimate say, even when products are
behaving autonomously. This reflection is in line with my
designerly vision of keeping users in control of the techno-
logical products that surround them. With the knowledge
gained in this course I have better means for evaluating
how different approaches to intelligence in interaction stim-
ulate or limit the autonomy of the user.

14

Eindhoven University of Technology Industrial Design, 2017: M1.1 / Design Intelligence in Interaction

Personal reflection, Simone Rietmeijer -
s153538

It was with full commitment that I subscribed to the course
Designing Intelligence in Interaction. The overview that the
course was said to give strongly aligned with my need to
learn more about this field of design. Thus far my learning
path in Industrial Design has been far from regular and I
feel like there are some gaps in my knowledge. A course
offering an overview of intelligence in interaction was ex-
actly what I thought I needed. Looking back now, I am
very happy to realize that I was right. This course gave me
the overview I was looking for and I now feel confident to
continue my study with the knowledge of the possibilities of
intelligence in interaction.

One of the features of this course that appealed to me, was
the diversity of the lectures. With my background in Com-
munication science, I could relate to the lecture of prof. dr.
Rauterberg and this formed a pleasant bridge to the other
lectures, which focused more on the technological aspects.
The lecture that inspired me most was that on adaptivity in
games. This probably has to do with my interest in serious
games. Thus far, I did not have the chance to learn more
about serious games in a project or elective, which made
me appreciate the attention for it in this course even more.
The lecture by dr. Van der Spek feels as a good starting
point from which to overthink applications and implementa-
tions of and possibilities in games in future projects.

Another lecture that aligned with my interests was the lec-
ture of dr. ir. Barakova. Last year I attended her course
Intelligent Products and the use of learning algorithms in-
trigued me. Although I understood the basic principles, I
could not completely grasp the translation to ‘computer
language’ by the end of that bachelor course. During the

first meeting with our team for DIII, I was happy to learn
that my fellow team members preferred to work with the
implementation of a learning algorithm. I decided to use
this opportunity to expand my knowledge and learn how to
make this translation to computer language.

From the start, our team worked together smoothly. We
divided the project in two teams: one focusing on the con-
struction of the lamp, one focusing on the implementation
of the learning algorithm. Together with Christian I worked
on the latter. We first tried to alter existing programs to fit
our purposes, but at one point we realized that it might
be better to write our own code from the start. For the
most part, we did this together behind one computer. While
Christian brought his expertise in programming, I contrib-
uted with my knowledge of the learning algorithm. Since I
have some basic programming skills as well, it was easy to
communicate and discuss the code while working on it. This
way we could work in a highly efficient manner and I very
much enjoyed it. I not only trained myself in programming
learning algorithms, but, by watching Christian code, I also
trained my skills in programming itself.

In future projects, I hope to implement learning algorithms
again. Before taking this course I was not a big fan of in-
telligent products and systems. It felt scary and out of my
reach to realize that all those devices gather personal data
without me knowing what happens with it. This changed
during the course. I now see the benefits of, for example,
a learning system, especially when this is combined with
user-friendly interfaces.

The way in which learning capabilities can discard the need
to preprogram a device now appeals to me, especially when
considering less technological literate target groups. A good
example is our lamp. One could program a lamp to behave

15

Eindhoven University of Technology Industrial Design, 2017: M1.1 / Design Intelligence in Interaction

according to ones preferences, for example with the use of
a timer. Experience learns however, that for many people
this is not as easy as it seems. And when one wants more
parameters than just the time of day to influence the lamp
and the lamp can have multiple states, this will become
increasingly complicated. A learning algorithm like the one
we used not only simplifies it for many users, I believe it
can enable people to use an adaptable device who other-
wise could not do so.

That being said, I strongly believe that it is important to
make the intelligence transparent. People have the right
to know when their behavior is being recorded. This does
not have to be overly complicated and I believe it does not
even need to be explicitly stated everywhere. Instead of
a clear-cut message or warning sign, the project in this
course made me realize that it could also be implemented
in the interaction. When one teaches a device by praise and
punishment, he or she implicitly knows this reinforcement
is being recorded.

To conclude, I enjoyed taking this course. The overview
that was given filled a gap in my knowledge and I feel I now
have a strong starting point from which I can explore vari-
ous ways of using intelligence in my designs. The course
helped to shape my vision on intelligence in interaction and
I look forward to use everything I learned in future projects!

16

Eindhoven University of Technology Industrial Design, 2017: M1.1 / Design Intelligence in Interaction

Personal reflection, Mick Haegens - S165003
This was my first semester at the Tue. Before I started this
master I completed the bachelor Entrepreneurship, Innova-
tion and Technique which focuses mostly on the Business and
Entrepreneurship competence area as known at the Indus-
trial Design department of the TUe. One important reason for
me to subscribe for the Designing Intelligence in Interaction
course is because I decided to focus on technology during my
master and because I wanted to learn about intelligence in
design.

