
Sense your Heart

MODULE REPORT
BY ALEXANDER VAN DAM & RICK DE VISSER

 2

Table of Content

Introduction .. 3
Idea generation .. 3
Concept ... 4
Implementation ... 4
PPG heart sensor ... 5
Servo motor .. 5
Processing .. 5
Sinus noise reduction .. 5
Prototyping ... 6
Appendix A: Coding.. 7
Appendix B: laser cutting drawing of the prototype ... 11

 3

Introduction
In this report we discuss our process of creating an application for a PPG heart
sensor. The PPG heart sensor is based on an arduino board and self build as part
of the module. From here one we did a short design iteration of two days in
which we created a game as the application, made two working prototypes with
a second arduino, tested them in game play and made some small adjustments to
improve the game.

Idea generation
The design assignment for this module was to design an application for our self-
build heart sensor. We wanted the design concept to cover two aspects that we
found interesting. Firstly, we focused on creating a physical concept for the more
rich interaction opportunities that this will offer. Secondly, shooting games
inspired us for an idea of integrating a PPG heart sensor application in a physical
aiming device that you can use in the game. In a real-life situation the shooter
has to control his state of mind and body to be calm and steady before he shoots.
To much stress or excitement could make it much more difficult to aim straight.
These states can be measured with our PPG heart sensor.

We took these two aspects to come up with an idea which we presented to Jun
Hu. Our idea was to create a simple (wooden) prototype of a rifle with the PPG
sensor integrated. In this prototype we would place a laser pointer attached to
two small motors, one for the x-axis movement and one of the y-axis movement.
The laser pointer would function as an aiming tool that you can point at a target.
However, the system will give the laser a deviation depending on the Heart Rate
Variability measurement. The lower the HRV, the bigger the movement of the
motors and the bigger the deviation will be, which will make it harder if not
impossible to hit your target.

The downfall of this system was that is was very hard to make it measurable
whether the shooter would be able to hit his target in specific states of the Heart
Rate Variability. This complexity of the system made us decide to change our
concept towards another game in which aiming is still important and could also
be influenced by your own HRV.

 4

Concept
We came up with the idea of a marble maze that can rotate from its middle axis
automatically. A marble maze is an existing game in which a small marble is
placed inside a handheld maze. The marble has to reach a specific point in the
maze that is normally hard to reach. The player can only move the marble by
tilting the whole maze towards the direction in which he wants the marble to go.
This is a very delicate movement and is often experienced as very frustrating. We
make this experience more intense, because frustration and agitation will be
detected by the system and would make the game even more difficult to win.

Implementation
For the technical implementation of the
concept two Arduino’s were used, one as
a heart rate sensor and one to drive the
servo rotating the maze. It was chosen to
do this using two Arduinos rather than
one in order to avoid trouble with two
interrupt driven devices on one Arduino
and the small possibility of affecting the
signal from the sensor. In order to
process the data between the devices
both were connected to a computer
running processing.

 5

PPG heart sensor
The heart rate sensor was build using the PPG
sensor shield template and code provided during the
module and was left unaltered from this. In practice,
when the sensor and the processing sketch are
connected, the sensor sends the respiration rate
through the com port to the processing sketch.

Servo motor
The second Arduino was directly connected to the
servo. The software reads out serial data and sets the servo rotation to the
position that is received from processing.

Processing
Nearly all of the data processing is done within
Processing by a modified version of the RR
example that was provided. The main
alterations consisted of adding support for a
second Arduino as output and adding two new
functions.
The first function (HRVcalc) takes the heart
rate variability which is already calculated
within the example and uses a map function in
order to map the HVR values between 20 and
200 (boundaries estimated by observing the
values of several test persons) to an amplitude
of between 45 and 0 for use in the second
function.
The second function (movementAmp) moves
the servo back and forth around the 90o mark
based on a sinus function with a fixed speed.
The amplitude is dictated by HRVcalc and is
thus in between 45o and 135o at maximum.

Sinus noise reduction
After testing out the prototype it appeared that the servo occasionally behaved
very erratically. While investigating it was found that it was likely due to the
implementation of the sine function, which was created by putting in the amount
of milliseconds since the sketch was running into sin(). At first it was tried to do
this less often, but the result stayed the same. In the end it was decided to filter
the spikes out using a low pass filter class found on the internet written for
processing1. This helped reducing the results substantially. In hindsight another
way of generating the sine wave should have been investigated, like the
sinewave example on the processing examples page2.

1
 http://jeremah.co.uk/blog/permalink/a_low_pass_filter_in_processing

2
 http://processing.org/examples/sinewave.html

http://jeremah.co.uk/blog/permalink/a_low_pass_filter_in_processing
http://processing.org/examples/sinewave.html

 6

Prototyping
The prototyping of the physical maze was done in two iterations, a cardboard
prototype and the final prototype. The cardboard prototype was made by
sticking a marble maze made out of foam core directly on top of a servo motor.
The user had to hold the servo motor itself in order to move the maze. This
prototype was used early in the process both as proof of concept and in order to
test the code that was available so far, to see if the swaying of the maze would be
too wild or not enough. This prototype made the early discovery of the random
noise send to the servo possible, and allowed for enough time to find a solution.
The final prototype was made using the laser cutter in order to get the accuracy
and polish that was needed in order to make the maze feel smooth, something
lacking from the cardboard prototype, were the marble would occasionally get
stuck. The prototype was made by making a floor plate and five identical
versions of the walls of the maze, together with two planks in order to hold the
servo in place. The maze parts were glued on top of each other to form the top,
and the servo was attached underneath. After this the final parts for the handle
were made and assembled by hand. In the end the maze worked largely as
intended, noticeably making the game more difficult for those who were not
calm enough, while posing barely any resistance against those who were. The
one thing that was not ideal was that the top was not connected to the servo well
enough, the side to side movement was fine, but the maze had leeway to tilt more
than intended when trying to move the marble.

