
O N T O L O G I E S F O R I N T E R A C T I O N

gerrit niezen

Enabling serendipitous interoperability in smart environments

This document was typeset using LATEX and the typographical
look-and-feel classicthesis developed by André Miede.

The style was inspired by Robert Bringhurst’s seminal book
on typography “The Elements of Typographic Style”.

Cover design by Paul Verspaget, Verspaget & Bruinink

Printed by Eindhoven University Press

“iPhone”, “Alarm Clock”, “Computer” and
“Wireless” symbols by The Noun Project, from
The Noun Project collection.
“A graphic language for touch”, Timo Arnall.

“Desk Lamp” symbol by Edward Boatman, “Ra-
dio” symbol by National Park Service, “User”
symbol by Denis Chenu, “Music” symbol by Ryan
Oksenhorn, from The Noun Project collection.

Gerrit Niezen: Ontologies for interaction, Enabling serendipitous
interoperability in smart environments, © June 2012

A catalogue record is available from the Eindhoven University
of Technology Library.
ISBN: 978-90-386-3234-6

Proefontwerp Technische Universiteit Eindhoven
Trefw.: Ontologies, Semantic Web, Software Architecture, Inter-
action Design

Ontologies for interaction

Enabling serendipitous interoperability in smart environments

PROEFONTWERP

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op dinsdag 9 oktober 2012 om 16.00 uur

door

Gerrit Niezen

geboren te Pretoria, Zuid-Afrika

De documentatie van het proefontwerp is goedgekeurd door de promotoren:

prof.dr.ir. L.M.G. Feijs
en
prof.dr. P. Markopoulos

Copromotor:
dr. J. Hu PDEng MEng

C O N T E N T S

i framing the problem and current state-of-the-art

1

1 introduction 3

1.1 Background 4

1.1.1 Multi-device user interaction 4

1.1.2 Configuring connections between devices 5

1.2 Context of the work and research questions 6

1.2.1 The SOFIA project 7

1.2.2 Ubiquitous computing 7

1.2.3 Affordances 8

1.2.4 Ontologies 9

1.2.5 Research questions 10

1.3 Methodology 11

1.4 Outline of the thesis 13

2 related work 15

2.1 Related projects and frameworks 15

2.1.1 SpeakEasy (circa 2000-2003) 16

2.1.2 EventHeap (circa 2000-2005) 17

2.1.3 The XWeb architecture (circa 2001-2003) 18

2.1.4 AutoHAN (circa 2001) 19

2.1.5 e-Gadgets (circa 2004) 22

2.2 Ubicomp ontologies 23

2.2.1 SOUPA (circa 2004) 24

2.2.2 BDI and the MoGATU ontology 24

2.2.3 Gaia (circa 2004-2007) 25

2.2.4 CAMUS (circa 2004-2005) 26

2.3 User interface software architectures 26

2.3.1 Ullmer & Ishii’s MCRpd model 27

2.4 Modelling input devices 31

2.4.1 Foley’s taxonomy and its extensions 31

2.5 Semantic models 33

2.5.1 The Frogger framework 33

2.5.2 Models of intentionality 34

2.6 Outlook 36

ii design iterations and constructing a theory

37

3 design iteration i 39

v

vi contents

3.1 Requirements 39

3.2 Ontology Design 41

3.3 Device design 45

3.3.1 Interaction Tile 46

3.3.2 Lamp 48

3.3.3 Mobile phones 48

3.3.4 RFID reader used in interaction tile 48

3.4 Implementation 49

3.4.1 Interaction Tile KP 50

3.4.2 Music Player KP 52

3.4.3 Light KP 52

3.4.4 SIB 53

3.5 Discussion & Conclusion 54

4 design iteration ii 57

4.1 Requirements 57

4.2 Ontology Design 59

4.2.1 Semantic Media ontology 59

4.2.2 Semantic Interaction ontology 60

4.3 Device Design 62

4.3.1 Wall-wash lighting and presence sensors 62

4.3.2 Connector object 63

4.3.3 Spotlight Navigation 65

4.3.4 Lighting Device 68

4.4 Implementation 69

4.4.1 ADK-SIB 70

4.4.2 Semantic matching of media types 72

4.4.3 Device states 74

4.5 Evaluation 75

4.6 Discussion & Conclusion 76

5 design iteration iii 79

5.1 Requirements 79

5.2 Ontology design 81

5.3 Device modifications 82

5.3.1 Squeezebox radio 82

5.3.2 Android mobile devices 83

5.3.3 Wakeup experience service 85

5.3.4 Zeo 86

5.4 Implementation 88

5.4.1 Feedback and Feedforward 88

5.5 Discussion & Conclusion 94

6 semantic connections framework 97

6.1 User interaction model 97

6.2 Smart Objects 98

contents vii

6.2.1 Identification 99

6.2.2 Interaction primitives 99

6.3 Semantic Connections 101

6.3.1 Directionality 102

6.3.2 Transitivity 102

6.3.3 Permanent and temporary connections 103

6.3.4 Connections connect different entities 103

6.4 Semantic Transformers 103

6.5 Finite state machine examples 104

6.6 Feedback and feedforward 109

6.6.1 Feedback of objects 109

6.6.2 Feedback of connections 110

6.6.3 Feedforward 110

6.7 Discussion & Conclusion 112

iii generalised models , software architecture

and evaluation 115

7 device capability modelling 117

7.1 GUI-based techniques 117

7.2 Non-GUI techniques 119

7.2.1 UAProf 119

7.2.2 Universal Plug and Play (UPnP) 119

7.2.3 SPICE DCS 121

7.3 Registering devices on startup 121

7.3.1 Identifying devices 122

7.3.2 Registering a device’s functionality 125

7.4 Reasoning with device capabilities 125

7.4.1 Representing functionalities as predicates 126

8 event modelling 131

8.1 Related work 132

8.1.1 The Event Ontology 133

8.1.2 DUL 133

8.1.3 Event-Model-F 133

8.1.4 Linked Open Descriptions of Events (LODE) 134

8.1.5 Ontologies for temporal reasoning 134

8.2 Interaction events 135

8.2.1 System events 137

8.2.2 Feedback 137

8.2.3 Discussion & Conclusion 138

9 ontology engineering 141

9.1 Layers of ontologies 143

9.1.1 Foundational ontologies 143

9.1.2 Core ontologies 143

viii contents

9.1.3 Domain ontologies 143

9.1.4 Application ontologies 144

9.2 Our approach 144

9.3 Reasoning with OWL 144

9.3.1 Consistency checking 146

9.3.2 Necessary versus necessary and sufficient 146

9.3.3 Inverse properties 147

9.3.4 Property chains 147

9.3.5 Using cardinality restrictions 147

9.4 Reasoning with SPIN 148

9.4.1 Integrity constraints 148

9.4.2 SPARQL Rules 149

9.4.3 Built-in SPARQL Functions 149

9.4.4 Custom functions 150

9.4.5 Magic properties 151

9.5 Ontology design patterns 151

9.5.1 The Role pattern 152

9.5.2 Descriptions and Situations (DnS) pattern 153

9.5.3 Defining n-ary relations 155

9.5.4 Naming interaction events 156

9.5.5 Using local reflexivity in property chains 157

9.5.6 Semantic matching with property chains 158

9.5.7 Inferring new individuals 160

9.5.8 Removing inferred triples 162

9.5.9 Inferring subclass relationships using prop-
erties 162

9.5.10 Inferring connections between smart ob-
jects and semantic transformers 164

9.6 Discussion 166

10 software architecture 169

10.1 Characteristics of ubicomp middleware 169

10.2 Publish/subscribe paradigm and the blackboard
pattern 170

10.3 Smart Space Access Protocol (SSAP) 172

10.4 Smart-M3 architecture 173

10.5 ADK-SIB 173

11 evaluation 175

11.1 Evaluating the system performance 175

11.1.1 Introduction 175

11.1.2 Experimental setup 176

11.1.3 Experimental Results 180

11.1.4 Discussion 185

11.2 Evaluating the ontology 187

contents ix

11.2.1 Introduction 187

11.2.2 Validating the work using Cognitive Di-
mensions 188

11.2.3 Method 190

11.2.4 Results 190

11.2.5 Non-CD related questions 195

11.2.6 Discussion & Conclusion 197

12 conclusion 199

12.1 Achievements and observations 199

12.2 Providing affordances and feedback for smart ob-
jects 201

12.3 Software architecture 201

12.4 Ontologies 202

12.5 Low cost, high tech 203

12.6 Future work 204

iv appendix 207

bibliography 221

L I S T O F F I G U R E S

Figure 1 Iterative design methodology 12

Figure 2 The research approach used in the the-
sis 12

Figure 3 The MCRpd model of Ullmer & Ishii for
Tangible User Interfaces (TUIs) 27

Figure 4 The continuum of intentionality 34

Figure 5 Ontology indicating subclass relationships 41

Figure 6 Individuals that were instantiated based
on the ontology 44

Figure 7 The interaction tile and mobile phone 46

Figure 8 A laser-cut version of the interaction tile
prototype 48

Figure 9 The interaction and cubes, with the lamp
in the background 49

Figure 10 The Nokia 5800 XpressMusic mobile phone
with the lamp and some cubes 50

Figure 11 An overview of the demonstrator 51

Figure 12 System architecture of demonstrator 51

Figure 13 Semantic Media Ontology 59

Figure 14 Semantic Interaction Ontology 60

Figure 15 Wall-wash lighting developed by TU/e
SAN 63

Figure 16 The Connector prototype and a smart phone
used as a media player 63

Figure 17 Spotlight Navigation prototype 66

Figure 18 Projection of the Spotlight Navigation when
connecting two devices together 67

Figure 19 Image showing the Connector scanning
the lighting device. 68

Figure 20 The devices and their connections as used
in the system 69

Figure 21 Technical details of the Smart Home pi-
lot 71

Figure 22 Inferring the media path 73

Figure 23 Sub-domains of well-being 80

Figure 24 Logitech Squeezebox Radio 82

Figure 25 Playing music from the phone on the Squeeze-
box radio 84

x

List of Figures xi

Figure 26 The sleep use case scenario, with the Zeo
sleep monitor on the left, the dimmable
light and the Connector object in the mid-
dle, and the Squeezebox on the right 86

Figure 27 The Zeo headband 87

Figure 28 An overview of the sleep use case 88

Figure 29 Alarm functionality of the phone shared
with the radio and the lamp 89

Figure 30 Temporary connections for a PreviewEvent
when source and sink are directly con-
nected 92

Figure 31 Temporary connections for a PreviewEvent
when source and sink are connected via
a semantic transformer 92

Figure 32 Semantic connections user interaction model 98

Figure 33 Nokia Play 360

� speaker system and N9

mobile phone 101

Figure 34 FSMs for a simple light with a switch
and a light with a labelled switch 105

Figure 35 Light and light switch as two separate
smart objects with a semantic connection 105

Figure 36 Light connected to light switch with aug-
mented feedback 106

Figure 37 FSM showing semantic connection with
symmetry 106

Figure 38 FSM showing a semantic connection with
transitivity 107

Figure 39 A semantic connection with transitivity
and persistence 107

Figure 40 Semantic connections between smart ob-
jects and places 108

Figure 41 FSM showing a situation where the issue
of priority arises 109

Figure 42 FSM showing incidental (presence sen-
sor) and intentional (light switch) inter-
actions 109

Figure 43 Startup sequence between smart object
and SIB 122

Figure 44 Modelling identification in the ontology 124

Figure 45 Inferring connection possibilities based on
functionality 126

Figure 46 Representing matched functionalities: N-
ary relations versus predicates 127

Figure 47 Temporary connections for PreviewEvent
when semantic transformer is used 129

Figure 48 An interaction event as modelled in the
ontology 135

Figure 49 Examples from Arnall’s “A graphic lan-
guage for touch” (adapted from [4]) 138

Figure 50 Example of modelling communication the-
ory using Descriptions and Situations (DnS)
and Descriptive Ontology for Linguistic
and Cognitive Engineering (DOLCE) 154

Figure 51 Two individuals related to the same ob-
ject 158

Figure 52 Inferring connectedTo relationships be-
tween sources/sinks and a semantic trans-
former 165

Figure 53 Our software architecture 174

Figure 54 Sequence diagram of Sound/Light Trans-
former KP query measurement 177

Figure 55 Sequence diagram of Connector KP query
measurement 178

Figure 56 Sequence diagram of Music Player KP
subscription measurement 179

Figure 57 Sequence diagram of Presence-KP and Lamp-
KP 179

Figure 58 Lamp-KP 180

Figure 59 Query time measurements on SIB 181

Figure 60 Histograms, kernel density estimates and
cumulative distribution functions of Con-
nector KP and Sound/Light Transformer
KP measurements 182

Figure 61 Subscription measurements of Music Player
KP 182

Figure 62 Size of asserted and inferred models for
each iteration, including reasoning time 184

Figure 63 Cumulative probability distribution of de-
lays between Presence-KP and SIB, as well
as SIB and Lamp-KP 185

xii

Figure 64 Correspondent demographics 191

L I S T O F TA B L E S

Table 1 Interaction tasks mapped to logical and
physical interaction devices 31

Table 2 Accepted parameters for Squeezebox alarm
Telnet command 83

Table 3 Examples of interaction events in a smart
environment 132

Table 4 Mappings between the various event mod-
els (adapted from [107]) 136

Table 5 OWL restriction definitions using differ-
ent syntaxes: Description Logic, Manch-
ester OWL Syntax[35] and OWL syntax 142

Table 6 System specifications of components used
in evaluation 177

Table 7 Summary statistics of Music Player KP,
Connector KP and Sound/Light Trans-
former KP measurements 183

Table 8 Summary statistics for asserted and in-
ferred model sizes and reasoning time,
with model size indicated as number of
triples 183

A C R O N Y M S

SOFIA Smart Objects For Intelligent Applications

SIB Semantic Information Broker

KP Knowledge Processor

SUMO Suggested Upper Merged Ontology

BFO Basic Formal Ontology

DUL DOLCE+DnS UltraLight

xiii

xiv acronyms

DnS Descriptions and Situations

COMM Core Ontology Multimedia

OWL Web Ontology Language

DOLCE Descriptive Ontology for Linguistic and Cognitive
Engineering

FOAF Friend-Of-A-Friend

OWA Open World Assumption

BDI Belief-Desire- Intention

ODP Ontology Design Patterns

SPIN SPARQL Inferencing Notation

SWRL Semantic Web Rule Language

DC Dublin Core

RDF Resource Description Framework

URI Uniform Resource Identifier

URL Uniform Resource Locator

IoT Internet of Things

UPnP Universal Plug and Play

DCP Device Control Protocol

DLNA Digital Living Network Alliance

IP Internet Protocol

AV Audio/Video

EEG Electroencephalography

FFT Fast Fourier Transform

ANN Artificial Neural Network

REM Rapid Eye Movement

MOM Message-Oriented Middleware

JMS Java Message Service

acronyms xv

AMQP Advanced Message Queuing Protocol

MSMQ Microsoft Message Queuing

STOMP Streaming Text Oriented Messaging Protocol

XMPP Extensible Messaging and Presence Protocol

IETF Internet Engineering Task Force

GUI Graphical User Interface

GAS Gadgetware Architectural Style

DAML DARPA Agent Markup Language

OIL Ontology Inference Layer

FSM Finite State Machine

XML Extensible Markup Language

GENA Generic Event Notification Architecture

CAMUS Context-Aware Middleware for Ubiquitous computing
Systems

FIPA Foundation for Intelligent Physical Agents

UIMS User Interface Management System

UIRS User Interface Runtime System

MVC Model-View-Controller

MCRpd Model-Control-RepP-RepD

ASUR Adapter, System, User, Real object

SOUPA Standard Ontology for Ubiquitous and Pervasive
Applications

CoBrA Context Broker Architecture

NFC Near Field Communication

UUID Universally unique identifier

SPARQL SPARQL Protocol and RDF Query Language

RFID Radio Frequency Identification

xvi acronyms

API Application Programming Interface

SQL Structured Query Language

PC/SC Personal Computer/Smart Card

ACS Advanced Card Systems

SSAP Smart Space Access Protocol

SAN System Architecture and Networking

QCR Qualified Cardinality Restriction

OSGi Open Services Gateway initiative

RL Rule Language

XSD XML Schema Definition

ANR Application Not Responding

CC/PP Composite Capabilities/Preferences Profile

UIML User Interface Markup Language

XIML Extensible Interface Markup Language

PUC Personal Universal Controller

INCITS/V2 URC International Committee for Information
Technology Standards Universal Remote Console

RUI Remote User Interface

VNC Virtual Network Computing

RDP Remote Desktop Protocol

RFB Remote Framebuffer

UAProf User Agent Profile

DCS Distributed Communication Sphere

NORA Non-Obvious Relationship Awareness

EO Event Ontology

LODE Linked Open Descriptions of Events

TUI Tangible User Interface

acronyms xvii

MQTT Message Queue Telemetry Transport

RIBS RDF Information Base System

CWA Closed World Assumption

QR Quick Response

BIT Basic Interaction Task

OSAS Open Source Architecture for Sensors

ASP Answer Set Programming

SPICE Service Platform for Innovative Communication
Environment

SLT Sound/Light Transformer

KDE Kernel Density Estimate

CDF Cumulative Distribution Function

KPI Knowledge Processor Interface

CD Cognitive Dimensions

OOP Object-Oriented Programming

RPA Relation Partition Algebra

RDFS RDF Schema

P R E FA C E

The work in this thesis was completed in close collaboration
with another PhD candidate, Bram van der Vlist, whose thesis
[116] describes the more designer-related aspects in greater de-
tail, whereas this thesis tends to focus on the more technical
aspects of the work. Some overlap between the two theses is
unavoidable, but we tried to keep this to a minimum. In partic-
ular, the design iterations described in Chapters 3, 4 and 5 were
a combined effort, as well as the creation of a theory of seman-
tic connections described in Chapter 6. The device capability
modelling (Chapter 7) and event modelling (Chapter 8) tech-
niques, as well as the work on ontology engineering (Chapter
9), the extension of the ADK-SIB (Chapter 10) and the evalua-
tions (Chapter 11) are considered to be exclusive contributions
of the author.

The first person plural style of writing in the thesis is used
to improve coherence and readability. Code fragments in the
thesis are included either as explanation of an implementation
or for the sake of clarity. The source code of the developed
software1 and ontologies2 are available online.

A number of conference and journal papers related to this
research were published in peer-reviewed proceedings and are
listed on the next page.

1 https://bitbucket.org/gniezen/semanticconnections
2 https://github.com/gniezen/ontologies

xix

P U B L I C AT I O N S R E L AT E D T O T H I S R E S E A R C H

Some ideas and figures have appeared previously in the follow-
ing publications:

1. Vlist, B.J.J. van der, Niezen, G., Rapp, S., Hu, J., & Feijs,
L.M.G. (under review). Configuring and controlling ubiquitous
computing infrastructure with semantic connections: a tangi-
ble and an AR approach. Personal and Ubiquitous Computing. 29

pages.

2. Niezen, G., Vlist, B.J.J. van der, Hu, J., & Feijs, L.M.G. (un-
der review). Semantic Connections Theory: Enabling Interac-
tion Designers and Developers to Create Interoperable Smart
Objects. ACM Transactions on Interactive Intelligent Systems (TiiS).
32 pages.

3. Peeters, J. Vlist, B.J.J. van der, Niezen, G., Hu, J., & Feijs,
L.M.G. (2012). A Study on a Tangible Interaction Approach to
Managing Wireless Connections in a Smart Home Environment.
In L.- L. Chen, T. Djajadiningrat, L. Feijs, S. Fraser, S. Kyffin,
& D. Steffen (Eds.) 7th International Workshop on the Design &
Semantics of Form & Movement (DeSForM) 2012. pages 187–196.
Wellington, New Zealand: Koninklijke Philips Electronics N.V.

4. Vlist, B.J.J. van der, Niezen, G., Rapp, S., Hu, J., & Feijs,
L.M.G. (2012). Controlling Smart Home Environments with Se-
mantic Connections: a Tangible and an AR Approach. In L.- L.
Chen, T. Djajadiningrat, L. Feijs, S. Fraser, S. Kyffin, & D. Stef-
fen (Eds.) 7th International Workshop on the Design& Semantics of
Form & Movement (DeSForM) 2012. pages 160–169. Wellington,
New Zealand: Koninklijke Philips Electronics N.V.

5. Vlist, B.J.J. van der, Niezen, G., Hu, J., & Feijs, L.M.G. (2012).
Semantic Connections: a New Interaction Paradigm for Smart
Environments. In L.- L. Chen, T. Djajadiningrat, L. Feijs, S. Fraser,
S. Kyffin, & D. Steffen (Eds.) 7th International Workshop on the
Design & Semantics of Form & Movement (DeSForM) 2012. pages
16–26. Wellington, New Zealand: Koninklijke Philips Electron-
ics N.V.

xxi

6. Niezen, G., Vlist, B.J.J. van der, Bhardwaj, S. & Ozcelebi,
T. (2012). Performance Evaluation of a Semantic Smart Space
Deployment. 4rd International Workshop on Sensor Networks and
Ambient Intelligence (SeNAmI 2012). March 19–23, 2012, Lugano,
Switzerland.