This course provided me with a clear overview of different
theories related to intelligence in design. Among other things,
I learned about intelligence optimization, information pro-
cessing, intelligence in games, pattern recognition and neural
networks. Besides all these theories that were addressed dur-
ing the course, there were also practical lectures that showed
me how to bring these theories to practice.

One of the lectures during this course that got my interest
was that of dr. ir. Barakova about learning algorithms. The
different learning algorithms (e.g. pattern recognition, clas-
sification) gave me insight in how these learning algorithms
work. I thought it would be much harder for me to understand
how these would work, but this lecture made me realize that
I could be able to create a learning algorithm myself! To be
able to do this I still have to work on my programming skills
during the rest of my master, but it got me motivated to come
up with a plan to improve on my programming skills.

Another lecture that I found interesting was that of Dr. Funk
about the design of intelligent systems. Creating a system
while working with the OOSCI library showed me the possi-
bilities creating a smart system. I really enjoyed the exercises
that we did during the lecture with the OOSCI library. The
reasons mentioned above made me decided to ask Dr. Funk
to become my new mentor, so that I could relate my upcom-
ing research project to intelligent systems.

Because my non-industrial background and my lack of skills
to make my ideas physical, I decided to mainly focus on
building the physical prototype (together with Davide) dur-
ing the project of this course.
David and I took responsibility for designing and creating
the prototyping, where my main focus was on the electron-
ics and writing the Arduino code. I learned how to work with
different sensors and actuators and also how write a proper
Arduino code. Also did I learn how to make a prototype by
using a laser cutter.

Despite the fact that Simone and Christian were mainly
responsible for the learning algorithm of our project, they
made sure that Davide and me were closely involved with
their process. They frequently updated us with their current
progress, explained clearly each function of a specific part of
the code and they constantly let us take part in the decision
making process. This way I learned how I could program a
learning algorithm.

To conclude, this course gave me a good overview of the
possibilities of creating intelligence in design and it made me
realize in what types of intelligence I am interested. Further-
more I learned how to make ideas physical and how I could
program a learning algorithm!

17

Eindhoven University of Technology Industrial Design, 2017: M1.1 / Design Intelligence in Interaction

Personal reflection, Davide Amorim - S162143

Few years ago, during the projects of my bachelor’s pro-
gramme I was designing objects through a process that was
more concerning about aesthetics, materials, ergonomics or
even technology available to produce those same objects. At
the time, I wondered about how technologies are built into
objects and how that influences the way people experiences
products. About three years over, I enrolled in a project that
enables me to understand how can I create, interact or im-
plement intelligence in everyday things.

I believe that the learning path of a designer must be con-
tinuous, and in this course I was interested to explore and
understand a new paradigm in product design, the needed
to design for intelligent products. Although, before the start
of this course my knowledge of intelligent objects was very
limited, I must say that throughout the lectures I was able
to enrich my knowledge in this field. As, I am a person more
connected to a practical approach and the use of tools to
explore my creativity, I would like to point out two lectures
that I found it really interesting. Firstly, supporting the de-
sign of intelligent systems with OOCSI by dr. M. Funk and
Pattern recognition and secondly, neural network by dr. J.
Hu. However, in this group project we did not made use of
these tools, I will definitely, be interested to explore them in
future projects.

Concerning to the group project, we decided to built and
intelligent lamp that could be trained as a dog. Therefore,
we splitted in two groups, the first focused in the implemen-
tation of learning algorithm in the lamp and the second on
the building of the model and electronics parts of the lamp.
Even though, I have the interest to develop my program-
ming and electronic skills, in this project my interest relied
on the electronics part. Together with Mick, I was able to

explore and learn about different sensors and actuators to
use them as inputs to create a communication between user
and the lamp. Although, me and Mick were not responsible
for the implementation of the algorithm in the lamp, as the
group was well structured and the communication was very
clear, the two members of the group responsible for that
part helped us to understand and let us know how the theory
and practice behind the algorithm they were writing works.
Therefore, I was able to learn the structure of an algorithm
code.

With regard to the outcome learning of the whole project,
it is my belief that if we create a more transparent commu-
nication between people and intelligent objects, there will
be a better tendency for people accept them. I believe this
project is a good starting point to explore new approaches
towards user interaction with intelligent devices.

Overall, the course gave me access to a wide range of topics.
From pattern recognition to adaptivity in games or even ac-
quire knowledge of tools such as OOCSI library for systems
synchronization or Neuroph studio to build neural networks.
Although, I did not had the time to explore all the content
this course could offer me I must say that I feel that all
this information gathered along the theoretical and practical
lectures will be very welcome to explore in future projects.
Moreover, intelligent objects it is something that I definite-
ly want explore in my future projects and the theories and
tools this course gave me will be reflected in those future
projects.
To finalize, if a few years ago my mind was wondering about
how complex could it be for me to use advanced technol-
ogy such as learning algorithms or pattern recognition in
my design projects, this course came to substitute previous
questions to answers.

18