 7

Appendix A: Coding

These is de code that we used for our final prototype. The module provided us
we a standard code to work with, which included the measurements for the PPG
sensor. Here we only show the parts of code that we have changed or added
parts in.

Processing code
import processing.serial.*;

float vPrev, lPrev, v; // Filter stuff
LowPass lp;

boolean RRDISPLAY=false;
boolean HRVDISPLAY=true;
boolean CIRCLEDISPLAY=false;

int prevtime = 0;
float sinval = 0;

RRport myport;
RRparser myparser;
Serial ARPort; // Create object from Serial class

RRdisplay rrdisplay;
HRVdisplay hrvdisplay;
CIRCLEdisplay circledisplay;

PrintWriter output;
PFont myFont;
boolean settedup=false;

void setup()
{
 int bars=75;
 frameRate(10);
 //myFont = createFont("TimesNewRomanPSMT",16);
 //textFont(myFont);
 size(5*bars,5*bars);
 myport = new RRport(this);
 myparser = new RRparser();
 rrdisplay = new RRdisplay();
 hrvdisplay = new HRVdisplay();
 circledisplay = new CIRCLEdisplay();

 lp = new LowPass(4); // Create the lowpass filter

 SimpleDateFormat sdf = new SimpleDateFormat("-yyyy-MM-dd/HH-mm");
 Date now = new Date();
 //println("log to logfiles"+sdf.format(now));
 output = createWriter("logfiles"+sdf.format(now)+".txt");

 String portName = Serial.list()[2];
 ARPort = new Serial(this, portName, 9600);

 fill(10,10,10);
 rect(0,0,width,height);
 settedup=true;
}

int RRavg = 1200;

 8

int RRstd = 50;

int time = 0;
int count =0;

void draw() {
 count++;
 count=count%10;
 if (count==9) output.flush();
 time++;
 movementAmp(HRVcalc());
}

void serialEvent(Serial p) {
 if (settedup) {
 //print("!");
 //zat allemaal eerst in draw
 myport.step();
 myparser.step();
 //if (time/10 > 120) stop();
 if (myparser.event()) {
 int RR = myparser.val;
 //print(" RR=");
 //print(RR);
 output.println(RR);
 RRavg = int((23 * RRavg + 1*RR)/24);
 //print(" AVG=");
 //print(RRavg);
 RRstd = int((15.0 * RRstd + abs(RR - RRavg)) / 16.0);
 //print(" STD=");
 //print(RRstd);//niet met kwadraat ivm outlyers
 //println();
 rrdisplay.next(RR);
 hrvdisplay.next(RRstd);
 circledisplay.next(RRavg,RR);
 if (RRDISPLAY==true) rrdisplay.step();
 if (HRVDISPLAY==true) hrvdisplay.step();
 if (CIRCLEDISPLAY==true) circledisplay.step();

 //float BTopt = 15.00; //assumed resonant breathing rate in seconds
 //int advice = int(BTopt*1000/RRavg); //idem in heart beats
 //fill(30); stroke(0); rect(0,height-16,16,2*16);
 //fill(150); text(Integer.toString(advice),0, height);

 }
 }
}

public void stop() {
 output.flush(); // Writes the remaining data to the file
 output.close(); // Finishes the file
 //println("THANK YOU, GOODBYE");
 exit(); // Stops the program
}

void keyPressed() {
}

public int HRVcalc() {
 int result;
 result = (int) map(RRstd, 20, 200, 45, 0);

 9

 // Result between 0 & 45!
 return result;
}

public void movementAmp(int amp) {
 int midle = 90;
 int time = millis();
 int delaytime = 10;
 int rotval = 0;

 if (time-prevtime > delaytime)
 {
 sinval = time;
 prevtime = time;
 // println(sinval);
 rotval = (int) map(sin(sinval), -1, 1, midle-amp, midle+amp);
 lp.input(rotval);
 ARPort.write((int)lp.output); // Send angle to the servo
 println (/*rotval + ", " + */lp.output);
 }
}

class LowPass {
 ArrayList buffer;
 int len;
 float output;

 LowPass(int len) {
 this.len = len;
 buffer = new ArrayList(len);
 for(int i = 0; i < len; i++) {
 buffer.add(new Float(0.0));
 }
 }

 void input(float v) {
 buffer.add(new Float(v));
 buffer.remove(0);

 float sum = 0;
 for(int i=0; i<buffer.size(); i++) {
 Float fv = (Float)buffer.get(i);
 sum += fv.floatValue();
 }
 output = sum / buffer.size();
 }
}

 10

Arduino servo code
#include <Servo.h>

Servo myservo1;
int pos1 = 0;
int incomingVal = 0;

void setup()
{
 myservo1.attach(2);
 myservo1.write(0);
 Serial.begin(9600);
 Serial.print("Ready");
}

void loop()
{
 if (Serial.available()) {
 incomingVal = Serial.read();
 //Serial.print("I received: ");
 //Serial.println(incomingByte, DEC);
 myservo1.write(incomingVal);
 }
}

 11

Appendix B: laser cutting drawing of the prototype

scale 1:3