7. Hu, J., Vlist, B.J.J. van der, Niezen, G., Willemsen, W., Willems,
D. & Feijs, L. Designing the Internet of Things for Learning En-
vironmentally Responsible Behaviour. Interactive Learning Envi-
ronments, Taylor & Francis.

8. Niezen, G., Vlist, B.J.J. van der, Hu, J. & Feijs, L.M.G. (2012).
Using semantic transformers to enable interoperability between
media devices in a ubiquitous computing environment. In Rauti-
ainen, M. et al. (Eds.), Grid and Pervasive Computing Workshops,
Lecture Notes in Computer Science, Vol. 7096. pages 44–53. Springer
Berlin / Heidelberg.

9. Vlist, B.J.J. van der, Niezen, G., Hu, J., & Feijs, L. (2011). De-
sign semantics of connections in a smart home environment.
Creation and Design, 13(2) p.p. 18–24.

10. Vlist, B.J.J. van der, Niezen, G., Hu, J., & Feijs, L.M.G. (2011)
Interaction Primitives: Describing Interaction Capabilities of Smart
Objects in Ubiquitous Computing Environments. IEEE Africon 2011,
September 13–15, Livingstone, Zambia.

11. Kwak, M., Niezen, G., Vlist, B. van der, Hu, J., & Feijs, L.
(2011). Tangible interfaces to digital connections, centralized versus
de- centralized. In Z. Pan, A. Cheok, W. Mueller, and X. Yang
(Eds.), Transactions on edutainment V (Vol. 6530, p. 132–146).
Springer Berlin / Heidelberg.

12. Hu, J., Vlist, B.J.J. van der, Niezen, G., Willemsen, W., Willems,
D. & Feijs, L. (2011) Learning from Internet of Things for Improving
Environmentally Responsible Behavior. In M. Chang et al. (Eds.),
Edutainment 2011, LNCS Vol. 6872, pp. 292–299, Springer-Verlag,
Berlin / Heidelberg.

13. Willemsen, W., Hu, J., Niezen, G. & Vlist, B.J.J. van der
(2011). Using Game Elements to Motivate Environmentally Respon-
sible Behaviour. Proceedings of IADIS Game and Entertainment

Technologies 2011 (GET 2011), Rome.

14. Vlist, B.J.J. van der, Niezen, G., Hu, J., & Feijs, L.M.G. (2010).
Design semantics of connections in a smart home environment. In L.-
L. Chen, T. Djajadiningrat, L. Feijs, S. Kyffin, D. Steffen, & B.
Young (Eds.), Proceedings of design and semantics of form and move-
ment (DeSForM) 2010 (p. 48–56). Lucerne, Switzer-land: Konin-
klijke Philips Electronics N.V.

15. Vlist, B.J.J. van der, Niezen, G., Hu, J., & Feijs, L.M.G. (2010).
Semantic connections: Exploring and manipulating connections in
smart spaces. In Computers and Communications (ISCC), 2010

IEEE Symposium on (pp. 1–4). Riccione, Italy: IEEE.

16. Niezen, G., Vlist, B.J.J. van der, Hu, J. & Feijs, L.M.G. (2010).
From events to goals: supporting semantic interaction in smart envi-
ronments. Proceedings of the Computers and Communications
(ISCC), 2010 IEEE Symposium on, (pp. 1029–1034). IEEE.

S U M M A RY

O N T O L O G I E S F O R I N T E R A C T I O N

enabling serendipitous interoperability in smart

environments

The thesis describes the design and development of an on-
tology and software framework to support user interaction in
ubiquitous computing scenarios. The key goal of ubiquitous
computing is “serendipitous interoperability”, where devices
that were not necessarily designed to work together should be
able to discover each other’s functionality and be able to make
use of it. Future ubiquitous computing scenarios involve hun-
dreds of devices. Therefore, anticipating all the different types
of devices and usage scenarios a priori is an unmanageable
task.

An iterative approach was followed during the design pro-
cess, with three design iterations documented in the thesis. The
work was done in close cooperation with designers and other
project partners, in order to elicit requirements and maintain a
more holistic view of the various application areas.

The thesis describes an interaction model that shows the var-
ious concepts that are involved in user interaction in a smart
space, including how these concepts work together. Based in
the interaction model, a theory of semantic connections is intro-
duced that focuses on the meaning of the connections between
the different entities in a smart environment.

Ontologies are formal representations of concepts in a do-
main of interest and the relationships between these concepts.
They are used to enable the exchange of information without
requiring up-front standardisation. The ontology described in
the thesis helps developers to focus on modelling the interac-
tion capabilities of smart objects and inferring the possible con-
nections between these objects, making it easier to build smart
objects and enable device interoperability on a semantic level.

Rather than just describing the low-level hardware input event
that triggered an action, interaction events in the ontology are
modelled as high-level input actions which report the intent of
the user’s action directly. This allows developers to write soft-

xxv

ware that respond to these high-level events, without having
to support every kind of device that could have generated that
event. The event hierarchy can be inferred using semantic rea-
soning.

The software architecture implements the publish/subscribe
messaging paradigm, enabling smart objects to subscribe to
changes in data, represented in triple form, and be notified ev-
ery time these triples are updated, added or removed. Semantic
reasoning is performed on an information broker, simplifying
the implementation on the smart objects.

A pilot deployment, composed of heterogeneous smart ob-
jects designed and manufactured by a range of companies and
institutions, was used to validate the design. A performance
evaluation was performed, where the results indicated accept-
able response times for a networked user interface. A usability
analysis of the ontology and system implementation was per-
formed using a developer questionnaire based on an existing
usability framework. Various ontology design patterns were
identified during the course of the design, and are documented
in the thesis.

The resulting design artefact is an ontology for user interac-
tion with devices in a smart environment, where devices are
able to share interaction events and make use of each other’s
functionality.

S A M E N VAT T I N G

Dit proefschrift beschrijft het ontwerp en de ontwikkeling van
een ontologie en software raamwerk ter ondersteuning van ge-
bruikersinteractie in ubiquitous computing scenario’s. De kern
van ubiquitous computing is “serendipitous interoperability”,
waarbij apparatuur die niet noodzakelijkerwijs ontworpen is
om samen te werken, in staat zou moeten zijn om elkaars func-
tionaliteit te ontdekken en te gebruiken. In toekomstige ubiqui-
tous computing scenario’s zijn honderden apparaten betrokken.
Daarom is het op voorhand overzien van de verschillende types
apparaten en gebruikersscenario’s een onhanteerbare opgave.

In het ontwerptraject is een iteratieve aanpak toegepast, waar-
van er drie ontwerpiteraties in het proefschrift gedocumenteerd

xxvi

staan. Het werk is gedaan in nauwe samenwerking met ontwer-
pers en andere projectpartners, om ontwerprichtlijnen te extra-
heren en een holistische kijk op de verschillende toepassingsge-
bieden te waarborgen.

Het proefschrift beschrijft een interactiemodel dat de verschil-
lende concepten met betrekking tot gebruikersinteracties in een
intelligente omgeving laat zien, inclusief hoe deze concepten
onderling samenwerken. Gebaseerd op het interactiemodel, is
een theorie geïntroduceerd die zich richt op de betekenis van
de verbindingen tussen de verschillende entiteiten in een intel-
ligente omgeving.

Ontologieën zijn formele beschrijvingen van concepten in een
bepaald interessegebied en de verhoudingen tussen deze con-
cepten. Ze worden gebruikt om informatie uit te wisselen zon-
der een voorafgaande standaardisatie te vereisen. De ontolo-
gie beschreven in dit proefschrift helpt ontwikkelaars zich te
richten op het modelleren van de interactiemogelijkheden van
intelligente objecten en het uitzoeken van de mogelijke verbin-
dingen tussen de objecten, wat het vergemakkelijkt om intelli-
gente objecten te ontwikkelen en mogelijk maakt de apparaat-
interoperabiliteit op niveau van semantiek te benaderen.

In plaats van het beschrijven van een invoergebeurtenis via
de hardware, die op een laag niveau een actie in werking zet,
zijn de interactiegebeurtenissen in de ontologie omschreven als
input actie op een hoger abstractie niveau waarbij de inten-
tie van de gebruiker direct gerapporteerd wordt. Dit maakt
het mogelijk voor ontwikkelaars om software te schrijven die
reageert op de input acties op hoog niveau, zonder onderste-
uning te vereisen voor alle mogelijke typen apparaten die de
actie gegenereerd zouden kunnen hebben. De hiërarchie van
gebeurtenissen kan automatisch worden afgeleid met behulp
van semantische beredenering.

De software architectuur implementeert het zogenaamde pub-
lish/subscribe communicatie model, waarbij intelligente objec-
ten veranderingen in data kunnen aanmelden, welke is weer-
gegeven in triple formaat, en een notificatie ontvangen, iedere
keer dat de triples zijn bijgewerkt, toegevoegd of verwijderd.
De semantische beredenering wordt uitgevoerd door een infor-
matieonderhandelaar (information broker), wat de implemen-
tatie voor de intelligente objecten vergemakkelijkt.

Een testopstelling, samengesteld uit ongelijksoortige intelli-
gente objecten ontwikkeld door verscheidene bedrijven and in-
stituten, is gebruikt voor validatie van het ontwerp. De presta-

ties van de implementatie zijn geëvalueerd, met als resultaat
een indicatie van een acceptabele reactietijd voor een genet-
werkte gebruikersinterface. Een gebruikersanalyse van de on-
tologie en systeemimplementatie is uitgevoerd met ontwikke-
laars, waarbij een vragenlijst is gebruikt die gebaseerd is op een
bestaand bruikbaarheidsraamwerk. Uiteenlopende ontwerp pa-
tronen voor ontologieën zijn geïdentificeerd tijdens ontwerp-
proces, en zijn gedocumenteerd in het proefschrift.

De resulterende uitkomst is een ontologie voor gebruikersin-
teractie met apparaten in een intelligente omgeving, waar ap-
paraten de mogelijkheid hebben om interactiegebeurtenissen te
delen en gebruik te maken van elkaars functionaliteit.

Part I

F R A M I N G T H E P R O B L E M A N D
C U R R E N T S TAT E - O F - T H E - A RT

In this first part of the thesis, we introduce the prob-
lem that was addressed. Related work is also de-
scribed, showing the different aspects of the work
that were considered.

1
I N T R O D U C T I O N

The real problems going forward are not with any single device,
but in the potential complexity of the larger ecosystem of

technologies that we function in. [...] It’s about the society
of appliances and how they work today which is the new frontier.

— Bill Buxton [20], HCI researcher and designer
Parts of this chapter
appear in [80] and
[81].

When trying to share music or photos between your mobile
phone and that of a friend, making the connection between the
two devices is not always straightforward. You need to select
the appropriate communication technology and identify the
target device from a list of possible options. Manufacturers of-
ten only allow sharing between devices that form part of their
own ecosystem, where devices from other manufacturers may
be incompatible with this ecosystem. In the future there could
be hundreds of devices in your immediate surroundings, and
these devices, created by different manufacturers, will need to
work with another.

What if we want to share more than just media, or want
to use one device to control another? As an example, imagine
connecting a sleep monitor to the lamp on your bedside table,
helping you to wake up at the right time in your sleep cycle.
This thesis focuses on ways to create meaningful connections
between devices, based on the functionality of the devices. We
develop techniques for designers and developers to describe
the capabilities of devices, such that the content and function-
ality can be shared with other devices. We also make use of
different types of feedback to indicate what the possibilities for
interaction are, as well as making the events that occur within
this system of networked objects more transparent. Mark Weiser [122]

coined the term
ubiquitous
computing,
sometimes seen in
its shortened form
as “ubicomp”.

Key to realising the vision of ubiquitous computing [122] is
“serendipitous interoperability”, where devices which were not
necessarily designed to work together should be able to dis-
cover each other’s functionality and be able to make use of it
[2]. Future ubiquitous computing scenarios involve hundreds
of devices, appearing and disappearing as their owners carry
them from one room or building to another. Therefore, antici-
pating all the different types of devices and usage scenarios a
priori is an unmanageable task.

3

4 introduction

Next to serendipitous interoperability, another enabling strat-
egy of ubiquitous computing is to make technologies — as from
a user’s perspective they are still dealing with technologies —
disappear, and “weave themselves into the fabric of everyday
life until they are indistinguishable from it” [122]. To reach this
goal, self-configuration of the various devices and technologies
in ubiquitous computing environments is essential. Whether
automated and initiated by context-aware entities, or initiated
by users by connecting the devices to one another, the actual
configuration of the various components at a lower level should
happen automatically.

1.1 background

1.1.1 Multi-device user interaction

As computers disappear into the environment, we will need
new kinds of human-computer interactions to deal with the pe-
culiarities of these smart environments, which include invisible
devices, implicit interaction, and distinguishing between physi-
cal and digital interactions [128]. In the conventional Graphical
User Interface (GUI) genre, designers have typically developed
prepackaged solutions for a predetermined interaction space,
forcing users to adapt to their specific interaction protocols and
sequences. In ubiquitous computing environments, the interac-
tion space is unpredictable and emerges opportunistically [26].
There is the risk of creating a mismatch between the system’s
model of interaction and the user’s mental model of the sys-
tem. In these conditions, new interaction techniques must be
devised to help users to construct helpful mental models, in
order to minimise system and user model mismatches. These
interaction techniques should also match the context of use that
is dynamic and unpredictable.

If we are able to connect smart devices to one another effort-
lessly, it becomes possible to support high-level services, that
would usually involve multiple steps on multiple devices [97].
From a user’s point of view, streaming music from a mobile
device to a home entertainment system is a single high-level
task. In practice there are multiple steps involved, and if the de-
vices involved are from different manufacturers, the user needs
to learn the operational details of each device interface in or-
der to perform the task. From a technical perspective Universal
Plug and Play (UPnP) with its device control protocols [114] is

1.1 background 5

not considered an adequate solution, because it only provides
static device description documents and covers a very limited
number of use cases.

At home the average person interacts with many devices dur-
ing the course of a day. Sometimes these devices are used by
more than one person, or one device may be used as an inter-
face to another. As these devices are manufactured by different
companies, there exist many different user interfaces that must
be studied before they can be used. There might even be more
than one way to interact with a single device. For example, to
turn down the volume on a home entertainment system, either
a remote control or a volume dial on the entertainment system
itself may be used. It is expected that in future, more generic
tools will be used to discover, configure, connect and control all
the devices in the environment [76].

1.1.2 Configuring connections between devices

In a world where we are potentially surrounded by a multi-
tude of devices, allowing for the arbitrary ad hoc interconnec-
tion of devices, and the sharing of information between these
devices, is difficult. It is unreasonable to expect that a device
will have prior knowledge of all the different ways it can in-
teract with surrounding devices. The number of possibilities
are too large, and anticipating the potential number of interac-
tions is infeasible. If we could add meaning to the interactions
and interconnections in such a way that it is machine-readable,
semantic web technologies could be used to infer additional
properties about the existing entities. This could fill the gaps
between that which is described in terms of device capabilities,
and that which is possible in terms of combined functionality.
The user is still the final arbiter in deciding what the device
does, but the device should be capable of communicating the
possibilities based on what was inferred from its environment.

Besides the technological challenges, there also lies a chal-
lenge ahead for designing user interactions with these ecosys-
tems of interconnected devices. When moving away from inter-
action with a single device towards interactions with systems
of devices, designers need to communicate the relationships
between the devices, and the larger system they are part of.
Additionally, designers need to find ways to communicate the
action possibilities of new, “emergent functionalities” [44], that
emerge when devices are being interconnected.

6 introduction

An important problem that arises when designing for these
systems of interactive objects is their highly interactive and dy-
namic nature [44]. The inherent ever-changing nature of these
systems and the severely limited overview of the ecosystem in
its entirety is one of the most important challenges a designer
faces when designing for such systems. Additionally, such a
system comprises many different “nodes” that the designer, at
the time of designing has no control over. Yet, when designing
and adding new nodes to the system, making them interopera-
ble is crucial for success.

According to Newman et al. [76], the following should be
communicated to a user attempting to interact with and estab-
lish connections between devices:

• What devices and services are available

• Capabilities of the devices and services

• Relationships between each another and the environment

• Predictions of likely outcomes from interaction

The information presented to the user should be filtered dy-
namically, based on the user’s context. This context includes
for example the user’s location, interaction history, and cur-
rent tasks. A smart object is able to sense the context of its
surroundings, make use of this context and other information
to proactively interact with users and other smart objects, and
self-organise into groups with other devices [100]. This context
information should be represented in such a way that is under-
stood by all the entities in the system.

The background described in this section provides for inter-
esting design challenges and research questions that can be
asked. In the following section we will first discuss the context
of the work described in this thesis, followed by the research
questions that were addressed.

1.2 context of the work and research questions

The work described in this thesis was completed as part of a
European research project called Smart Objects For Intelligent
Applications (SOFIA)1. Some of the design choices were guided
by collaboration with partners in the SOFIA project. We worked

1 http://www.sofia-project.eu/

1.2 context of the work and research questions 7

with the project partners to elicit requirements and expose our-
selves to other application areas, in order to gain a more holistic
view of the problem.

1.2.1 The SOFIA project

SOFIA is an European research project within the ARTEMIS
framework that attempts to make information in the physical
world available for smart services — connecting the physical
world with the information world. The goal is to enable cross-
industry interoperability and to create new user interaction
and interface concepts, to enable users to benefit from smart
environments. The centre of the software platform developed
within SOFIA is a common, semantic-oriented store of informa-
tion and device capabilities called a Semantic Information Bro-
ker (SIB). Various virtual and physical smart objects, termed
Knowledge Processors (KPs), interact with one another through
the SIB. The goal is that devices will be able to interact on a
semantic level, utilising (potentially different) existing underly-
ing services.

The SOFIA software platform is based on the ideas of space-
based computing. A tuple space is a repository of tuples, where
a tuple is an ordered list of elements. Tuple-based computing
has been introduced in parallel programming languages to im-
plement communication between parallel processes [41]. Pro-
ducers send their data as tuples to the space, and consumers
read tuples from the space. This is also known as the black-
board metaphor.

Our focus within the SOFIA project was on the user interac-
tion aspects of devices in the smart home environment. While
most of the examples in this thesis are specific to the smart
home environment, the concepts are also applicable in the wider
context of ubiquitous computing, for example the smart city or
smart personal spaces. We now consider the context of the work
in terms of the vision of ubiquitous computing.

1.2.2 Ubiquitous computing

The vision of ubiquitous computing describes a future where
electronic devices are so ubiquitous that their presence is not
noticed anymore. As described earlier in this chapter, we con-
sider the enabling technological strategies of ubiquitous com-

8 introduction

puting to be serendipitous interoperability and making tech-
nologies disappear.

Chalmer and MacColl [23] questioned the more recent as-
sumption in ubiquitous computing research that devices should
disappear into the environment, reiterating Weiser’s original vi-
sion that tools for interaction should be “literally visible, effec-
tively invisible”. There is a difference between physical and cog-
nitive disappearance. Where the term physical disappearance
describes the trend of devices to be embedded into the environ-
ment, cognitive disappearance means that the user does not dis-
tinguish between the computer and the artefact anymore, but
focuses on the function of the artefact. Devices should retain
their unique characteristics, even when placed within systems
of devices. Users are influenced by how they perceive devices,
and we have to accept that the devices themselves are part of
the user’s context.

Ubiquitous computing products are a combination of hard-
ware, software and services. It is not clear what kind of skills
are required to design for this kind of environment [66]. There
is, however, a need for interaction designers and software de-
velopers to have a common vocabulary and framework when
cooperating to create these products. This thesis attempts to
move this idea forward, by defining common concepts that are
prevalent in most ubiquitous computing environments, and es-
tablishing a framework that can be used by both designers and
developers alike.

1.2.3 Affordances

In their article “At Home with Ubiquitous Computing: Seven
Challenges”, Edwards and Grinter [37] describes a scenario
where a couple come downstairs in the morning intent on lis-
tening to the radio, and realise that there is no sound coming
from their speakers. It turns out that the neighbours bought a
new set of Bluetooth-enabled speakers which, when installed,
associated themselves with the nearest sound source – the cou-
ple’s Bluetooth-enabled stereo.

The wireless nature of the speakers does away with the tra-
ditional affordances making connections between the speakers
and the stereo. These affordances are explicit when physical
wires are used - the connections can be observed and the range
of connectivity is clear. Edwards and Grinter state that the de-
sign challenge is to provide affordances that help users under-

1.2 context of the work and research questions 9

stand the technology, allowing them to control, use and debug
technologies that interact with one another in the environment.

Norman [85] defined affordances as the perceived and ac-
tual properties of an object, primarily those properties that de-
termine how an object should be used. The set of action pos-
sibilities of an object is based on its appearance, but also on
the actual interaction with that object. An affordance is a rela-
tionship between an object and the person acting on the object,
such that the same object might have different affordances for
different individuals. The term was originally created by the
psychologist J.J. Gibson to describe human perception [50], but
was extended by Norman for its application to design.

1.2.4 Ontologies

The current state of ubiquitous computing is similar to that of
desktop computing in the 1970s, where there is a whole range
of new technologies without metaphors to communicate how
they operate. The question then becomes how we then can
model a device, not only in terms of its technical characteris-
tics or capabilities, but also in terms of user interaction and
feedback, where metaphors, functionality and affordances play
an important role.

One possible solution to modelling devices is to make use
of ontologies, a concept in computer science most often asso-
ciated with the Semantic Web [12]. Ontologies are formal rep-
resentations of knowledge, consisting of various entities that
are related to one another. They provide a shared vocabulary,
which makes it easier to publish and share data. Ontologies al-
low us to model a domain in terms of its concepts, and the rela-
tionships between these concepts. They are also both machine-
readable and human-understandable.

Ontologies are well suited to environments with a large num-
ber of devices. They have been designed to work at Web scale,
they enable heterogeneous data sources to interoperate with
one another, and they are based on technology standards which
allow for easy and large scale adoption [100].

Ontologies lend themselves well for describing the charac-
teristics of devices, the means to access such devices, and other
technical constraints and requirements that affect incorporating
a device into a smart environment [2]. Using an ontology also
simplifies the process of integrating different device capability

10 introduction

descriptions, as a semantic inferencing engine can be used to
infer relationships between the concepts in the descriptions.

1.2.5 Research questions

The hypothesis of this thesis is that user interaction in a smart
environment can be better supported by ontological models than with
existing device and service descriptions (e.g. descriptions stored in
relational databases). These ontological models define a seman-
tic mapping between the user’s behaviour and the available
resources in the environment.“The greatest

challenge to any
thinker is stating
the problem in a

way that will allow
a solution.” –

Bertrand Russell

The thesis aims to answer a number of research questions.
In the previous section, ontologies were offered as a potential
solution to solving the interoperability problem in ubiquitous
environments. They are also well suited to describing user in-
teraction in such an environment. This leads us to the first ques-
tion:

Research question 1. How can we use an ontology to model user
interaction and devices in a smart environment consisting of multiple
devices and multiple interactions?

Related work on ontologies [24, 94, 77], described in more
detail in the next chapter, focused mainly on modelling con-
text and basic device properties. The ontologies created as part
of the work described in this thesis is not only an attempt to
model device capabilities in more detail, but to our knowledge
is also the first attempt to model user interaction in a smart
environment.

In the SOFIA project, KPs communicate with a message broker
using the blackboard architectural pattern, where the message
broker contains a common knowledge base. This knowledge
base, consisting of a triple store and an ontology, is used to
share information between the various knowledge sources.

Research question 2. How suitable is the blackboard architectural
pattern for handling ontology-based ubiquitous computing environ-
ments?

Suitability is defined in terms of user interaction, where the
performance of the combination of a triple store, semantic rea-
soning and the blackboard architectural pattern is evaluated in
terms of responsiveness.

The advantage of a blackboard architecture is that it decou-
ples reference, time and space [41]. Communicating processes

1.3 methodology 11

do not need to explicitly know each other, i.e. reference-wise
they are decoupled. The blackboard guarantees persistent stor-
age, such that communication can be asynchronous and decou-
pled time-wise. As long as they have access to the same black-
board, processes can run anywhere, decoupling them space-
wise. We can compare the performance of our implementa-
tion against related work on blackboard-based architectures for
ubiquitous computing environments [126, 38].

If we make use of a triple store and ontology, a semantic rea-
soning engine is required to perform inferencing on the knowl-
edge base of asserted triples. If triples are frequently inserted
and removed, the time required for inferencing could have an
adverse effect on the responsiveness of the user interface.

Research question 3. How responsive is a networked user interface
that is implemented on top of a system architecture with a semantic
reasoning engine?

Some work has been done to measure the usability of Appli-
cation Programming Interfaces (APIs) for developers [98]. How-
ever, we do not have a way to evaluate the usability of software
frameworks and ontologies for ubiquitous computing environ-
ments from a developer point-of-view.

Research question 4. How can we measure the usability of ontolo-
gies and software frameworks for developers of ubiquitous computing
environments?

Feedback is required to help the user make sense of what
is happening in the environment. When we consider multiple
interconnected smart objects, feedback and feedforward gets
spatially distributed.

Research question 5. How should feedback be provided in a net-
worked user interface consisting of multiple connected devices?

1.3 methodology

An iterative design methodology [68] was followed for the work
described in this thesis. This cyclic process, shown Figure 1, con-
sists of three steps – design, implementation and evaluation –
where the results of the previous iteration are used as input for
the next iteration. Iterative design is commonly used in the de-
velopment of human-computer interfaces, but applies to many
fields, including industrial design and software engineering.

12 introduction






Figure 1: Iterative design methodology





 






































Figure 2: The research approach used in the thesis

The research described in this thesis can be aligned to the tri-
angulation framework of Mackay and Fayard [71], as shown in
Figure 2. This framework integrates scientific and design mod-
els, by combining the deductive and inductive approaches with
the design approach. With the deductive approach, research
originates from theory, whereas with the inductive approach
the research originates from observations. With the design ap-
proach, designers and engineers use guidelines and require-
ments as input to iterative prototypes used to construct a final
product.

The framework shows how the design iterations are related
to the constructed theories and models, as well as the evalua-
tions and observations. The framework provides a roadmap of
the work described in this thesis, where the relevant chapters
are indicated in the figure.

1.4 outline of the thesis 13

1.4 outline of the thesis

In the remainder of Part A the related work, including relevant
research projects, is discussed. Existing state-of-the-art ontolo-
gies for ubiquitous computing environments and context-aware
systems are described, followed by a description of the various
interaction models, task models and semantic models that were
used as basis for our own interaction model.

An iterative approach was followed during the design pro-
cess. Part B describes the three design iterations, detailing the
requirements, design, implementation and evaluation processes.
A theory of semantic connections is introduced, based on the
output from the design iterations, that focuses on the meaning
of the connections between the different entities in a smart envi-
ronment. It is intended to enable interaction designers and de-
velopers to create interoperable smart objects, providing them
with a common vocabulary and framework. The SOFIA software
architecture was taken as a departure point during each of the
design iterations described in Part B. The various extensions
and changes to the reference architecture are described in more
detail in each design iteration description.

From the work done, concepts and techniques that can be
applied to ubiquitous computing in general were discovered.
These concepts and techniques were extracted from the design
iterations and are discussed in more detail in Part C, to exist
independently of the design iterations. Our approach to mod-
elling the interaction capabilities of smart objects is described,
which builds on earlier ontologies for context-aware systems.
Another contribution of this thesis is in the way interaction
events are modelled, utilising existing event modelling tech-
niques to describe user interaction in smart environments. On-
tology design patterns that were identified and used during
the course of the design are documented. A proposed software
architecture to be used in future ubiquitous computing scenar-
ios, based on the work done within SOFIA, is described. This is
followed by an evaluation of the work, which includes a perfor-
mance evaluation and usability analysis.

2
R E L AT E D W O R K

The old computing was about what computers could do; the new
computing is about what users can do. Successful technologies

are those that are in harmony with users’ needs. They must
support relationships and activities that enrich the users’

experiences.

— Ben Shneiderman [111], computer scientist

In this chapter we describe related work. The work can be re-
lated in several ways, depending on which aspect of the work
is considered. Therefore the chapter is subdivided into five sec-
tions, each devoted to one aspect. These are related projects
and frameworks (Section 2.1), ubicomp ontologies (Section 2.2),
user interface software architectures (Section 2.3), modelling in-
put devices (Sections 2.4) and semantic models (Section 2.5).

2.1 related projects and frameworks

In the field of ubiquitous computing there are a substantial
number of past and current projects and relevant software frame-
works that exist, most of them in the area of context-aware com-
puting. In the following sections we will focus on those projects
that are the closest in scope to the issues that are addressed by
the work described in this thesis:

• Serendipitous interoperability, as addressed by the recom-
binant computing approach of the SpeakEasy project

• Sharing information between devices, as addressed by the
EventHeap shared event system and its tuple space protocol

• Using one device to control another, as addressed by the
opportunistic assemblies of the XWeb architecture

• Multi-device user interaction, as addressed by the Media
Cubes of the AutoHAN project

• Configuring connections between devices, as addressed
by the plug-synapse model of the e-Gadgets project

15

16 related work

2.1.1 SpeakEasy (circa 2000-2003)

We cannot expect all devices to have a priori knowledge of
all the other devices they might possibly be connected to. We
can, however, expect users to have knowledge about the de-
vices they might encounter in their environment. Even if my
smart phone does not know how to communicate with a spe-
cific printer, the software infrastructure could provide the nec-
essary technical building blocks to allow them to communicate.
The user understands what a printer does and makes the deci-
sion to connect the smart phone to the printer, as well as what
to print.

This line of thinking was a starting point for Newman et al
[76], who developed an approach which they named recombi-
nant computing, used in the SpeakEasy project at Xerox PARC.
With this approach components are designed with the thought
that they may be used in multiple ways, under different circum-
stances and for different purposes. Components expose recom-
binant interfaces that are simple, domain-independent program-
matic interfaces governing how components can interoperate
with one another.

The SpeakEasy project focused on what users might be trying
to accomplish in a specific situation when connecting entities to
one another. Possible examples include connecting devices in
order to give a presentation, or in order to send contact infor-
mation. They created templates of common tasks that contained
a partially specified set of connections and entities, which could
be fully specified and instantiated by users at run-time. An in-
stantiated template was then added to a list of current tasks. It
was noted that templates impose a layer of semantics on top of
the raw infrastructure. Templates assisted users by constraining
the available component choices to only those that were appro-
priate for the task at hand. For example, a template could be
partially specified as

• Task name: Give a presentation

• Connection: File -> Projector

• File name: Choose..

• Projector: Choose..

where the user can then specify the name of the file, for ex-
ample a Powerpoint presentation, as well as the projector in the
room from a list of possibilities.

2.1 related projects and frameworks 17

The SpeakEasy environment consisted of a web application
that allows users to browse for components, which can be viewed
and organised in different ways, for example grouped by loca-
tion or owner. The work described in this thesis takes a different The e-Gadgets

project in Section
2.1.5 also made use
of a web application
to configure
components.

approach to configuring components, by using tangible interac-
tion techniques instead of GUI-based interaction.

What can be learned from the SpeakEasy project is the im-
portance of describing the interfaces of components, such that
they can be combined with other components. These interface
descriptions help to enable serendipitous interoperability, and
are described in more detail in Chapter 7.

2.1.2 EventHeap (circa 2000-2005)

Stanford University’s shared event system, called the EventHeap,
provides a base set of capabilities that link devices in a room
[126]. It allows users to move data and applications between
areas, for example redirecting a pointer from one device to an-
other. One of these devices, the DynaWall, is a wall-size touch- We explored similar

interaction
techniques during
the development of
the Spotlight
Navigation device,
see Section 4.3.3
and [95].

sensitive interactive display. Gesture-based interaction facilitates
moving information objects from the wall from one side to an-
other, by throwing and shuffling visual objects with different
accelerations and sounds.

During the development of their system, they identified the
following design guidelines:

• Heterogeneity - Devices must be able to interoperate in
spite of heterogeneity in software. Interfaces must be cus-
tomised to work smoothly on different-sized displays with
different input/output modalities.

• Dynamism - A software framework must handle applica-
tions and devices joining and leaving, while minimising
the impact on other entities in the space.

• Robustness - Users will treat the devices in interactive
workspaces as appliances that should not fail in inexpli-
cable ways. Devices must provide for quick recovery.

• Interaction techniques - A long, large wall needs an inter-
action technique suited to its size and location (such as
DynaWall’s throwing and shuffling technique).

Tuple spaces were
first discussed in
Section 1.2.1.

Devices in EventHeap use a tuple space protocol to communi-
cate with one another, where particular tuples have meaning to

18 related work

certain parties [37]. This semantic agreement between parties is
implemented by the developer, for example a tuple represent-
ing a request to scan an image.

The iStuff toolkit [5] was developed within Stanford to ex-
plore post-GUI interaction techniques, and makes use of the
EventHeap system. The iStuff toolkit allows users to map wire-
less input devices like buttons, sliders, wands, speakers and
microphones to different applications running on devices like
the DynaWall.

Patch Panel [6] is a mechanism in the iStuff toolkit that tries
to solve incremental integration, the problem of integrating new
devices and applications that may not have a priori knowledge
of each others existence or function. Patch Panel uses an ap-
proach called intermediation, with a decoupled communication
model (such as publish/subscribe) for inter-component com-
munication. Patch Panel uses a set of mappings between trig-A similar decoupled

model was used for
the work described

in this thesis.

gers and output events to enable intermediation. These map-
pings are defined using the Patch Panel Manager GUI or Finite
State Machine (FSM)-based scripting language, and users con-
figure connections using a web-based configuration wizard.

Existing toolkits like iStuff do not provide support for the as-
sociation of high-level semantics to physical objects [105]. While
our approach to sharing information between devices is similar
to that of EventHeap and Patch Panel, it differs in in the follow-
ing ways:

• We use ontologies to describe device capabilities and in-
teraction events

• We use semantic reasoning to improve interoperability be-
tween devices

• Tangible interaction is used instead of GUI-based interac-
tion to configure connections

2.1.3 The XWeb architecture (circa 2001-2003)

The goal of the XWeb architecture is to allow for opportunistic
assemblies of interactive resources in order to accomplish a par-
ticular task. Olsen et al [89] recognised that both an interactive
model for acquiring and using the interaction resources, as well
as an underlying infrastructure is needed. In their model, each
interaction resource resolves user intent independently, instead
of merging inputs from a variety of modalities.

2.1 related projects and frameworks 19

A client-server architecture was used to create the infrastruc-
ture, with Extensible Markup Language (XML) objects used to
model resources and services. Tasks were defined using a two-
part Uniform Resource Locator (URL) in the form dataReference-
::viewReference, where the view is an abstract definition of a
particular interaction. These views are defined as a tree of inter-
actors, where the data and the view of the current task as well
as the path of the interactor is used to characterise the current
state of the device.

XWeb uses a subscribe mechanism to allow multiple clients
to share their information, where the devices themselves are
not aware of each other but can still be integrated into the same
task. The problem that is addressed is that the different devices
can be connected without requiring a lot of configuration effort
from the user.

Pierce and Mahaney [91] extended the XWeb approach to
opportunistic assemblies with opportunistic annexing, which is
is the process of temporarily attaching one or more resources,
like a speaker or a keyboard, to a device in order to enhance
its capabilities. Opportunistic annexing differs from the other
approaches in this section in that it extends the existing capa-
bilities of devices, instead of assembling heterogeneous devices
into a larger, aggregate device.

Pierce and Mahaney expect that the primary benefit of an-
nexing input resources will be faster input rates. This means
that the actual annexing action should be faster than the time
required to perform the action. For example, if a user will save
5 seconds by typing a note on a keyboard rather than on a mo-
bile device, annexing the keyboard to the mobile device should
take less than 5 seconds.

In our approach we go beyond XML-based descriptions to
modelling resources and services, by using ontologies to de-
scribe devices, and performing semantic reasoning to discover
the different ways these devices can be connected to one an-
other.

2.1.4 AutoHAN (circa 2001)

AutoHAN is a networking and software architecture to enable
user-programmable specification of interaction between appli-
ances in a home environment [15]. It tries to solve the issue of
potential complexity between digital devices that interact with
each other, especially if these devices are manufactured by dif-

20 related work

ferent companies (as it is the user who has to specify how they
will interact with one another).The representations

of AutoHAN’s
abstractions are

notational systems,
validated by the

Cognitive
Dimensions

framework
discussed in more

detail in Section
11.2.2.

Blackwell distinguishes between two different abstractions
that users have to consider [15]:

• Abstraction over time, where an appliance has to do some-
thing in the future, for example recording a TV programme

• Abstraction over a class of entities, where the user is refer-
ring to a set of entities, for example a music playlist

Within the AutoHAN project the Media Cubes language was
created — a tangible representation of an abstract situation.
Each cube has a button for input, and a LED and piezo-electric
transducer for feedback. Cubes communicate with the Auto-
HAN network via infrared ports, and use induction coils on
four faces of the cube to detect proximity to other cubes. By
holding one face of a cube against an appliance, the cube can be
associated with some function of that appliance. Each individual
cube is regarded by the user as a direct manipulation interface
to some appliance function, where many different devices may
implement this function. This is in contrast to a remote control,
that is dedicated to a single appliance but provides access to
many different functions.The cubes of the

AutoHAN project
can be viewed as a

forerunner to the
cubes used with our

Interaction Tile
(described in

Section 3.3.1),
except that the

AutoHAN cubes
represent tasks,

whereas the
Interaction Tile
cubes represent

devices.

Each cube has a unique identifier, and each face of the cube
can also be identified. This means that a combination of cubes
and neighbouring faces can be used as a type of programming
language. Cubes may also be associated with virtual devices:
software components running somewhere on the network. The
user regards these virtual devices to be the same as physical ap-
pliances that are placed in the broom cupboard, like a network
router or home server.

AutoHAN devices communicate using UPnP Generic Event
Notification Architecture (GENA). UPnP control points and ser-
vices use GENA to implement eventing. GENA is a publish/sub-
scribe system that uses HTTP as transport mechanism. Concep-
tually, UPnP control points are subscribers, while UPnP services
are publishers [62]. GENA defines three new HTTP methods to
manage event subscriptions and deliver messages:

• SUBSCRIBE to subscribe to event notifications and renew
existing subscriptions

• UNSUBSCRIBE to cancel a subscription

• NOTIFY to send an event notification to a subscriber

2.1 related projects and frameworks 21

AutoHAN entities make subscription requests to receive cer-
tain types of events. When such an event occurs, an HTTP NO-
TIFY request is sent by the AutoHAN server to the subscriber,
with additional parameters (such as which button on a control
panel was pressed) are encoded in the GENA Notification sub-
type or in the message body.

Two alternative programming paradigms were considered
for the Media Cubes language - an ontological paradigm and a lin-
guistic paradigm. In the ontological paradigm, tokens represent
“natural categories” in the user’s mental model. Concepts were
identified which have a close correspondence between prim-
itive remote control operations, appliance functions, capabili-
ties and user skills, representing a primitive ontology of home
automation. These abstract types were incorporated into four
types of cubes:

• An Event cube (“on”/“off”, “go”/“stop”) to represent a
change of state, such as a sensor activation (e.g. a door-
bell) or automated function (e.g. alarm clock). “Go” and
“on” is functionally identical, but labeled separately to
help users reason about equivalence between events and
processes.

• A Channel cube can be used to associate a media chan-
nel/stream with a media source, and direct the stream to
a media sink.

• An Index cube selects content from a channel and can be
associated with particular index values, to select content
that matches that value.

• An Aggregate cube allows the user to refer to abstract col-
lections rather than individual instances.

In the linguistic paradigm, cubes represent words in a lan-
guage, for example a single face of a cube may be labelled
Clone. When this face is placed against another cube face and
activated, the second face takes on the identity and function of
the first. A List cube has three active faces: Add Item, Remove
Item and Contents.

In our approach we try to improve on the ontological para-
digm used in the AutoHAN project, by expanding on how the
events and channels/connections are modelled. In addition to
the publish/subscribe approach used in AutoHAN, we make
use of a blackboard architectural pattern to share information
between devices.

22 related work

2.1.5 e-Gadgets (circa 2004)

The e-Gadgets1 project was a European project within the Dis-
appearing Computer initiative2. An architectural style, called
Gadgetware Architectural Style (GAS), was developed for de-
vices to communicate with one another. To evaluate GAS, a sup-
porting infrastructure and computationally enhanced artefacts,
called e-Gadgets, were created.

Mavromatti et al. [73] developed an approach to allow users
to treat these e-Gadgets as reusable components which can be
connected to one another. They defined the following require-
ments for such a system:

• Devices should interoperate via a universal system archi-
tecture that accommodates existing communication tech-
nologies, e.g. WiFi and Bluetooth.

• Tools and interfaces should allow people to control de-
vices and services. These can either be contained within
existing devices or created for a specific purpose.

• Invisible connections will exist between the different phys-
ical and virtual devices. Tools must visualise this device
structure, make device states visible, explain device func-
tionality and help people to manage the inter-device asso-
ciations.

The GAS defines a set of concepts and rules in an ontology,
a middleware, a methodology and a set of tools that enable
people to compose distributed applications using services and
devices in an ubiquitous computing environment. At the con-
ceptual level, GAS specifies a plug-synapse model, where device
capabilities are visualised in the form of plugs. Plugs can be
associated with one another, creating synapses between devices.

Plug descriptions are defined in XML, using a DAML+OIL
ontology, and linked to a unique device identifier. DAML+OIL,
a combination of the DARPA Agent Markup Language (DAML)
and Ontology Inference Layer (OIL) markup languages, has been
superseded by Web Ontology Language (OWL).

Synapses and plugs are viewed and modified using an GUI
editor. A concept evaluation, using a usability testing approach,
was performed with the editor to test the comprehensibility of

1 http://extrovert-gadgets.net/
2 http://www.disappearing-computer.net/

2.2 ubicomp ontologies 23

the concepts and the willingness to use such a technology. The
Cognitive Dimensions (CD) framework was used to perform a
heuristic evaluation. This framework was also used an evalu-
ation of the work described in this thesis, and is discussed in
more detail in Section 11.2.2. Results from the evaluations in-
clude the following:

• Users will use their experience gained through a trial-and-
error process to bridge the gap between their intentions
and the feedback gathered through their actions.

• A device can be part of multiple in-home applications at
the same time. The effect from interacting with that device
is not clear based on physical appearance alone.

• A state change in one device could create a non-visible
state change on another device.

They also noted that the possibility to combine the function-
ality of devices opens up possibilities for emergent behaviour,
where the emergence results from how the devices are actually
used. The evaluation revealed that this can be confusing, as the
user has to guess what interfaces the system allows or does not
allow.

In our approach we use an OWL 2 ontology instead of DAML+-
OIL, and use a reasoning engine to perform semantic match-
ing of device capabilities. As already mentioned earlier in this
section, we tried to move beyond the traditional GUI-based ap-
proach to configure the connections between devices. We also
used different kinds of feedback and feedforward to make emer-
gent behaviour possibilities clearer for the user.

Apart from the projects and frameworks presented here, we
also want to look at the other aspects that are related to the
work described in this thesis. The rest of the chapter will intro-
duce ontologies considered to be state-of-the-art in ubiquitous
computing, as well as related user interface software architec-
tures, input device modelling methods and semantic models.

2.2 ubicomp ontologies

In this section we will look at the various ubicomp ontologies
that have been developed for context-aware computing. The on-
tologies described later in this thesis builds upon this existing
work, but with a stronger focus on interaction-related aspects.

24 related work

2.2.1 SOUPA (circa 2004)

Chen et al. [24] created Standard Ontology for Ubiquitous and
Pervasive Applications (SOUPA), a context ontology based on
OWL, to support ubiquitous agents in their Context Broker Ar-
chitecture (CoBrA). The ontology supports describing devices on
a very basic level (e.g. typical object properties are bluetoothMAC
or modelNumber), but it has no explicit support for modelling
more general device capabilities.

In SOUPA, an agent ontology is used to describe the actors in a
system, where actors include both human and software agents
or computing entities. A computing entity is characterised by
a set of mentalistic notions in the Belief-Desire- Intention (BDI)
model, such as knowledge, belief, intention and obligation. The
properties of a person agent includes basic profile informa-
tion, like name, gender, and age, as well as contact informa-
tion, which includes e-mail, phone number, mailing address
etc. SOUPA references several domain ontologies to achieve this,
for example Friend-Of-A-Friend (FOAF)3, one of the most well-
known ontologies, used to describe people, their activities and
relations to people and objects. SOUPA uses FOAF to express and
reason about a person’s contact profile and social connections
with other people.

SOUPA covers contexts in the office/campus environment, but
it has no explicit support for modelling general contexts in het-
erogeneous environments. We now look at the BDI model, and
the MoGATU BDI ontology used in SOUPA, in more detail.In personal

communication
with the author of

the MoGATU
ontology, he

mentioned that
MoGATU is not an

acronym, but the
name of his PhD

project.

2.2.2 BDI and the MoGATU ontology

The BDI model is a philosophical model of human practical rea-
soning originally developed by Michael Bratman [18], with a
number of successful implementations and applications in the
agent research community [19, 49]. It could be argued that the
BDI model is somewhat dated, as the principles of the archi-
tecture were established in the mid-1980s and have remained
essentially unchanged since then [48].

In a smart environment, we wish to infer a user’s intention
based on his/her context and interaction with the environment.
In BDI theory, a desire is the motivational state of an agent, with
a goal having the added restriction that multiple active desires

3 http://http://www.foaf-project.org/

2.2 ubicomp ontologies 25

must be consistent (e.g. concurrent desires of “going to a party”
and “staying at home” is not possible). A user’s intention is a
desire to which the user has committed. Plans are a sequence
of actions to reach a specific goal. We can therefore infer inten-
tion based on an action, or sequence of actions. When an agent
commits to a specific plan with subgoals based on a belief, or
informational state of the agent, it needs the capability to re-
consider these subgoals at appropriate times when the beliefs
change.

When the goals, plans, desires, and beliefs of different agents
are explicitly represented in an ontology, this information al-
lows them to share a common understanding of their “mental”
states, helping them to cooperate and collaborate. If we are able
to represent the human user’s mental states in the ontology, it
may help software agents to reason about the specific needs of
the users in a pervasive environment.

MoGATU BDI, an ontology developed by the same research
group that developed SOUPA at the University of Maryland
[129], describes an abstract semantic model for representing
and computing over a user’s or an agent’s profile in terms
of their prioritised and temporally ordered actions, beliefs, de-
sires, intentions and goals. SOUPA uses this model to help in-
dependent agents to share a common understanding of their
“mental” states, so that they can cooperate and collaborate. The
agents also help to reason about the intentions, goals, and de-
sires of the human users of a system.

2.2.3 Gaia (circa 2004-2007)

Ranganathan et al [94] developed an uncertainty model based
on a predicate representation of contexts and associated con-
fidence values. They incorporated this model into Gaia, a dis-
tributed middleware system for pervasive computing. Contexts
are represented as predicates, following the convention that the
predicate’s name is the type of context being described (such
as location, temperature, or time). This gives a simple, uniform
representation for different kinds of contexts. Some contexts
(such as office) are certain, whereas others (such as location
and activity) might be uncertain. Uncertainty is modelled by
attaching a confidence value between 0 and 1 to predicates. The
context model is represented using DAML+OIL.

While Gaia’s focus was on modelling the uncertainty of con-
text in ubiquitous computing environments, our focus is more

26 related work

on modelling the connections between devices in such an en-
vironment, as well as the interaction events that occur when
people operate these devices.

2.2.4 CAMUS (circa 2004-2005)

Ngo et al. [77] developed the Context-Aware Middleware for
Ubiquitous computing Systems (CAMUS) ontology in OWL to
support context awareness in ubiquitous environments. Their
device ontology is based on the Foundation for Intelligent Phys-
ical Agents (FIPA) device ontology specification4, with every
Device having the properties of hasHWProfile, hasOwner, has-
Service and hasProductInfo. Devices are further classified into
AudioDevice, MemoryDevice, DisplayDevice, or NetworkDevice.
For audio, the hasParameter property has the AudioParameter
class as range, with subclasses like ACDCParameter, Intensity
and HarmonicityRatio.

One of the major goals of context-aware computing is to pro-
vide services that are appropriate for a person at a particular
place, time, situation etc. In CAMUS, context entities and con-
textual information are described in the ontology as well [77].
For the entities related to agents, there is a top level concept
called Agent. It has been further subclassed into SoftwareAgent,
Person, Organization, and Group. Each Agent has a property
hasProfile associated with it, whose range is AgentProfile.
An Agent is also related through the isActorOf relationship to
an Activity.

There are some conceptual modelling issues with CAMUS,
for example having organisations and groups being direct sub-
classes of the Agent class. An issue that is not addressed by
CAMUS or the other ontologies is how to model user interaction,
which is the focus of the next section. We consider a number of
user interface software architectures that can be used to model
user interaction in a smart environment.

2.3 user interface software architectures

A user interface software architecture, also known as a User
Interface Management System (UIMS), creates a separation of
concerns between the user interface and the implementation
of a software application or system. Of these, the Model-View-

4 http://www.fipa.org/specs/fipa00091/SI00091E.html

2.3 user interface software architectures 27









Figure 3: The MCRpd model of Ullmer & Ishii for TUIs

Controller (MVC) model is currently the most used, and in-
spired Ullmer & Ishii’s [112] Model-Control-RepP-RepD (MCRpd)
interaction model for tangible user interfaces. Other UI soft-
ware architectures include the Arch/Slinky model [10] and the
Adapter, System, User, Real object (ASUR) interaction model.

2.3.1 Ullmer & Ishii’s MCRpd model

TUIs in general attempt to use the physical appearance of an ob-
ject to communicate its virtual affordances [11]. A user working
with a GUI only manipulates virtual objects, whereas TUIs allow
the user to manipulate both physical and virtual objects, which
coexist and share information with each other [105]. In a TUI,
the behaviour of a physical object is determined by the object’s
interactions with other physical and virtual objects - this is also
the case in a smart environment.

Ullmer and Ishii [112] extended the traditional MVC model
for TUIs, as shown in Figure 3. They distinguish between the
physical and digital domains by placing the physical domain
above the waterline, and the digital domain below the water-
line. The model element is carried over from the MVC model
and represents the intangible digital information. The control
element is also carried over from the MVC model, while the
view element is split into two subcomponents:

• Physical representations (Rep-p) – represents the physi-
cally embodied elements of tangible interfaces

• Digital representations (Rep-d) – represents the computa-
tionally mediated components of tangible interfaces with-

28 related work

out embodied form, for example video and audio, that
can be observed in the physical world

In a tangible interface, the physical representations (Rep-p)
are computationally coupled to the underlying digital informa-
tion (model), as well as perceptually coupled to the computa-
tionally mediated digital representations (Rep-d). The interac-
tion model introduced in Section 6.1 was inspired by the MCRpd
model.

2.3.1.1 Arch/Slinky model

Bass et al [10] contend that no single software architecture will
satisfy all the design goals of an interactive system. With the
Arch/Slinky model the buffering of a system from changes in
technology was selected as the most important criterion. Here
are some of the other design criteria they defined, which we
consider to be especially important to ubiquitous computing
systems:

• target system performance (e.g. size and speed)

• buffering from changes in application domain and hard-
ware platform

• conceptual simplicity

• target system extensibility

• compatibility with other systems

They define an application to be the total system that is devel-
oped for its end users, while the application domain is the field
of interest of, or reason for, the application. They also extended
the definition of UIMS to a User Interface Runtime System (UIRS)
- the runtime environment of an interactive application.

The Arch model creates a bridge between the physical in-
teraction device and the application domain. The following 5

components are defined:

• Interaction Toolkit Component - implements the physical
interaction with the user (also called physical level)

• Presentation Component - provides a set of implementa-
tion-independent objects, e.g. a “selector” object can be
implemented by both radio buttons or a drop-down menu
in a GUI (also called lexical level)

2.3 user interface software architectures 29

• Dialogue Component - does task-level sequencing and
maps between domain-specific and UI-specific formalisms
(also called dialogue level)

• Domain Adaptor Component - triggers domain-initiated
tasks, organises domain data, detects and reports seman-
tic errors (also called functional core adapter)

• Domain-specific Component - controls, manipulates and
retrieves domain data

The separation of functionality into the different components
was done to minimise the effects of changes in technology. The
Slinky meta-model is a generalisation of the Arch model, pro-
viding a set of Arch models with different weights assigned to
each component.

The difference between the Arch/Slinky model and our in-
teraction model is that the Arch/Slinky model relates a single
physical interaction device with a software application, while
our interaction model relates smart objects with one another
through semantic connections.

2.3.1.2 The ASUR interaction model

ASUR is a notation-based model to describe user-system inter-
action in mixed interactive systems [36] at design-time. It de-
scribes the physical and digital entities that make up a mixed
system. ASUR uses directed relationships to express physical
and digital information flows, as well as the associations be-
tween components.

Both components and relationships may have characteristics.
For components, this includes the location where the informa-
tion is perceived (e.g. top of table) and action/sense required
from the user (e.g. sight, touch or physical action). For relation-
ships, characteristics include the dimensionality of the informa-
tion (e.g. 2D or 3D) and the type of language used (e.g. text or
graphics).

A sequence of such entities and their relationships in an in-
teraction forms an interaction path. The interaction exchange
or action between elements in the path is conducted via one
or more interaction channels along which information or action
is communicated. An interaction channel may be described in
terms of its properties, either physical or digital depending on
the channel, e.g. a digital channel may be described in terms of
bandwidth, uptime and the nature of the connection. Adaptors

30 related work

are used transform information from the physical environment
to the digital world and vice versa. An accelerometer for exam-
ple may be modelled as a separate device, but if integrated into
smart phones it can be abstracted away as part of an interaction
path.

Interaction carriers are mediating entities that are necessary
for information communication. Passive carriers can carry and
store part of the information communicated along an interac-
tion path, e.g. a tangible object left in a particular position.
Active carriers are transmitters of non-persistent information
along the interaction path, e.g. a stylus used to transmit a pre-
cise position on a touch screen. Contextual entities are physical
entities involved in an interaction (e.g. a table), and are also
considered mediating entities.

The intended user model refers to what the user should know
about the interaction in order to carry it out successfully. It may
refer to one atomic interaction path (e.g. a channel, source and
destination), or it may refer to more complex paths.

An interaction group refers to a set of entities and channels
that together have properties that are relevant to a particular
design issue. Some of these groups will be applicable to any
design, while others will depend on the task and context:

• Entities and channels may be grouped for feedback, to iden-
tify an interaction flow that links the response of the sys-
tem to the actions of the user.

• User interface elements may be linked to application con-
cepts in order to express a semantic association. The goal
is to help the user to cognitively unify elements of the
group (helping to establish the intended user model).

• Sets of input (e.g. speech input for gesture input - “put
that there”) that must be combined to perform a certain
task, may be grouped for multimodal interaction.

• A grouping may be used to assert that a set of services
must reside on the same machine or be distributed over
multiple devices.

• A grouping of paths may show information flows among
or between multiple users.

An advantage of the ASUR interaction model is that it com-
bines both the physical and digital dimensions of user-system

2.4 modelling input devices 31

interaction task logical device physical device

Position Locator Tablet

Select Choice Touch Panel
Pick Trackball/Mouse

Path Stroke Joystick

Quantify Valuator Dials

Text entry String Keyboard

Orient

Table 1: Interaction tasks mapped to logical and physical interaction
devices

interaction. Later in Chapter 6 we will see how our interaction
model also combines both these dimensions.

In this section we looked at how user interface software archi-
tectures can be used to model interactive systems. In the next
section we look at how input devices can be modelled to de-
scribe the different interaction tasks that can be performed in a
smart environment.

2.4 modelling input devices

2.4.1 Foley’s taxonomy and its extensions

Foley [42] describes a taxonomy of input devices that are struc-
tured according to the graphic subtasks they can perform: po-
sition, orientation, select, path, quantify and text entry. He de-
fined these subtasks as six Basic Interaction Tasks (BITs). A BIT is
the smallest unit of information entered by a user that is mean-
ingful in the context of the application. He noted that there are
far too many interaction techniques to give an exhaustive list,
and that it is impossible to anticipate which new techniques
may be created. In Table 1 we map them to possible logical and
physical interaction devices. The six types of logical devices
were also defined by Foley in [43].

Some characteristics of the physical interaction devices are
not shown in the table. The positioning of tablets and touch
panels are absolute, while that of trackballs, joysticks and mice
are relative. A touch panel is considered direct, as the user di-

32 related work

rectly points at the screen, while a tablet is indirect. Joysticks,
tablets and mice are continuous, while a keyboard is discrete. Di-
als can either be bounded or unbounded.

The positioning interaction task involves specifying an (x,y)
or (x,y,z) position. Characteristics of this task include different
coordinate systems, resolution and spatial feedback. The select
interaction task involves choosing an element from a choice set,
while the text interaction task entails entering character strings
to which the system does not assign specific meaning. The
quantify interaction task involves specifying a numeric value
between some minimum and maximum value. The path inter-
action task consists of specifying a number of positions over a
specific time or distance interval. The orient interaction task is
also called rotate, but is not often used [28].

Card et al [22] argued that the Foley taxonomy has not tried
to define a notion of completeness, and is thus not generic
enough. They pointed out that single devices appear many
times in the levels of the tree, which makes it difficult to un-
derstand the similarities among devices. MacKinlay, Card and
Robertson [72] extended Buxton’s work to propose additional
physical properties that underly most devices. They follow map-
pings from the raw physical transducers of an input device into
the semantics of the application.

Dix et al [32] noted that Card et al’s analysis is not only
relevant to GUIs, as they used a running example of a radio
with knobs and dials. Their work not only abstracts devices
into classes, but also takes into account that rotating a dial is
different from moving a slider, i.e. the physical nature of the
interaction is also important.

Ballagas et al [7] surveyed interaction techniques that use mo-
bile phones as input devices to ubiquitous computing environ-
ments, and used Foley’s six interaction tasks as a framework
for their analysis. In their work on iStuff [5] they state that the
set of interactions tasks are only sufficient for describing graph-
ical user interfaces, not physical user interfaces, or user inter-
faces in general. The same paper notes that Buxton’s taxonomy,
and the extension by MacKinlay, Card and Robertson, is too
narrow for ubiquitous computing environments, as it does not
classify devices with different modalities and only describes in-
put devices. They extended the taxonomy further to describe
attributes like direction and modality. The direction attribute
is used to indicate whether a device provides input, output or
both. The modality attribute describes different visual, auditory

2.5 semantic models 33

haptic and manual modalities for input and output. Additional
attributes they identified include directionality/scope (where a
device is targeted to one, many, or all the users in a room) and
mount time (the effort necessary to use an interaction device).

Based on the work of Foley, Card and others in this section,
we defined a concept called the interaction primitive, described
in more detail in Section 4.2.2 and 6.2.2. Interaction primitives
can be used as a way to describe the user interaction capabilities
of smart objects in ubiquitous computing environments.

While these techniques are well suited to modelling input
devices, we still need a way to describe the semantics of inter-
action feedback and the different types of interactions that can
occur. That is the focus of the next section on semantic models.

2.5 semantic models

2.5.1 The Frogger framework

The Frogger framework, as was introduced by Wensveen [123],
describes user interaction in terms of the information a user per-
ceives (like feedback and feedforward), and the nature of this
information. It distinguishes between inherent, augmented and
functional information. These types of information can serve
as couplings between user actions and the systems’ functions
in time, location, direction, modality, dynamics and expression.
Although the framework was designed to describe the interac-
tion with electronic devices and their interfaces, many of the
concepts in the framework are applicable to interactions with
systems of devices as well.

When a user performs an action and the device responds
with information that is directly related to the function of that
product (lighting switching on when a light switch is operated),
we speak of functional feedback. When a device has more than
one functionality, functional feedback should be viewed with
respect to the users’ intentions and goals when performing the
action. If there is no direct link between a user’s action and
the direct function of the product, or when there is a delay,
augmented feedback (also known as indicators [109]) can be con-
sidered to confirm a user’s action. This feedback is usually pre-
sented in the form of lights, sounds or labels. Inherent feedback is
directly coupled (inherently) to the action itself, like the feeling
of displacement, or the sound of a button that is pressed.

34 related work

3UHVV�OLJKW�VZLWFK

:DON�LQWR�URRP�H[SHFWLQJ�OLJKWV�WR�VZLWFK�RQ

:DON�LQWR�URRP�DQG�XQEHNQRZQ�WR�\RX�DLU�FRQGLWLRQLQJ�LQFUHDVHV

,QWHQWLRQDO

([SHFWHG

,QFLGHQWDO

Figure 4: The continuum of intentionality

While feedback is information that occurs after or during the
interaction, feedforward is the information provided to the user
before any action has taken place. Inherent feedforward commu-
nicates what kind of action is possible, and how one is able
to carry out this action. Inherent feedforward is the same as
the concept of affordances, revealing the action possibilities ofAffordances were

discussed in Section
1.2.3.

the product or its controls [123]. When an additional source of
information communicates what kind of action is possible it
is considered augmented feedforward. Functional feedforward com-
municates the more general purpose of a product.

The concepts described in the Frogger framework are used
to implement feedback and feedforward in the work described
in this thesis, specifically in Section 5.4.1 and Section 6.6.

2.5.2 Models of intentionality

At the semantic level, we are interested in the meaning of the
action. A gesture may mean nothing, until it encounters for in-
stance a light switch [16]. In traditional software applications, a
user is expected to have a clear intention of what he/she wants
to achieve, with purposeful and direct actions. In ubiquitous
computing scenarios, the interactions are less explicit. Input
can be implicit, sensor-based and “calm”, and output is am-
bient and non-intrusive. With incidental interactions [31], a user
performs an action for some purpose (say opening a door to
enter a room), the system senses this and incidentally uses it
for some purpose of which the user is unaware (e.g. adjust the
room temperature), affecting the user’s future interaction with
the system.

The continuum of intentionality in Figure 4 has normal, inten-
tional interactions at the one end of the spectrum (e.g. pressing
a light switch), expected interactions in the middle (e.g. walk-

2.5 semantic models 35

ing into a room expecting the lights to go on), and incidental
interactions at the other end. As users become more aware of
the interactions happening around them, they move through
the continuum toward more purposeful interaction. For exam-
ple, with comprehension an incidental interaction (lights turning
on when you enter the car) turns into an expected interaction.
With co-option, an expected interaction turns into an intended
interaction (e.g. deliberately opening and closing the car door
to turn on the light).

Incidental interactions do not fit existing interaction models
based on the conventional intentional cycle, like Norman’s Ac-
tion Cycle Diagram [84]. The purpose of the user’s activity is
distinct to the intended outcomes of the system. Feedback may
be unobtrusive (and not noticed), or delayed (like the temper-
ature slowly changing). There are two tasks that are occurring:
The user’s purposeful activity, and the task that the incidental
interaction is attempting to support/achieve.

We try to improve this comprehension by actively involving
users in configuring the relationships between the smart objects
in their environment. Bellotti et al. [11] posed five questions to
the designers of ubiquitous computing technologies:

• Address: How do I address one (or more) of many possi-
ble devices?

• Attention: How do I know the system is ready and attend-
ing to my actions?

• Action: How do I effect a meaningful action, control its
extent and possibly specify a target or targets for my ac-
tion?

• Alignment: How do I know the system is doing, or has
done, the right thing?

• Accident: How do I avoid mistakes?

When users are able to explore and manipulate the relation-
ships between the smart objects, it becomes easier for them to
begin to comprehend how things work, or can potentially work
together. They can project their experiences with a part of a
smart environment to see what may potentially work for other
parts of the environment as well. By allowing users to config-
ure their smart environment themselves, they are in control of
deciding how the environment responds to their actions. By

36 related work

making use of the feedback mechanisms introduced in Section
2.5.1 we can indicate that the system is ready and attending to
a user’s actions. These mechanisms can also be used to make
the action possibilities of the system more visible and help the
user avoid mistakes.

2.6 outlook

As Nielsen [78] noted, the purpose of a model is to improve the
usability of software. He noted that some people will consider a
model a useful abstraction, while others will prefer other mod-
els, similar to how everybody has their own favourite program-
ming language.

We build further on many of the concepts and proposals re-
viewed in this chapter. In particular, we focus on configuring
the connections between the devices in Chapters 3 to 5 and
Chapter 6, while serendipitous interoperability and sharing in-
formation between devices form the cornerstones of Chapter 7

and Chapter 8.

Part II

D E S I G N I T E R AT I O N S A N D
C O N S T R U C T I N G A T H E O RY

An iterative development process was followed for
the work described in this thesis. In this part of the
thesis, we describe the three design iterations. Ex-
tracting from the lessons learned during the three
design iterations, a theory of semantic connections
is introduced.

3
D E S I G N I T E R AT I O N I

I think the only way forward is going from applying algorithms to
individual transactions, to first placing information in

context — pixels to pictures — and only applying algorithms
after one sees how the transaction relates to the other data.
It’s the only way that I can see that it’s going to close this

sense-making gap.

— Jeff Jonas [127], data scientist
Parts of this chapter
appear in [80] and
[117].

An iterative development process was followed for the work
described in this thesis. In the following chapters three itera-
tions, each consisting of a requirements and planning phase,
analysis and design phase, implementation phase and evalua-
tion phase, is described in more detail. Iterative processes are
essential to modern-day software and hardware development
methodologies, exemplified by the various agile development
frameworks [68].

3.1 requirements

The goal of the first design iteration was to see if using a tan-
gible interface to establish connections between devices is a vi-
able alternative to the usual GUI-based solutions. Additionally,
different approaches to modelling user interaction, device capa-
bilities and connections were explored.

Scenarios are commonly used in software engineering and
interaction design to help discover and analyse requirements.
The following scenario was presented at the start of the project
to guide the design process:

Mark is a 12-year-old boy and he is at home receiving his friend
Dries from school. Dries arrives with a portable music player loaded
with his favourite songs. He wants to play some recent collections
for Mark. Mark’s home is equipped with a sophisticated surround
sound system, and they have recently installed an ambient lighting
system that is connected to the sound system and renders the mood
of the music by dynamic colour lighting in the room. They decide to
use both to enjoy the music. Dries starts streaming his music to the
environment.

39

40 design iteration i

An object (or several objects) shows possible input and output ports
for streaming music in the environment. By interaction with the objec-
t/objects, Mark connects the output from Dries’ music stream to the
input of the sound system. Now the room is full with Dries’ music
and the colourful lighting effects. Mark’s mom, Sofia, now comes back
from work. She starts preparing dinner for the family. Mark and Dries
don’t want to bother her with their loud music. They again use the ob-
ject(s) to re-arrange the music stream. Now the music is streamed
to Mark’s portable music player while playing back at Dries’. It is
also connected to the ambient lighting system directly, bypassing the
sound system. They both are enjoying the same music using their
own favourite earphones, and the colourful lighting effects, but with-
out loud music in the environment.

The object(s) shows the connection possibilities with a high level
of semantic abstraction, hiding the complexity of wired or wireless
networks. By interacting with the object(s), semantic connections can
be built, redirected, cut or bypassed.

The first takeaway from this scenario is that the focus is on
the connections between the devices, instead of on the devices
themselves. This brings us to the first design decision: Seman-
tic connections are introduced as a means to indicate users’ in-
tentions concerning the information exchange between smart
objects in a smart environment.

semantic connection A semantic connection is a relation-
ship between two entities in a smart environment for which
we focus on the semantics—or meaning—of the connec-
tions between these entities.

The term semantic connections is used to refer to meaning-
ful connections and relationships between entities in a smart
environment. These connections are both real “physical” con-
nections (e.g. wired or wireless connections that exist in the
real world) and “mental” conceptual connections that seem to
be there from the user’s perspective. The context of the connec-
tions, for example the objects that they connect, provide mean-
ing to the connections. The term “semantics” refers to the mean-
ingfulness of the connections. The type of connection, which
often has the emphasis now (e.g. WiFi, Bluetooth or USB) is not
considered to be the most relevant, but what the connection can
do for someone — its functionality — even more.

The following requirements were defined during this phase:

3.2 ontology design 41

• Semantic connections exist in both the physical and the
digital world. We need ways to visualise these invisible
connections and to control them.

• Devices need to be able to share their capabilities and con-
tent with the other devices in their environment.

A number of different approaches to visualising and control-
ling semantic connections were explored in the first iteration,
and these are described in Section 3.3. We also need a way to
model the devices, their capabilities and the connections them-
selves. This is the subject of the next section.

3.2 ontology design

OWL 2, the ontology language used to build ontologies for the
Semantic Web, was used to create the ontologies in this thesis.
OWL 2 has been a W3C Recommendation since October 2009,
and adds new capabilities like property chains to the original
OWL standard. Ontologies and

ontology
engineering are
described in more
detail in Section 9.

owl:Thing

SmartObject

Event

NFCEvent

NFCEnterEvent

NFCExitEvent

NetworkEvent

ConnectEvent

DisconnectEvent

MediaPlayerEvent
PlayEvent

CueEvent

StopEvent

Figure 5: Ontology indicating subclass relationships

A first attempt at modelling the various entities in an ontol-
ogy is shown in Figure 5. A bottom-up approach to modelling
was used, where we attempted to model each entity using the
least number of statements. These entities were later aligned
with foundational ontologies – the approach that was followed
is discussed further in Chapter 9. Each entity is modelled as an
owl:Class, where all classes are subclassed from the root class,

42 design iteration i

owl:Thing1. Each edge in the graph above is an rdf:type rela-
tionship, and the direction of the arrow indicates the direction
of the subclass relationship.

During the initial development stages, we realised that the
most promising way of describing low-level interactions seemed
to be to describe them in terms of interaction events, that are de-
fined as follows:Interaction events

are discussed in
more detail in

Chapter 8.
interaction event An interaction event is defined as an

event that occurs at a certain time instant and was gener-
ated by a specific smart object. It reports either the intent
of a user’s action directly, or a perceivable change in a
smart object’s state.

An interaction event in the smart space consists of an event
ID, timestamp and other related information, like the smart ob-
ject that generated that event. For the scenario, three types of
interaction events were defined:

• Network events: A ConnectEvent indicates that a device is
entering the smart space, while a DisconnectEvent means
that the device is exiting the smart space.

• Near Field Communication (NFC) events: An NFCEnterEvent
signifies that an NFC tag has entered the RFID field, and a
NFCExitEvent is generated when it leaves the field.

• Media player events: When the user presses the Play but-
ton on the media player, a PlayEvent is generated. When
the music is stopped, or at the end of the song, a StopEvent
is generated. Pressing the Forward button forwards the
song by 5 seconds. This time period is attached to a CueEvent
using an atTime relationship.

The following properties were defined:All OWL code
listings in this

thesis are written
using Turtle2

syntax. Turtle is a
human-friendly

alternative to XML
based syntaxes.

:connectedTo
a owl:ObjectProperty;
a owl:IrreflexiveProperty;
a owl:SymmetricProperty ;
rdfs:domain :SmartObject ;
rdfs:range :SmartObject .

1 The owl: prefix is used to denote the OWL 2 Namespace Document located
at http://www.w3.org/2002/07/owl.

3.2 ontology design 43

:atTime
a owl:DatatypeProperty ;
rdfs:comment "At a specific time (in milliseconds)" ;
rdfs:range xsd:integer .

:generatedBy
a owl:ObjectProperty ;
rdfs:domain :Event ;
rdfs:range :SmartObject .

:hasPosition
a owl:DatatypeProperty ;
rdfs:range xsd:integer .

:hasRFIDTag
a owl:DatatypeProperty ;
rdfs:range xsd:string .

:inXSDDateTime
a owl:DatatypeProperty ;
rdfs:range xsd:dateTime .

The connectedTo object property is both symmetric and ir-
reflexive. Irreflexive properties are a new feature in OWL 2. A
symmetric property is its own inverse, which means that if we
indicate a connectedTo relationship from device A to device B,
device B will also have a connectedTo relationship to device A.
Another way to think of symmetric properties is that they are
bidirectional relationships.

An irreflexive property is a property that never relates an
individual to itself [54]. This allows us to restrict our model by
not allowing a connectedTo relationship from a device to itself.

An example with individuals, also called instances, that make
use of the ontology is shown in Figure 6. In the figure, classes
are denoted with ellipses, individuals with boxes and datatypes
as plain text. Class membership is denoted with dotted lines
and relationships are denoted with solid lines. It shows a Nokia
N900 and N95 smartphone instantiated as SmartObjects with
their associated Radio Frequency Identification (RFID) tags. Why an RFID tag?

In Section 6.2.1 we
argue that each
smart object must
be uniquely
identifiable in the
physical world by
digital devices.

An instantiated NFCExitEvent, called event-1cecdba5, is also
shown. When an event is generated a Universally unique iden-
tifier (UUID) is assigned to it, to enable the event to be uniquely
identified in the smart space. It is also associated with a smart
object using the generatedBy property. The hasPosition rela-

44 design iteration i

tionship provides additional metadata required by the interac-
tion tile, which is described in the next section.

event-1cecdba5

2009-12-17T13:15:16^xsd:dateTime
inXSDDateTime

2^xsd:integerhasPosition

NFCExitEvent

NokiaN900

generatedBy
SmartObject

04A332D9A12580

0401C4D9A12581

hasRFIDTag

AmbientLighting

connectedTo
hasRFIDTagconnectedTo

Figure 6: Individuals that were instantiated based on the ontology

SPARQL Protocol and RDF Query Language (SPARQL)4 form
the query language for the Semantic Web. Along with OWL, it is
one of the core technologies of the Semantic Web, having been a
W3C Recommendation since January 2008. SPARQL queries are
based on the idea of graph pattern matching [104], where data
that is returned from the query is set to match the pattern.We also make use of

SPARQL to define
rules, which is

described in Section
9.4.

To determine which other smart objects a specific device,
for example a mobile phone, is connected to, a simple SPARQL
query suffices:

SELECT DISTINCT ?object WHERE{
:phone1 :connectedTo ?object .
}

A triple store is used to store both the instances and the on-
tology. A triple store is a purpose-built database for storing
and retrieving triples, in the format subject-predicate-object. In
the above example phone1 would be the subject, connectedTo the
predicate and ?object the object. There are a number of commer-
cial and open-source triple store implementations. The Jena5

framework is a Java API that enables access to many triple store
implementations, supports SPARQL and also has its own persis-
tent triple store. It was used in this first implementation and
was also later adopted by the SOFIA project.

An advantage of using SPARQL and a triple store is that it
is easy to add additional constraints and/or specifics to the
query, compared to a traditional Structured Query Language

4 http://www.w3.org/TR/rdf-sparql-query/
5 http://jena.apache.org/

3.3 device design 45

(SQL) database, where unions between columns and tables can
get quite complicated very quickly.

To get the last event that was generated by a specific device,
the SPARQL query is a little bit more complex, but still surpris-
ingly manageable:

SELECT ?event ?eventType WHERE{
:deviceID :hasRFIDTag ?tag .
?event :hasRFIDTag ?tag .
?event a ?eventType .
?event :inXSDDateTime ?time .
FILTER (?eventType = :NFCEnterEvent || ?eventType = :NFCExitEvent)
}
ORDER BY DESC(?time)

Semantic data
focuses on the
relationships
between entities,
making semantic
models
property-oriented.
Entities are
members of a class
based on their prop-
erties/predicates.

How do we model the semantic connections between de-
vices? Since semantic modelling is property-oriented instead
of object-oriented[103], we started by focusing on the possible
predicates that can be used to describe connections. We need a
way to model whether a connection is possible — this can be
done with a canConnectTo property. We also need to know if a
device is currently connected to another device — connectedTo.
Then we need a way to model the capabilities that each device
provides. In this first iteration, we defined two properties called
consumes and provides. They are used as follows:

NokiaN900 provides AudioCapability .
NokiaN95 consumes AudioCapability .

During the later design iterations we decided to model ca-
pabilities as functionalities of a device instead, and make the
name of the property clearer to indicate whether it is a func-
tionality of a source or a sink. The property provides was
changed to functionalitySource, and consumes was changed
to functionalitySink. These early properties are mentioned
here for the sake of completeness, and to show how aspects of
the ontology have changed between iterations.

3.3 device design

Based on the scenario, a number of smart objects had to be
constructed or repurposed, and the necessary software had to
be developed.

46 design iteration i

To explore the different possibilities of visualising and ma-
nipulating connections between devices, a number of different
prototypes were constructed. The first of these is called the in-
teraction tile.

3.3.1 Interaction Tile

Figure 7: The interaction tile and mobile phone

The interaction tile, shown in Figure 7, was inspired by Kala-
nithi and Merrill’s “Siftables” cubes [74]. It was designed to
explore and manipulate connections through direct manipula-
tion – by making simple spatial arrangements. Each device in
the smart environment is represented by a cube containing an
RFID tag and a small magnet, with an icon on the top of the cube
to signify the device being represented. When a cube is placed

3.3 device design 47

next to one of the four sides of the tile, an LED on the tile lights
up to indicate that it has been recognised. When a second cube
is placed next to the tile, the following LED visualisations are
used:

• Pulsating green light - a connection is possible

• Constant green light - a connection exists

• Red light - no connection is possible

The interaction tile visualises the various connections by al-
lowing a user to explore which objects are currently connected,
and what connections are possible. By means of putting a cube
representing a device close to one of the four sides of the tile,
a user can check if there is a connection, and if not, whether a
connection is possible. By shaking the tile it is possible to create
a connection between two devices, or where there is an existing
connection, to break the connection. The interaction tile consists
of the following components:

• Arduino Duemilanove with Atmel ATMega328 microcon-
troller

• ACR122/Touchatag 13.56MHz RFID reader

• RF Solutions ANT-1356M 13.56MHz RFID Antenna Coil

• Multi-colour LEDs

• Accelerometer

• Vibration motor

• Piezoelectric speaker

• Magnetic switches

The Arduino communicates with a PC via a serial interface
over USB, while the RFID reader uses Personal Computer/S-
mart Card (PC/SC) drivers over USB. The accelerometer is used The RFID reader

component has been
tested under
Windows, Linux
and Mac OS X.

to measure when the user is shaking the tile, while the vibra-
tion motor and speaker provide haptic and auditory feedback.
The magnetic switches are used to determine which side of the
tile a cube has been placed. The final laser-cut version of the
interaction tile prototype is shown in Figure 8.

Two alternative designs are presented in Van der Vlist’s thesis
[116]. A more detailed discussion of the interaction tile and how
its design is informed by product semantics is available in [117].

48 design iteration i

Figure 8: A laser-cut version of the interaction tile prototype

3.3.2 Lamp

To create the ambient lighting system, we replaced the internals
of a table lamp with an RGB LED array and an Arduino6. A
Bluetooth module was connected to the Arduino to facilitate
communication with a computer, the final result of which can
be seen in Figure 9.The Ikea Lampan

lamp that was used
for the prototype

currently retails for
around e3.

The coloured lighting can be changed by sending three RGB
values (in the range 0-255) to the lamp via the serial-over-Blue-
tooth interface.

3.3.3 Mobile phones

For the first iteration, a Nokia N95 and Nokia 5800 XpressMusic
phone (shown in Figure 10) were used. The two phones use the
Symbian S60 operating system, and Python for S60 was used to
write software for the mobile phones.Python for S60 is

Nokia’s port of the
Python

programming
language for

Symbian devices.

3.3.4 RFID reader used in interaction tile

Most of the RFID readers and tags targeted at the amateur and
hobbyist markets, like the PhidgetRFID and Innovations ID-12

modules, operate in the 125KHz range. While they are rela-
tively cheap and readily available, the 125KHz readers cannot
read multiple tags within range of the reader at the same time.
For this a 13.56MHz reader is required. The most widely used
RFID tags at the moment, the MiFare range owned by NXP, op-

6 http://www.arkadian.eu/pages/219/arduino-controlled-ikea-lamp

3.4 implementation 49

Figure 9: The interaction and cubes, with the lamp in the background

erate at 13.56MHz. These tags are used in most public transport
payment systems, including the London Oyster Card and the
Dutch OV-Chipkaart system.

A relatively cheap 13.56MHz RFID reader system, the ACR122,
is developed by Hong Kong-based Advanced Card Systems
(ACS). It uses the NXP PN532 chip to read RFID tags. The reader A rebranded version

of the ACR122,
called the
Touchatag8, is
currently sold with
10 tags for around
e30.

has an onboard PCB antenna – to extend the range of the unit
we removed two capacitors on the PCB and soldered in an ex-
ternal ANT-1356M coil antenna from RF Solutions.

3.4 implementation

Following the design and development of the ontology and re-
quired devices, a demonstrator that implements the scenario

50 design iteration i

Figure 10: The Nokia 5800 XpressMusic mobile phone with the lamp
and some cubes

was created. A visual overview of the demonstrator can be seen
in Figure 11. A video of the scenario is available9.

Each device in the demonstrator is represented by a KP soft-
ware module. KPs communicate via the SIB, as shown in Figure
12. As discussed in Section 1.2.1, the SIB acts as an informa-
tion broker, distributing messages between devices. This was
an early design decision to reduce coupling, by minimising di-
rect communication between devices, with all messages relayed
via the SIB. This philosophy of having a blackboard architec-
tural model, where devices can write to and read from, was fol-
lowed through all subsequent design iterations. The technical
implementation of the various KPs are described in the follow-
ing subsections.The system

architecture model
is described in more
detail in Chapter 10. 3.4.1 Interaction Tile KP

The interaction tile KP was written in Python and tested on
Ubuntu Linux 10.04. On startup, the KP connects to the Arduino
inside the interaction tile via the serial-over-USB interface. It
establishes a connection with the SIB, after which it connects to
the RFID reader inside the tile.The open-source

rfidiot.org library
was used to

communicate with
the RFID reader.

The KP then enters an event loop, waiting until a cube is
placed next to the tile. When this happens, the Arduino sends
the position of the cube next to the tile to the KP via the serial in-
terface. The RFID tag is read, and a NFCEnterEvent is generated.
After the RFID tag is read it is temporarily disabled, to ensure

9 https://vimeo.com/15594590

3.4 implementation 51

SIB
Windows XP with Jena

KP / Music Player
Python for S60

Nokia 5800 XpressMusic

KP / Music Player
Python for S60

Nokia N95

KP / Interac!on Tile
Arduino-based with Processing /

Python (RFID)

TCP Socket over WiFi

TCP Socket over WiFi

Serial over USB

Serial over Bluetooth

KP / Ambient Ligh!ng System
Arduino-based

KP / Surround Sound System
Windows XP with Processing

TCP Socket

Figure 11: An overview of the demonstrator

blackboard

ontology

SIB

KP KP KP

Figure 12: System architecture of demonstrator

that the tag will only be read again after being removed from
the field and coming into range again.

If the tile is shaken and a connection is possible, the KP up-
dates the SIB by inserting connectedTo relationships between
the devices, represented by the cubes next to the tile. If there
are existing connections, the connectedTo relationships are re-
moved instead. When a cube is removed from the tile, the Ar-
duino again sends the position of the cube via the serial in-
terface to notify the KP. The python-pyscard, pcsc-tools and
pcscd PC/SC libraries are required on Ubuntu Linux to commu-
nicate with the RFID reader.

52 design iteration i

3.4.2 Music Player KP

This Python-based KP runs on Symbian S60. It has been tested
on a Nokia N95 and Nokia 5800 XpressMusic phone. When the
KP starts up, it connects to the SIB, generates a ConnectEvent
and subscribes to new PlayEvents, StopEvents and CueEvents.
It then enters an event loop. Pressing the play/stop/forward
buttons on the phone’s GUI will generate the corresponding
event, and the KP will also respond to events generated by other
devices that it is connected to via the connectedTo relationship.

Another version of the music player KP was developed for a
Nokia N900 smartphone that runs on Maemo 5 Linux. This KP
was also written in Python and makes use of the PyQt4 library.
This KP is functionally equivalent to the Symbian S60 version,
apart from running on the Maemo platform and using the Qt4
Phonon framework to provide music play/stop/forward capa-
bilities.

3.4.3 Light KP

This KP was written in Java and makes use of the Minim audio
library10 for beat detection, in order to generate meaningful
lighting patterns that can be sent to the table lamp.The Minim audio

library is part of the
Processing software

development
environment, used

for interaction
design prototyping.

The KP listens for media player events from connected de-
vices, and generates RGB values based on the rhythm of the
music. These RGB values are then sent to the Arduino in the
table lamp via the serial-over-Bluetooth interface. On Ubuntu
Linux the librxtx-java package is required for serial commu-
nication when using Java.

Part of the event handler that handles subscriptions from the
SIB is shown in the following code fragment:

@Override
public void kpic_SIBEventHandler(String xml) {
String subject = null;
String object = null;
String predicate = null;

println("Subscription notification!");
//Get triples that were added or updated in the SIB
Vector<Vector<String>> triples =

xmlTools.getNewResultEventTriple(xml);

10 http://code.compartmental.net/tools/minim/

3.4 implementation 53

if(triples!=null){
for(int i=0; i<triples.size() ; i++){

Vector<String> t=triples.get(i);
subject=xmlTools.triple_getSubject(t);
predicate=xmlTools.triple_getPredicate(t);
object=xmlTools.triple_getObject(t);

// when we have a new connectedTo
// relationship to the LightKP
if(predicate.contains("connectedTo") &&

object.contains(deviceID)){

//subscribe to source events
subscribeToSourceEvents(subject);

}
...

When the Light KP is connected to another device KP using a
connectedTo relationship, we subscribe to the interaction events
generated by that device using the subscribeToSourceEvents()
function. This code fragment is shown below as an example of
how subscriptions are created using the Java KP interface:

void subscribeToSourceEvents(String source) {

println("Subscribing to source events from " + source);

xml=kp.subscribeRDF(null , sofia + "launchedBy" , source, URI);

if(xml==null || xml.length()==0){
print("Subscription message NOT valid!\n"); return;}

print("Subscribe confirmed:" +
(this.xmlTools.isSubscriptionConfirmed(xml)? "YES" : "NO")+ "\n");

if(!this.xmlTools.isSubscriptionConfirmed(xml)){return;}
String sub_id = this.xmlTools.getSubscriptionID(xml);
println("Subscription ID: " +sub_id);
subscriptions.put(source,sub_id);
}

3.4.4 SIB

The first SIB implementation used in the SOFIA project is called
Smart-M3, developed by Nokia, and an open source implemen-

54 design iteration i

tation is available online11. The SIB is written in C and uses
Nokia’s Piglet triple store as a database backend. It is only
available on Linux as it makes of the D-Bus message bus sys-
tem. Other dependencies include the Avahi service discovery
framework and Expat XML parser. The SIB consists of a dae-
mon called sibd, which communicates with KPs over TCP/IP
using a sib-tcp connector module.

3.5 discussion & conclusion

This first iteration constructed a number of devices that could
be reused in future iterations, and explored approaches to cre-
ating connections between devices. These approaches were fo-
cused at proximal interactions with tangible interfaces instead
of the usual GUI-based solutions. Let us look at some issues
that were uncovered during the implementation, followed by a
conclusion.

This iteration details the first use of Smart-M3, where KPs
communicate with a SIB using Smart Space Access Protocol
(SSAP)[59]. SSAP consists of a number of operations to insert,
update and subscribe to information in the SIB. These opera-
tions are encoded using XML. A triple-format query from a KP
is sent, and the response from the SIB is in triple-format as well.

We attempt to solve the interoperability problem by follow-
ing a blackboard-based approach. Some of the problems asso-
ciated with current blackboard-based platforms are scalability
and access rights. While the goals of this thesis do not involve
solving these problems, they should be considered as possible
constraints. In Chapter 11 we will look in more detail at the
performance-related issues of the system architecture.

The evaluation of this iteration, where the various alternative
tangible approaches are compared in a usability study, is dis-
cussed in more detail in [67]. This study was performed in the
Context Lab at the Eindhoven University of Technology, and
made use of the Teach-Back protocol [115] and Norman’s Ac-
tion Cycle Diagram [84].

From this first iteration we learned that using interaction
events to model device and user interaction works well. Yet
the different types of interaction events need to be generalised,
so that they can be reused in other scenarios and environments.
One difficulty we encountered was how to model the capabil-

11 http://sourceforge.net/projects/smart-m3/

3.5 discussion & conclusion 55

ities of devices in more detail so that they can be shared with
other devices. In the next chapter we extend the scenario to
include devices from our various partners in the SOFIA project,
and model the media capabilities of devices in order to perform
semantic matching of different media types.

4
D E S I G N I T E R AT I O N I I

If interaction design is considered only at the end,
software is driven by engineering design, of which

users are rightly unaware, rather than by representations
with which they interact.

— Gillian Crampton Smith and Philip Tabor [125],
interaction designers

Parts of this chapter
appear in [81],
[119] and [120].

The second iteration was driven by a collaboration with vari-
ous partners in the SOFIA project, which included Philips, NXP,
Conante and the TU/e System Architecture and Networking
(SAN) research group. This collaboration culminated in a joint
demonstrator that was exhibited and evaluated at the Experi-
ence Lab at the High Tech Campus in Eindhoven — the Smart
Home pilot.

The goals of the Smart Home pilot were as follows:

• Conduct a pilot study with users in a setting that resem-
bles a real home

• Demonstrate the system to stakeholders and other inter-
ested parties

• Serve as a feasibility study

• Test how stable the implementation would be when it
would be running for a full week

• Serve as an experimental setup for user experiments

More general goals of this design iteration were to improve
our approach to solve interoperability problems between de-
vices using semantic technologies, and to test our approach to
technology integration with an increased number of devices.

4.1 requirements

The Smart Home pilot is based on the following scenario:
Mark and Dries enter their home. A presence sensor detects their

presence and notifies the smart space. The decorative wall-wash lights

57

58 design iteration ii

are in turn notified of user presence by the smart space, and turn them-
selves on. Mark and Dries start listening to music. They would like to
try to render the music on a lighting device to also create some visual
effects accompanying the music. They query the smart space and find
out that the lighting device can render these light effects. They make a
connection between the music player and the lighting device using the
Connector. The light starts being rendered on the lighting device. To
put the focus on the lighting device, the decorative wall-wash lights in
the room automatically dim themselves down. At the same time, the
light pattern also starts being rendered on the remote lighting device,
where Mark’s sister Sofia can observe the same light effects in her own
house.

At another location: Sofia enters her house and the intelligent light-
ing system detects her presence, notifies the smart space and switches
the lights on. After a while, Sofia is curious and wants to listen to the
music that Mark and Dries are listening to. She connects her lighting
device to her stereo using Spotlight Navigation, and the same song
plays on her surround sound system.

There are some obvious similarities with the previous sce-
nario in Chapter 3. However, there are a number of additional
devices introduced:

• Presence sensor and wall-wash lighting - A system devel-
oped by TU/e SAN that detects the user’s presence and
switches the lights on automatically

• Lighting device - An ambient lamp developed by Philips,
based on their LivingColors technology

• Intelligent lighting system - A lighting system developed
by NXP that also detects the presence of users

• Spotlight Navigation - An augmented reality approach to
exploring semantic connections, based on technology de-
veloped by Conante

This increase in the heterogeneity of devices helps us to see
if the ontology-based approach can be applied to a larger range
of devices, and the increase in system complexity is used to
test the capabilities of the software framework. We first focus
on the design of the ontologies that were created to support
these kind of scenarios, followed by the design of the devices
that were created specifically for the pilot.

4.2 ontology design 59

4.2 ontology design

The Semantic Media ontology and Semantic Interaction ontology
were created during Iteration II to enable interoperability be-
tween the devices of the different partners involved in the Smart
Home pilot.

4.2.1 Semantic Media ontology

event-1cecdba5

2009-12-17T13:15:16^xsd:dateTime
inXSDDateTime

2^xsd:integerhasPosition

NFCExitEvent

NokiaN900

generatedBy
SmartObject

04A332D9A12580

0401C4D9A12581

hasRFIDTag

AmbientLighting

connectedTo
hasRFIDTagconnectedTo

Figure 13: Semantic Media Ontology
The notation used
for Figure 13 was
also used in Figure
6 in Section 3.2,
where class
membership is
denoted with dotted
lines and
relationships are
denoted with solid
lines.

The Semantic Media ontology, shown in Figure 13, is an ap-
plication ontology that allows for describing media-specific de-
vice capabilities and related media content. A mobile device
may be described as follows:

MobileDevice rdf:type :SmartObject .
MobileDevice acceptsMediaType Audio .
MobileDevice transmitsMediaType Audio .
MobileDevice hasMedia "file://media/groove.mp3"^^xsd:anyURI .
MobileDevice rendersMediaAs Audio .

The system configures itself through semantic reasoning based
on these media type descriptions. A media player event of type An example of

semantic reasoning
with media type
descriptions is
described in Section
4.4.

PlayEvent, that would be generated when the mobile device
starts playing music, is described as follows:

event1234-ABCD rdf:type PlayEvent .
event1234-ABCD inXSDDateTime "2001-10-26T21:32:52"^^xsd:dateTime .
MobileDevice launchesEvent event1234-ABCD .

Smart objects may be connected to one another using the
connectedTo relationship. When a device receives an event no-
tification, it first verifies that it is currently connected to the
device that generated the event, before responding to the event.

60 design iteration ii

Smart objects may be connected to one another directly if
there is a semantic match between transmitted and accepted
media types. Otherwise a semantic transformer will have to be
introduced to transform the shared content, while still preserv-
ing the actual meaning of the connection.An example of a

semantic
transformer is

described in Section
4.4.

semantic transformer A semantic transformer is defined
as a service that transforms information shared between
devices from one type to another, while preserving the
meaning of the information.

The concept of a semantic transformers is considered an im-
portant part of the theory developed in this work, and its appli-
cability to smart environments in general is discussed in Chap-
ter 6.

4.2.2 Semantic Interaction ontology

xsd:string / xsd:boolean / etc.

xsd:string

SmartObject

InteractionPrimitive
hasInteractionPrimitive

EventlaunchesEvent

Identification

hasIdentification

dataValue

canBeTransformedTo
RangeMeasurehasRangeMeasure

idValue

IDType

ofIDType

Figure 14: Semantic Interaction Ontology

The Semantic Interaction ontology we have developed is shown
in Figure 14. A device, defined as a SmartObject, is uniquely
identified by some kind of Identification, for example a IP ad-
dress and port number, RFID tag or barcode. Different ID typesIdentification is

discussed in Section
6.2.1.

can be defined as required. Devices can then launch events, for
example a media player can generate a PlayEvent when music
starts playing.

A smart object is described in terms of its interaction primitives.
This new concept, as well as the other new concepts introduced
in this section, refine the ontology that was introduced in the
first design iteration:

4.2 ontology design 61

interaction primitive An interaction primitive is defined
to be the smallest addressable element that has a mean-
ingful relation to the interaction itself.

The concept of
interaction
primitives is
discussed in more
detail in Section
6.2.2.

As an example of how the ontology may be used, we start off
by defining a smart object and its interaction primitives. Recall
that it is only necessary to describe interaction primitives of a
device if we use that device’s interaction primitive to control
another device through the smart space. We can, for example,
describe the volume control rocker switch on a smart phone as
an interaction primitive:

SmartPhone rdf:type SmartObject .
PhoneRockerSwitch rdf:type InteractionPrimitive .
SmartPhone hasInteractionPrimitive PhoneRockerSwitch .

We now need to define the properties of the interaction prim-
itive. We start by describing the range measure, or the range
of values that the interaction primitive can produce (e.g. the
rocker switch can produce Up, Down or Neutral values).

The range of values that an interaction primitive can take
on is specified using a RangeMeasure. These range measures
are similar to the measure of the domain set used by MacKin-
lay et al [72]. Using the range measures, we can then infer MacKinlay’s work

was discussed in
Section 2.4.

which transformations may be used to map the input values
to other interaction primitives or events. The ontology could be
extended to also describe the different manipulation operators
of the interaction primitive, e.g. rotation on the z-axis or move-
ment along the y-axis. Note that the model of MacKinlay et al.
has only been applied to GUIs. Similar models for ubiquitous
computing have so far not given comprehensive taxonomies of
input devices. Our approach of using interaction primitives to
describe input devices is an attempt at providing such a taxon-
omy.

The actual data value of the interaction primitive is described
using the dataValue property. Data values may be strings, boolean
values or other datatypes, e.g.:

PhoneRockerSwitch dataValue "neutral"^^xsd:string .

When PhoneRockerSwitch is pressed, the data value is up-
dated with:

PhoneRockerSwitch dataValue "up"^^xsd:string .

62 design iteration ii

This enables other devices to make use of the user input on
the PhoneRockerSwitch, irrespective of the interaction events
generated. In fact, using Transformation, it becomes possible
to map the physical, generic button presses from interaction
primitives like PhoneRockerSwitch to specific high-level events
like VolumeUpEvent or VolumeDownEvent using the default trans-
formation AdjustLevel as is described in Table 3.

By specifying the transformation using the proper OWL 2 se-
mantics, the reasoner should be able to infer which user inputs
can be mapped to which specific high-level events. This shows
up as a canBeTransformedTo property between an interaction
primitive and an event. In our example, this means that the
following relationship will be inferred:

PhoneRockerSwitch canBeTransformedTo VolumeEvent .

where the "up" data value may then be mapped to Volume-
UpEvent and the "down" may be mapped to VolumeDownEvent,
which are both sub-classed from VolumeEvent. This prevents
situations where arbitrary mappings causes some of the seman-
tics of the interaction to disappear.

4.3 device design

In the Smart Home pilot, the partners involved each created
their own device or system to showcase the work they have per-
formed during the SOFIA project. The interoperability of the sys-
tem architecture was tested and demonstrated by having these
devices working together, even though they were created by dif-
ferent manufacturers at different times. We now describe these
devices in more detail.

4.3.1 Wall-wash lighting and presence sensors

The decorative wall-wash lights consisted of four LED lamps,
custom-built by the TU/e SAN group, capable of generating
coloured illumination on the wall of the room. The lamps are
shown in Figure 15, including a description of its components.
A presence sensor determines the presence of a user in a desig-
nated area of the room and sends the presence information to
the SIB. The wall-wash lighting KP is subscribed to this presence
information, and its state is modified based on this informa-
tion. There are two states updated on the SIB: Away and Present.

4.3 device design 63

Phidget LED Board
(inside)

Power Supply

UBS Cable

LEDs

64 LED Connectors

Power Supply
(6~12V)
USB Connector

64-PhidgetLED Board

Figure 15: Wall-wash lighting developed by TU/e SAN

Figure 16: The Connector prototype and a smart phone used as a me-
dia player

For example, when the Present state is specified, the Lamp KP
sends the ON command to the wall-wash lighting, and the OFF
command when the Away state is specified.

4.3.2 Connector object

This device builds on the work done in the previous iteration
by exploring another tangible approach for manipulating se-
mantic connections. While devices are still identified with RFID
tags, the device itself is now mobile, and makes use of more
meaningful interactions and feedback to establish and break
connections.

The Connector object, shown in Figure 16, can be used to
explore and manipulate semantic connections between differ-

64 design iteration ii

ent devices in the home environment. It is a handheld device
that identifies devices, by scanning RFID tags that are located
on the devices themselves. By holding the Connector on top
of the tag, users can explore the connection possibilities that
are visualised with lights on top of the Connector. After hold-
ing the device in the RFID field for a moment, the device-ID is
locked and the other device to be connected can be selected in
a similar fashion. With a push-to-click action a connection be-
tween two devices can be established. For removing an existing
connection, the ring on the lower part of the device should be
pulled until it clicks.

The cylindrical shape of the Connector is loosely inspired by
that of a loupe or hand lens. By moving the connector over
a tag, the connection possibilities can be “read” from the top
of the cylinder. The display consists of two rings (made up of
LEDs), each divided into 4 segments. The Connector supports
several actions:

• Explore - You can move it over an object or tag to see
whether it is active.

• Select - A device or object can be selected by holding the
connector close to or on a tag until the selection sequence
is completed.

• Connect/disconnect - The connector can be compressed
by pushing the top and the lower part together (connect),
and it can be pulled, by pulling the lower part and the top
part away from one another until it clicks (disconnect).

When the tag is in the range of the Connector’s RFID field, it
reads the tag and the first (yellow) light segment on top of the
Connector will light up, serving as feedback that the Connec-
tor recognises the device. After holding the Connector over a
device tag for a moment, a sequence starts, lighting up the sec-
ond, third and fourth segment of the inner ring. After the de-
vice is recognised and selected, another device may be selected
in a similar fashion. Now, the second ring of lights will start
lighting up in sequence and one should wait until both rings
are fully lit. Removing the Connector from the tag prematurely
cancels the selection process.

When a connection between the selected devices is possible,
both rings start flashing green. When no connection is possible,
they will turn red. When a connection between the devices you
scanned already exists, the rings will turn green. To make the

4.3 device design 65

connection, the Connector is compressed by pushing the top
and lower part together, or by pushing the Connector down on
the device it is touching, until it clicks. To remove an existing
connection between two scanned devices, the ring on the lower
part of the Connector should be pulled until it clicks. The rings
will show a red light to indicate that the connection has been
broken. The segments will turn off once the Connector is moved
away from the device. Performing the opposite action of what is
required to make or break a connection, cancels the procedure.

The Connector contains the following main components:

• Arduino Stamp 02

• Innovations ID-12 125kHz RFID reader

• SparkFun Bluetooth Mate Gold

• 8 bi-colour LEDs

• Switches

• 3.3v LiPo battery (850 mAh)

In the previous iteration we had an issue with multiple tags
within range of the reader at the same time, necessitating the
use of 13.56MHz tags. Since only one tag is now read at a time
we do not have this issue anymore, and as such 125KHz tags
could be used. The Connector prototype is made out of four
separate pieces which are 3D printed. The lower part and the
top part of the Connector can be moved inward and outward
serving as a two-way spring-loaded switch. The prototype pack-
ages all the necessary components into one integrated device
which is wirelessly connected to a computer using a Bluetooth
connection.

4.3.3 Spotlight Navigation

The Spotlight Navigation device, designed by Conante and shown
in Figure 17, is another approach to explore and manipulate
connections between smart devices. With Spotlight Navigation,
connection information contained in the smart space is pro-
jected into the real world, augmenting the real environment
with virtual information, making it intuitively perceivable for
users. Spotlight Navigation projects icons close to the actual
devices in physical space. It allows for the creation of new con-
nections simply by drawing lines between these icons, using

66 design iteration ii

Figure 17: Spotlight Navigation prototype

a “pick-and-drop” action with a push-button on the prototype
(press and hold the button when pointing at one device, move
over the second device and release the button). Additionally
the connection possibilities are projected between devices that
allow for a connection, by changing the colour of the projected
line (while the connection is being drawn) from yellow to green
when the line’s end is moved over the frame of the targeted de-
vice. When a connection is impossible, the connecting line will
turn red and disappears as soon as the button is released.

Spotlight Navigation was invented as an intuitive way of ac-
cessing large data spaces through handheld digital projection
devices [95, 120]. Rather than directly projecting the equiva-
lent of a small LCD display, Spotlight Navigation continuously
projects a small portion of a much larger virtual pane or data
space. It is the device’s orientation that defines which part of
the larger pane is selected for display. This is done in such a
way that the virtual data appears to have a fixed location in
the real world. By moving the projector’s light spot over the
wall, users make portions of the data space visible through in-
tuitive, direct pointing gestures. This intuitiveness stems from
the fact that the projected content always stays roughly at the
same physical place, regardless of the orientation of the device.
It becomes visible depending on whether it is in the projector’s
light cone or not. In other words, users have the impression that
they are illuminating a part of a conceptually unbounded vir-
tual data space, just as if they would be looking at hieroglyphs
on a huge wall in a tomb with a flashlight. As people are famil-
iar with operating flashlights, the operation needs no or little
training. When accessing a data space with the device, users

4.3 device design 67

Figure 18: Projection of the Spotlight Navigation when connecting
two devices together

can zoom in and out of the data space by using a scroll wheel
control, resulting in a pan-and-zoom user interface. To visualise
the semantic connections in physical space, we rely on the sym-
bolic meaning of colour, where green colour means “proceed”
and red means the opposite. Using green, yellow and red lines
we aim at referring to the “existence” of a connection, the “pos-
sibility” of a connection or to indicate that a connection is not
possible. Figure 18 shows the projection when connecting two
devices together.

With Spotlight Navigation, devices are identified by their
physical location, relying strongly on natural mapping. Connec-
tions are created simply by drawing lines between the devices.
An erasing gesture with the Spotlight Navigation device pointed
at an existing connection, breaks the connection.

On a technical level, the operation is achieved through con-
tinuously measuring the orientation, and optionally also the
position, of the device. Our prototype is using an inertial navi-
gation module, also called an inertial measurement unit (IMU),
that directly measure the orientation by means of accelerome-
ters, gyroscopes and an electronic compass.

The Spotlight Navigation prototype is a fully embedded setup
integrated into a 3D printed casing. The design of the casing
was targeted at getting the smallest possible setup that could
run on the integrated batteries. A dummy ring was added to
the prototype to strengthen the semantics of a mobile projector.
Figure 17 shows the prototype. Our current setup consists of
the following components:

• OMAP3530 board (IGEP module)

68 design iteration ii

Figure 19: Image showing the Connector scanning the lighting de-
vice.

• Pico projector (Microvision SHOWWX)

• Orientation sensor (Sparkfun 9DOF Razor IMU)

• scroll wheel (with button press functionality)

• two additional buttons

• two 3.7v li-ion batteries (Nokia BL5J)

The OMAP3530 processor contains a 3D-graphics core (Pow-
erVR) that is capable of rendering the connection visualisations
and device icons in real-time. The prototype required the ob-
ject positions to be manually configured in space, as it did not
contain a camera. By using a camera, as is planned for future
versions, the intention is to recognise the identity and physi-
cal location of each device, so that it is no longer necessary to
align the projected object icon with the location of its associated
device.

4.3.4 Lighting Device

Philips created two lighting devices based on their LivingCol-
ors technology, that can be used to generate dynamic coloured
lighting. Figure 19 shows the Connector object scanning a tag
on the lighting device. These lighting devices accept a stream
of RGB values and use the information to generate a sequence
of coloured lighting. Using the media type descriptions intro-
duced above, we can describe a lighting device as follows:

4.4 implementation 69

� F- � � a- � iNF- � o� � N� iN- � � � � � � �

� F- � N- � �

� � �
 � lN� � � � �
 �

� atN��

� � � � o� � c� � � � �

� F- � N- � �

� � �
 � lN� � � � �
 �

� i � c� F� � t i � n � � � � �

� uFioN� i �

� � � lN� � iNF- � � � � �

� c� t� - � � � � 	 F- icFo� �

� � � N� � � 	 F- i � - i � � � atN�� �

� � N� iN- � � � � � n uFc� c

� N� iN- � � � 	 F- icFo� � �

� N� iN- � � �

� � c� t� i � � � � cn � - � - i

� � � N� � � 	 F- i � - i � � � atN�� �

� � N� iN- � � � � � n uFc� c

� N� iN- � � � 	 F- icFo� �

� c� t� - � � �

� � � - tF c� � � � � �

� a- � iNF- � o� � N� iN- � � � � � �

	 F- - � � iFc� � 	 � �

� c� t� - � � �

� � � - tF c� � � � � �

� � � � � �
 � � � � � � �
 � � � � � � �
 � � � � � �
 � � � � �
 �
 � � � � � � �

� - � � � � � � � � cn � - � - i

� - � � � � � � � � cn � - � - i

� - � � � � � � � � cn � - � - i

Figure 20: The devices and their connections as used in the system

LightingDevice rdf:type SmartObject .
LightingDevice acceptsMediaType RGBValues .
LightingDevice rendersMediaAs Lighting .

In the scenario there exists a permanent semantic connection
between the two lighting devices. This means that when dy-
namic lighting is generated on one device, the same lighting
will be displayed on the other device.

4.4 implementation

Figure 20 shows a brief overview of the different parts of the
system. The experiment took place in two rooms, the study
and the living room of the Experience Lab on the High Tech
Campus in Eindhoven. During the pilot, users interacted with
various automated and interactive appliances and devices de-
fined as smart objects. There exist several semantic connections
between the smart objects, for example the media-content con-
nection between the phone and the lighting device, and the

70 design iteration ii

lighting-control connection between the lighting device and the
non-functional lighting. Some of these connections can be ex-
plicitly interacted with through two interaction devices: a Spot-
light Navigation device placed in the study of the pilot setup
upstairs, or a Connector device placed in the living room of the
pilot setup downstairs.

In the Smart Home pilot, media content is shared among sev-
eral smart objects in a smart home setting. Music can be shared
between a mobile device, a stereo speaker set and a lighting
device that can render the mood of the music with coloured
lighting. The music experience is also shared remotely between
friends living in separate homes through the lighting device.
This light and music information is shared between the two
lighting devices. Other lighting sources, like the smart func-
tional lighting (FL, Figure 20) and the smart wall wash lights
(NFL, Figure 20) are sensitive to user presence and the use of
other lighting sources in the environment. The setup was built
using the SOFIA software platform as is described in Chapter
10. A diagram showing the technical details of the Smart Home
pilot is shown in Figure 21. It gives an indication of the variety
and complexity of the hardware platforms, operating systems
and wireless protocols that were used.

4.4.1 ADK-SIB

In this iteration a new SIB developed within the SOFIA project
was used, called the ADK-SIB. The ADK-SIB is a Jena-based SIBThe Jena framework

was first mentioned
in Section 3.2.

written in Java and runs on the Open Services Gateway initia-
tive (OSGi) framework. Some modifications were made to the
standard ADK-SIB provided by the SOFIA project, such as rea-
soning support added with the TopBraid SPIN API 1.2.01. To
run the SIB from the OSGi prompt, the SIB and TCP/IP gateway
is started separately as services:

sspace create -sib -name=test
sspace create -gw -name=testgw -type=TCP/IP -idSib=1
sspace start -sib -id=1
sspace start -gw -id=1

The SIB and gateway are linked with one another through
their IDs, enabling multiple SIBs and gateways to run on the
same machine. OSGi services have to be deployed as plugins
from within the Eclipse development framework.

1 http://topbraid.org/spin/api/

4.4 implementation 71

Windows XP
notebook 1

Macbook Pro
Mac OS X

Ubuntu Linux
notebook 1

Windows XP
notebook 2

Ubuntu Linux
notebook 4

Ubuntu Linux
notebook 3

Ubuntu Linux
netbook 1

Ubuntu Linux
notebook 2

ARM Cortex M0
 uC uCLinux

ARM 7 uC
FreeRTOS

Nokia N900
Maemo 5 Linux

OMAP 3530
Ubuntu Linux

ATMEGA 168 uC
Arduino

(Connector)

802.11.g

802.11.g

Ethernet

Ethernet

802.11.g

Linksys
WRT54G

Wireless router

NETGEAR
WPN824

Wireless router

Ethernet

802.11.g

Lighting device 1

Lighting device 2

Wall wash lighting

Functional lighting

Presence sensor 1

Presence sensor 2

TI CC2500
Protocol

(proprietary)

BCP
(proprietary)

802.11.g

802.11.g

Serial over BT

RFID
tag

RFID
125KHz

TI CC2500
Protocol

(proprietary)

USB

Ethernet

USB

Sound/Light
transformer KP

(Java)

Speaker
set

Spotlight
Navigation KP
(Prolog, C++)

Functional
Lighting KP (C)

ADK-SIB
(Java)

Media Player
KP (Python)

Connector KP
(Python)

Lighting Device
KP 1 and 2
(Python)

Presence KP
(Python)

Wall Wash
Lighting KP

(Python)

Figure 21: Technical details of the Smart Home pilot

72 design iteration ii

Reasoning on information contained within the SIB was per-
formed using SPARQL Inferencing Notation (SPIN)2. With SPIN,More details on the

different types of
reasoning that was
performed, as well

as the different
services provided by

the reasoner, are
available in Section

9.3.

rules are expressed in SPARQL, the W3C recommended Resource
Description Framework (RDF) query language, which allows for
the creation of new individuals using CONSTRUCT queries.
OWL inferences for the OWL 2 Rule Language (RL) profile were
executed by using SPIN rules3. OWL 2 RL is a syntactic subset
of OWL 2 that is amenable to implementation using rule-based
technologies. According to the OWL 2 RL W3C page4 the OWL
2 RL profile is aimed at applications that require scalable rea-
soning without sacrificing too much expressive power.

4.4.2 Semantic matching of media types

A semantic transformer, called the Sound/Light KP, accepts a
music stream as input and generates a stream of RGB values
based on an analysis of the music stream. The Sound/Light KP
is described as follows:

SoundLightKP rdf:type SemanticTransformer .
SoundLightKP acceptsMediaType Audio .
SoundLightKP transmitsMediaType RGBValues .
SoundLightKP hasIdentification id4321 .
id4321 ofIDType IPAddress .
id4321 idValue "192.168.1.4:1234" .

The stream of RGB values is sent via a separate TCP/IP
connection, so the lighting device needs to know whether the
source device is capable of communicating via TCP/IP. Since
smart objects in the smart space can be identified using their
IP address and port number, we can use the identification in-
formation to infer a communicatesByTCPIP data property that
can be read by the Bonding Device. To relate the SmartObject
directly to the IDType, we use an OWL 2 property chain:

hasIdentification � ofIDType v hasIDType5

We then infer the communicatesByTCPIP data property by spec-
ifying a TCPIPObject subclass:

2 http://www.spinrdf.org
3 http://topbraid.org/spin/owlrl-all
4 http://www.w3.org/TR/owl2-profiles/#OWL_2_RL
5 The concatenation of two relations R and S is expressible by R � S, while
R v S indicates that R is a subset of S

4.4 implementation 73

MobileDevice SoundLightKP

RGBvalue

convertsMediaType

Audio

BondingDevice

is
A
c
c
e
p
te
d
M
e
d
ia
T
y
p
e
O
ftra

n
s
m
its
M
e
d
ia
T
y
p
e

semantic transformer

MobileDevice SoundLightKP BondingDevice

a
c
c
e
p
ts
M
e
d
ia
T
y
p
e

is
A
c
c
e
p
te
d
M
e
d
ia
T
y
p
e
O
f

a
c
c
e
p
ts
M
e
d
ia
T
y
p
e

tra
n
s
m
its
M
e
d
ia
T
y
p
e

mediaPath

MobileDevice BondingDevice

convertsMediaType

Figure 22: Inferring the media path

Class: TCPIPObject

EquivalentTo:
hasIDType value IPAddress
communicatesbyTCPIP value true

SubClassOf:
SmartObject

In order to determine the media source for the lighting de-
vice, we first need to perform semantic matching of the me-
dia type descriptions. We first define isAcceptedMediaTypeOf
as the inverse property of acceptsMediaType, and then define
the following property chain:

transmitsMediaType � isAcceptedMediaTypeOf v con-
vertsMediaType

This allows us to match media types between smart objects.
We can then infer a media path between the mobile device and
the Bonding Device with the Sound/Light KP acting as a se-
mantic transformer using another property chain:

convertsMediaType � convertsMediaType v mediaP-
ath

To then determine the media source itself we use Semantic Web
Rule Language (SWRL)6, as the expressivity of OWL does not al-
low for inferring the media source if there are more than one

6 http://www.w3.org/Submission/SWRL/

74 design iteration ii

convertsMediaType relationship linked to the lighting device:

convertsMediaType(?x1,?x2) ^ convertsMediaType(?x2,?x3)) mediaSource(?x3, ?x2)

The media source is the semantic transformer, ?x2, while the
media path is between the two smart objects, ?x1 and ?x3. The
mediaSource relationship is thus inferred from the smart object
to the semantic transformer. We can also infer whether a device
is a semantic transformer or not using:This SWRL

implementation was
later replaced using

another Semantic
Web technology

called SPIN,
detailed in Chapter

9.

Class: SemanticTransformer

EquivalentTo:
(canAcceptMediaTypeFrom some SmartObject) and
(convertsMediaType some SmartObject)

SubClassOf:
SmartObject

The end result is that the lighting device responds to the mo-
bile device’s media events (based on the Semantic Connections
connectedTo relationship), but uses the Sound/Light KP as a
media source for generating dynamic lighting. The connectedTo
relationship between the mobile device and the lighting device
should only be possible if a media path exists between the two
devices. Figure 22 illustrates the entire process of inferring the
media path from the original media type definitions.

If the reasoner infers a media path between two smart ob-
jects, it does not mean that they are automatically connected –
it means that a connection is possible. The user can view this
connection possibility using either the Connector device or the
Spotlight Navigation device, and then establish the connection
if necessary.

4.4.3 Device states

Interaction events (Chapter 8) cause device state changes. Most
of the developers that worked on the Smart Home Pilot pre-
ferred to describe their smart objects in terms of the device
states, and also shared these device states with other smart ob-
jects using the SIB. The current state of the smart object was
defined using the sofia:isInState property:

conante:spotlight1 sofia:isInState "projecting" .

sofia:nflKP1234 sofia:isInState "lightingON" .

4.5 evaluation 75

sofia:nflKP5678 sofia:isInState "lightingOFF" .

sofia:presenceKP1234 sofia:isInState "Away" .

sofia:presenceKP5678 sofia:isInState "Present" .

These smart objects were all simple two-state devices, where
the device state was indicated using a text field. Note that
conante:spotlight1 used the absence of sofia:isInState prop-
erty to indicate that it was not projecting. This statement is valid
with a Closed World Assumption (CWA), the presumption that
what is not currently known to be true, is false. The program-
mer that created this state description is well versed in the Pro-
log programming language, which makes the CWA. OWL, on the
other hand, operates under the Open World Assumption (OWA).
With OWA, we assume that new information can become avail-
able at any time, so that we cannot draw conclusions based on
the assumption that all information is already available [3]. We
can use the ontology to restrict how state descriptions are re-
ported, forcing smart objects to report their current state at all
times. The OWA is also

discussed in Section
9.3.5.

4.5 evaluation

A number of issues were identified during a user study of the
Smart Home pilot, described in more detail in [120]. In the
Smart Home pilot there were two locations connected via a
permanent semantic connection between the lighting devices.
What if Sofia were to play a song in her room — will the same
song play back at the home of Mark and Dries? If this is the
case, we clearly need to introduce a notion of directionality in
the semantic connections. This issue is addressed in Design It-
eration III in the next chapter.

Early performance tests indicated that the Pellet reasoning
engine with SWRL rules proved to be a performance bottleneck
in the system. For example, Pellet took about 3 seconds to in-
fer 107 statements. TopBraid Composer’s TopSPIN reasoning In one instance, a

SWRL rule took up
to 28 seconds to
execute.

engine supports SPIN rules and OWL 2, so it was tested as a pos-
sible alternative. The TopSPIN engine with OWL 2 RL/RDF
Rules took less than a second to infer 10 491 triples. By using
a hashmap to store our inferred triples, we were able to im-
prove performance even further. Some of the inferred triples
were redundant inferences – by using a hashmap we were able
to reduce the number of inferred triples on startup from 10 491

to 5 122, eliminating redundant triples.

76 design iteration ii

A more formal performance evaluation as well as a user eval-
uation of the ontology, both of which were performed on the
work done in this iteration, is discussed in Chapter 11.

4.6 discussion & conclusion

Modelling constraints in the ontology is done using restrictions.
When modelling concepts in an OWL ontology, restrictions are
defined either as part of rdfs:subClassOf or as part of owl:e-
quivalentClass. There is a subtle difference, and it has to do
with necessary and sufficient conditions.

When we have necessary and sufficient conditions (also known
as if and only if and denoted as ⌘, $ or ,), the owl:equivalent-
Class restriction (denoted as ⌘) is used. When we only have
necessary conditions, the rdfs:subClassOf restriction (denoted
as v) is used. Necessary and sufficient means that the restriction
is sufficiently constrained that only individuals belonging to
that class will be classified as such.7 An example is shown in
Section 4.4.2.An OWL reasoner

follows a bottom-up
approach, where

new information is
inferred from
asserted facts,
compared to a

theorem prover that
starts from its goal.

The ontology supports the description of interaction data
generated by interaction devices and sensors. Additionally, it
shows that an interaction primitive may trigger an interaction
event or a state change that may need to be specified in more de-
tail by a more application-specific ontology. That is to say, this
ontology may also be used to perform semantic mapping from
the interaction data to user goals and/or available services [80].
Any additional information related to the smart object may be
added by extending the schema defined in the Semantic Inter-
action Ontology.

Another advantage of the ontology described in this section
is that it opens up the way to context-based interaction device
reconfiguration. For example, if a Context Monitor application
recognises a situation where the PhoneRockerSwitch should no
longer control the volume, but adjust the level of lighting in-
stead, the triple could be modified accordingly. Just such a sim-
ple change would implement a behaviour that adapts to the
situation.

Context-dependent functionality changes of a control may
not necessarily be a desirable feature. It should however be
noted that we only consider context-dependent meaning change
with generic interaction primitives, that in itself do not have

7 In the Protégé ontology editor these are also called defined classes.

4.6 discussion & conclusion 77

a specific, function related meaning (and might already being
used for different functions, like the rocker switch in the ex-
ample). Additionally, the re-mapping is only considered for
those interaction elements with compatible transformational
properties, e.g. the rocker switch may only be mapped to other
AdjustLevel transformations, and not to Start/Stop. The spec-
ified range measures are used to control the re-mapping be-
tween an interaction primitive and an interaction event, in a
similar way that the input and output domains of [72] are used
to control the expressiveness between an input device and its
application parameter.

The question then becomes how to inform the user of the
remapping in a user-friendly way. In the next chapter we con-
sider the different types of feedback that can be used. Besides
automatic context-dependent functionality changes of controls,
we especially consider user-initiated re-mapping of controls.
By enabling users to make associations, or semantic connec-
tions [117] between devices or interaction elements and devices,
users can express their intentions in terms of mapping controls
between devices [80].

Judging from the experience of implementing the semantic
transformers, the approach of using them to solve interoper-
ability problems appears promising. Using the Semantic Media
Ontology, we were able to define a smart object in terms of the
media types it accepts and transmits. Based on these descrip-
tions, semantic transformers can be used to transform media
types in order to enable information exchange between devices
that would normally not be able to communicate. With only a
minimal set of device capabilities described, the system is able
to perform self-configuration using semantic reasoning.

Even though the Semantic Interaction Ontology describes parts
of a SmartObject, it does not fully describe all the properties
and capabilities of the smart object. It only describes its interac-
tion-related properties. Particularly it defines the SmartObject
interaction primitives and means of identification. In the next
chapter, while describing the next iteration, we will focus on ex-
panding the possibilities of describing a device’s functionality
and capabilities.

5
D E S I G N I T E R AT I O N I I I

Making everything visible is great when you only have twenty
things. When you have twenty thousand, it only adds to the

confusion.

— Don Norman [85], cognitive scientist and designer

The goal of the final iteration was to extend the scenarios de-
veloped in the previous iterations to a new domain, while still
making use of the smart objects and concepts that have been
developed thus far. This would allow for testing the general ap-
plicability of the concepts and techniques, while still being able
to reuse some of the devices we have already developed.

5.1 requirements

The use case scenario in this iteration revolves around a per-
son’s evening routine before falling asleep. It is a cross-domain
scenario that extends the media domain into the sleep domain,
and enables the exchange of different types of information. The
domain of sleep was chosen for several reasons:

• Sleep is important for physical and mental well-being —
an important application area of our research group at
TU/e.

• The sleep domain is targeted by a number of recent Internet
of Things (IoT) devices that record and share data and can
be accessed through their APIs.

• The sleep domain allows us to reuse some of our existing
work on media sharing and lighting, extending it into a
new domain.

In the fitness and sleep domains there are a plethora of de-
vices that are well-known to the IoT community but that are not
interoperable, such as:

• the Withings WiFi body scale1, that transfers body weight
wirelessly to a computer or mobile device,

1 http://www.withings.com/en/bodyscale

79

80 design iteration iii

• the Fitbit2 and Nike FuelBand3 fitness monitors, that track
activities using a built-in accelerometer, and

• the Zeo sleep monitor4, that records sleep cycles using a
head-mounted sensor.

Existing software applications targeted at these devices visu-
alise the data coming from these devices. Our goal is to enable
serendipitous interoperability, and we are interested in seeing
what will happen when the data and capabilities are shared be-
tween these devices. For example, we could use the data com-
ing from a sleep monitor to change the behaviour of a light in
the room, or the alarm on a mobile phone. We distinguish be-
tween a number of subdomains within the area of well-being,
as shown in Figure 23.

Well-being

Social Physical Mental

Fitness Sleep

Figure 23: Sub-domains of well-being

Several devices were used in Iteration III, including:

• an Android smart phone – Samsung Nexus S;

• an internet radio – Logitech Squeezebox Radio;

• the lamp from Section 3.3.2;

• a sleep monitor – Zeo Sleep Manager; and

• an Android tablet – Samsung Galaxy Tab 10.1 WiFi.

2 http://www.fitbit.com/
3 http://www.nike.com/fuelband/
4 http://www.myzeo.com

5.2 ontology design 81

We purposefully did not define a narrative for this design
iteration, to refrain from only implementing the functionality
described in the narrative. Instead, we looked at the meaning-
ful ensembles we could create with the devices, attempting to
allow for emergent functionalities to surface by sharing device
capabilities and interaction events.

The design iteration was implemented in the master bed-
room of the Context Lab of TU/e, a lab with a setting that
resembles a real home. Implementing the setup in an environ-
ment that allowed us to see its behaviour and implications in
a realistic setting, gave insights that are regarded more valu-
able than obtained when building a setup on for example one’s
office desk.

5.2 ontology design

In this iteration the earlier ontologies were consolidated into a
single ontology. This helps make the ontology more manage-
able and removes the “cruft” of legacy statements that build up
over time.

The first design decision of this iteration was to introduce
the notion of directionality. This gives additional meaning to
the devices, which now need to be modelled as sources, sinks or
bridges. A music player is an example of a smart object that acts
as a source when connected to a speaker, which in turn acts as
a sink. A smart object can act as both a source and sink, which
we define as a bridge. For example, consider the case where the
speaker is connected to another speaker, which then also plays
back the same music. The first speaker then acts as a bridge.

We can infer that a smart object is a sink using

Sink ⌘ SmartObject u (functionalitySink 9 Functionality)
See Table 5 on page
142 for more details
on the symbols and
syntaxes used in
this thesis.

where the symbol 9 is used to denote the existential restric-
tion that functionalitySink is some kind of Functionality. A
bridge is inferred using

Bridge ⌘Sink u Source

A semantic transformer is a virtual component that is not
physically addressable and is therefore not considered to be a
smart object. However, it is a bridge, as it acts as both a source

82 design iteration iii

Figure 24: Logitech Squeezebox Radio

and a sink. A smart object is a physical object first, with a digital
representation added later.Semantic

transformers were
first introduced in

Section 4.2 and are
discussed in more

detail in Section 6.4.

Other areas where the ontology was improved include the
modelling of device capabilities (Chapter 7) and the modelling
of events (Chapter 8). These improvements are discussed in
more detail in the relevant chapters.

5.3 device modifications

In this iteration, we reused both the ambient lighting system
from Section 3.3.2, as well as the Connector object from Section
4.3.2. For the Squeezebox radio and Android devices new KP
software was developed.

5.3.1 Squeezebox radio

The Squeezebox radio, shown in Figure 24, can be controlled
via a Telnet interface over WiFi.5. For example, the accepted
parameters for setting an alarm are shown in Table 2.

On startup, the Squeezebox KP connects to the smart space,
registers the capabilities of the device, checks for existing con-
nections and listens for new connections. It also subscribes to
new system events. It then connects to the Squeezebox deviceSystem events are

discussed in more
detail in Chapter 9.

5 On Squeezebox Server, the interface documentation is available from
Help) Technical Information) The Squeezebox Server Command Line
Interface

5.3 device modifications 83

parameter description

dow Day of week (0 – 6, starts on Sunday)
time Time since midnight in seconds
repeat 1 or 0

volume 0 – 100

url Squeezebox Server URL of alarm playlist
id The ID of an existing alarm (optional for new alarms)

Table 2: Accepted parameters for Squeezebox alarm Telnet command

via the Telnet-over-WiFi interface, subscribes to new events gen-
erated by the device and enters an event loop.

When a new alarm is set on the device, the KP converts the
date and time to XML Schema Definition (XSD) format and
generates a new AlarmSetEvent. When an alarm is triggered,
an AlarmAlertEvent is generated. If the alarm is dismissed on
the device, an AlarmEndEvent is generated. When an alarm is
deleted, an AlarmRemoveEvent is generated.

When an AlarmSetEvent, AlarmRemoveEvent, AlarmEndEvent
is received from another device, the corresponding action is
performed on the device. The device also responds to media Media events were

introduced in
Section 3.4.2.

events like PlayEvent, PauseEvent and PlayEvent.

5.3.2 Android mobile devices

The KP developed
for the Android
devices was tested
on both the Google
Nexus S phone and
the Samsung
Galaxy Tab.

To improve software reuse and not reinvent the wheel, we want-
ed to make use of the stock applications on the phone, like the
Clock app and the Music app (shown in Figure 25), instead of
developing our own. On Android, it is possible to run a ser-
vice as a background process that listens for events generated
by other applications. A broadcast receiver listens for broadcast in-
tents, which are public intents broadcast from activities to reg-
istered receivers. A receiver registers for a broadcast intent by
listing it in its intent filter in the manifest file. Broadcast intents Android activities

run inside
applications.

sent by Android applications can be received by all other appli-
cations, which is done by creating a broadcast receiver.

When the alarm is triggered in the alarm app on the mobile
phone, a

com.android.deskclock.ALARM_ALERT

broadcast intent is generated.

84 design iteration iii

Figure 25: Playing music from the phone on the Squeezebox radio

A broadcast receiver handles such an intent using

@Override
protected void handleBroadcastIntent(Intent broadcastIntent) {

String action = broadcastIntent.getAction();
if(action.equals("android.intent.action.ALARM_ALERT")) {

addEvent("AlarmAlertEvent");
}

}
The alarm app on

the Google Nexus S
phone is called

DeskClock and was
developed by

Google. There also
exists a version for

earlier Google
phones called
AlarmClock.

Note that this intent is not supported by all Android devices,
as different devices may have different default alarm applica-
tions. It did, however, work on both the Google Nexus S phones
and Samsung Galaxy tablets that we tested. To determine when
an alarm was changed, we made use of the

android.intent.action.ALARM_CHANGED

broadcast intents. It is also possible to read the next alarm that
will triggered from the system settings, using

System.Settings.NEXT_ALARM_FORMATTED

To determine if a song is being played using the Android Music
app, we used the

com.android.music.playstatechanged

5.3 device modifications 85

broadcast intent. The Lighted
Greenroom pattern
was introduced by
Komatineni et al.
[65] to simplify
interacting with the
Android wake lock.

We used a Lighted Greenroom [65] pattern to launch a long-
running service from a broadcast receiver, without the oper-
ating system throwing an Application Not Responding (ANR)
message. ANR specifies a 10-second response limit for a broad-
cast receiver, after which it is deemed unresponsive. By launch-
ing a separate service that handles generation of events based
on broadcast intents, we have a workaround to this problem.
This allows us to listen for broadcast intents from applications
like the music player and the alarm clock.

5.3.3 Wakeup experience service

In the sleep use case, music can be shared between the smart
phone and the internet radio. Alarms can be shared between
the phone and the internet radio, the internet radio and the
lamp as well as the phone and the lamp. Because the lamp has
only LightOn/LightOff and AdjustLevel capabilities, the most
basic functionality of the lamp responding to an AlarmEvent,
would be to turn on at the time that the event occurs. How-
ever, a wakeup service can be connected that transforms an
AlarmSetEvent into a wakeup experience, sending a sequence
of AdjustLevelEvents to the lamp. This wakeup service then
functions as a semantic transformer, transforming one type of
value into another in a meaningful way. Semantic transformers
are virtual entities and therefore they do not have a physical
presence, in contrast to smart objects that must have a physical
representation. Therefore, the use of a semantic transformer is
automatically inferred based on its capabilities, as it cannot be
physically connected to other devices by the user.

To create a wakeup service, an AlarmSetEvent would have
to trigger an AdjustLevelEvent event with a dataValue that
increases from 0 to 100 over a period of 30 minutes before the
alarm sounds. Another requirement is that it should work with
any light and any alarm in the smart environment.

This wakeup service has similar functionalities as a Wakeup
Light (e.g. as sold by Philips6) which means it starts increas-
ing its light level over a 30 minute time-period, reaching full
intensity (as calibrated) at the set alarm time. The semantic con-
nection between the phone’s alarm and the dimmable light is
an example of how such a connection can have emerging func-

6 http://www.philips.co.uk/c/wake-up-light/38751/cat/

86 design iteration iii

Figure 26: The sleep use case scenario, with the Zeo sleep monitor on
the left, the dimmable light and the Connector object in the
middle, and the Squeezebox on the right

tionality, which does not exist without the connection and the
wakeup service.

This opens up many possibilities for users, as they may con-
nect other lights, and potentially even other devices such as
a networked thermostat, to either the alarm or the dimmable
lamp, creating their own wakeup experience. Whether such
emerging functionalities are possible obviously depends on the
way the smart objects are implemented. For example in our im-
plementation, the dimmable lamp is described as a sink, which
means it is only capable of accepting input. If it was described
as a source as well, sharing for instance its on/off state or its
current light value, it could act as a bridge and allow for more
interesting configurations.

5.3.4 Zeo

The Zeo sleep monitor is shown on the left-hand side of Figure
26. The Zeo headband, shown in Figure 27, uses three silver con-
ductive fabric sensors to collect Electroencephalography (EEG)
signals while a person is sleeping. The signals are amplified
and features are extracted using a Fast Fourier Transform (FFT).
An Artificial Neural Network (ANN) is then used to estimate
the probability of a person being in a certain phase of sleep[99].
The sleep stages are Awake, Rapid Eye Movement (REM) Sleep,
Light Sleep, Deep Sleep or Undefined.

5.4 implementation 87

Figure 27: The Zeo headband

Sleep data is stored on an SD card on the device and can be
uploaded to the Zeo MySleep7 website. Zeo created the Data
Decoder Card library8 that allows developers to decode the
sleep data without uploading the data to the MySleep website.
We also built a USB cable that connects to a serial port on the
back of the device. With this cable you can access the raw data
coming from the headband sensor.

When the device is connected via a USB cable, we have real-
time access to the generated events. Events that could be inter-
esting to other smart objects in the environment include:

• NightStart - time when first “Awake” hypnogram occurs

• SleepOnset

• HeadbandDocked and HeadbandUndocked

• AlarmOff, AlarmSnooze and AlarmPlay

• NightEnd

A KP was developed for the Zeo sleep monitor. Although it
was not used as part of the final scenario, the Zeo shares its data
like sleep states and alarm events in the smart space, which can
be used by other devices.

88 design iteration iii

� � � � �

	 � � � � � � � 	 � � � � � � � � � � � �

� � � � � � � � �

	 � � � � � � � 	 � � � � �
� � �
 � �

� � � �
 � � � � � � � � �

	 � � � � � � � 	 � � � � �
� � �
 � �

� � � � �

� � � � �

� � � � � � � � � � � �

 � �

	 � � � � � � � 	 � � � � � � � � � � � � � � � �

	 � � � � � � � 	 � � � � � � � � � � � � � � � �

	
 � � � � � � � �� � � �
 � � � � � � 	 � � � � � � � � 	

� � � �
 � � � � � � 	 � � � � � � � � 	

� 	 � � � � � � � � 	

� � � �
 � � � � � � 	 � � � � � � � � 	

� �
� �
 � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � �
� � � � � � � � � � � �

� �
� � � � � � � � � �

� � � � �
	 �
 � � � � � � � � �

� �
� �
 � � � � � � �

� 	 � � � � � � � � 	

� 	 � � � � � � � � 	

Figure 28: An overview of the sleep use case

5.4 implementation

In the sleep use case
we did not make use

of the Zeo and its
KP implementation.
It was viewed as a

backup device which
could be used to

introduce additional
complexity to the

system if necessary.

We started by implementing a very basic configuration, con-
necting the phone and the internet radio. Based on the capabili-
ties of the devices, possible connections included sharing music
player functionality and alarm clock functionality. After imple-
menting the first basic functionalities, we gradually increased
complexity by adding another smart object, the dimmable lamp,
followed by the implementation of several types of interaction
feedback.

5.4.1 Feedback and Feedforward

In Van der Vlist’s
thesis [116] there is
a similar discussion

on feedback, that
focuses on some of

the more
user-centred

aspects.

In Section 2.5.1, where the Frogger framework of Wensveen
[123] was introduced, we also introduced the terminology of
augmented and functional feedback/feedforward. We use feed-
forward to display a device’s functional possibilities. We can
use feedback to confirm user actions, using augmented feed-
back where direct functional feedback is not available.

When an alarm is set on the phone, augmented feedback
should be given on all devices connected to the phone. For

7 http://mysleep.myzeo.com
8 http://developers.myzeo.com/data-decoder-library/

5.4 implementation 89

Figure 29: Alarm functionality of the phone shared with the radio
and the lamp

example, consider the setup in Figure 29, where the alarm is
connected to both the lamp and the Squeezebox radio.

Immediate feedback only makes sense when the event and
its feedback coincide in time and modality (e.g. audio, visual).
When the generated event is a SetEvent, the event itself will
occur sometime in the future, so we generate the functional
feedforward as augmented feedback instead. For example, for
an AlarmSetEvent we generate a 1s alert sound on the Squeeze-
box radio as augmented feedback, providing functional feedfor-
ward of what will happen when the alarm is triggered. We also
provide visual augmented feedback by displaying a popup mes-
sage on the display for a few seconds. On the lamp feedback is
given in the form of a short light pulse to confirm that it has
been notified as well. Many solutions for

interconnecting
devices often
employ the vendor
lock-in strategy,
which enables
manufacturers to
have full control
over their ecosystem
of products and the
resulting user
experience.

Feedback and feedforward need to be carefully designed when
smart objects are interconnected. However, as the smart objects
themselves are unaware of each other and, at development time,
their designers cannot anticipate what other devices users may
connect the smart objects to, the total user experience cannot
easily be designed. In this section we will describe how feed-
back and feedforward were used to enhance the user experi-
ence and enable devices that are in-fact unaware of one another,
appear to show awareness of each other to their users.

90 design iteration iii

5.4.1.1 Augmented and functional feedforward

For semantic connections, functional feedback and feedforward
can only be considered for the combination of source and sink.
The source object has functional feedforward that may commu-
nicate its function. Only when both the source and sink object
have been identified, is functional feedforward available for the
semantic connection. Important to note is, that functional feed-
forward is derived from the intersection of functionalities of
both the source and the sink. These functionalities could be
ambiguous, as both source and sink may be multifunctional. If
this is the case, users should make explicit what information or
data they want to exchange by selecting the desired mode on
the source object (e.g. selecting the alarm application on your
smart phone to share the alarm time or go to a picture viewer
when pictures should be exchanged), restricting the possibili-
ties. If this is not possible, or a multifunctional smart object is
connected when it is in idle mode, semantic reasoning could
be used to match all meaningful capabilities of the source and
sink objects.

Whenever users wish to make a connection, they have cer-
tain expectations. We can employ functional feedforward to in-
fluence these expectations. Additionally, we can enhance the
user’s understanding by explicitly adding augmented feedfor-
ward (i.e. augmented functional feedforward in contrast to aug-
mented inherent feedforward). In the sleep use-case we employed
augmented feedforward in the process of exploring connection
possibilities i.e. before the connection is made. We do this by
giving a functional preview on the sink object, viewing the func-
tionality of the connection that is currently explored. Our rea-
soning is, that only when both source and sink are identified,
we can speak of a semantic connection and, by giving the feed-
forward at the sink, we ensure that the sink object is in fact
capable of producing this feedforward (i.e. has the necessary
capabilities). Additionally the location of the feedforward cor-
responds to the location where the action (identifying the sink
object) was performed. To do so, a PreviewEvent is generated
when a possible connection is being explored, displaying the
possible functionalities enabled by the connection.

Example 1. When a user, after having identified the phone as a source
object, identifies the internet radio as a sink, the display of the internet
radio displays a message: “Alarm can be shared” and “Music can be
played”. Previews can also be less explicit, like briefly sounding an

5.4 implementation 91

alarm and playing a short music clip. Note that the preview can be
ignored or bypassed by establishing a connection.

Example 2. For exploring a connection between the internet radio
and the dimmable lamp, the lamp simulates a wakeup sequence, in-
creasing the light level from zero to its maximum intensity in a given
period of time (in our implementation three seconds). This may be en-
hanced with simulating an alarm at the Squeezebox radio when the
maximum of the intensity is reached.

Practically, this means that the designer/developer of a smart
object should design the response to a PreviewEvent. Techni-
cally, this is implemented by having the Connector object create
a temporary connection to the devices to be connected in order
to generate a PreviewEvent. This tempConnectedTo property is
a sub-property of the connectedTo property (which denotes a
regular semantic connection). This means that the smart objects
will handle it as if it is a regular connection, and when the Con-
nector object removes the tempConnectedTo relationship, the
inferred connectedTo relationship will disappear as well. The
type of functionality the preview is for, is added to the preview
event as a data value.

The system behaves differently depending on the type of re-
lation between the smart objects. When there is an indirect con-
nection, i.e. going through a semantic transformer, the preview
event is sent to the semantic transformer (Figure 31) instead of
the sink object directly (Figure 30). Additionally, a temporary
connection is made between the semantic transformer and the
sink, ensuring that the sink displays the correct feedforward
when the PreviewEvent is received.

5.4.1.2 Functional feedback

In many cases functional feedback of a semantic connection is
trivial, for example hearing sound from a speaker that was just
connected to a media player, or seeing photos on a TV when
it is connected to a smart phone. However, functional feedback
may only be available at another place or at another time. If
we for instance take the example of synchronising a phone’s
alarm with the alarm radio, the real functional result may be
hearing the radio play a song at the alarm time that was set on
the phone.

In such cases, the interaction designers should use augmented
feedback as an indicator that the alarm time was successfully set.

92 design iteration iii

� � �

	 � � � � � � � 	 � � � � � � � � � � � �

� �

 � � � �

	 � � � � � � � 	 � � � � �
� � �
 � �

� � � � �

� � � � �

� � �

 �
 � � � � � � 	 � �

	 � � � � � � � 	 � � � � � � � � � � � � � � � �

� � � � 	 � � � � � � 	

� � �
 � 	 � � � � � � � � 	

	 � � � � � � � � � � � �

� � � � � �
 � � � � � � � �

� �
� � � � � � � � � �

� � � � �
	 �
 � � � � � � � � �

Figure 30: Temporary connections for a PreviewEvent when source
and sink are directly connected

�
 � � �

	 � � � � � � 	 � � � � � � � � � � � �

� � � � �
 � � �

	 � � � � � � 	 � � � � �
� � �
 � �

� � � � � 	 � � � � � �
 �

	 � � � � � � 	 � � � � �
� � �
 � �

� � � � �

	 � � � � � � 	 � � � � � � � � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � � � 	 � � � � � � � � � � � �

� � � � � � � � � � � 	 � � � � � � � � � � � �

� � � � � � � � � � � � � �

� �

 � � � � � � � � � � �

� �

 � � � � � � � � � � �

	 � � � � � � � � � � � � P

� � � � � �
 � � � � � � � �

� � � � � � � � � � � � � � � � � P

� � � � � �
� � � � � � � � � � � �

� �
� �
 � � � � � � �

Figure 31: Temporary connections for a PreviewEvent when source
and sink are connected via a semantic transformer

5.4 implementation 93

When a semantic connection exists between a source and a sink,
actions at the source should also be indicated at the sink.

If the source and sink objects are in different locations, inter-
action designers should make sure that feedback is visible for
a prolonged time period, or until it is dismissed by the user.
This is to ensure that the indicator of the performed action will
be noticed by the user. For the same reason, the order of con-
necting two spatially separated objects together is important,
ensuring that establishing the connection happens in proximity
of the sink, so that the feedback can be observed.

Example 3. When music is playing on the phone and a connection
is made between the phone and the internet radio, functional feedback
is immediately given: the internet radio starts playing the same mu-
sic, and an image of the album cover is displayed. The music on the
source (phone) is muted, as the music playing on the internet radio is
of a higher fidelity, and both share the same physical space. Context
information, such as place/location, can be used to infer the correct
behaviour.

5.4.1.3 Augmented feedback

If there is no immediate link between action and function (e.g.
functional result is delayed, information is given about an inter-
nal state change), augmented feedback can be used to provide
this information. We use an IndicatorEvent to provide aug-
mented feedback when smart object is connected and there is
no immediate functional feedback, e.g. a sink “beeping” when
the alarm is set on the source. The type of feedback required de-
pends on the functionality of the connection. It is important for
the feedback to coincide in time and modality with the event
generated, as to maintain the causal link that is perceived by
the user.

When a connections exists and an action performed on the
source that has no immediate functional feedback, augmented
feedback is provided to serve as an indicator. This feedback is
provided by the smart objects that are connected, in the modal-
ity that is supported by their interaction capabilities. Designers
should aim for maintaining the modality of the augmented in-
formation across the smart objects. Additionally, ensuring that
the feedback occurring at distributed objects coincide in time
may strengthen the perceived causality of the link. Indicator
events may also be used to indicate existing connections, e.g.

94 design iteration iii

when a user wishes to see what smart objects are currently con-
nected to a source.

Example 4. When the phone is connected to the internet radio and
the internet radio is connected to the dimmable lamp, both the internet
radio and the lamp give augmented feedback when an alarm is set. The
internet radio displays the alarm-set screen, confirming the alarm time
and the dimmable lamp slowly flashes, to indicate that they are both
connected and that the action on the source is confirmed.

5.5 discussion & conclusion

The implementation of the sleep use case, described in Section
5.4, acted as an evaluation of the completeness and applicability
of the concepts and techniques described thus far. The ontologyFor an evaluation of

the design-related
aspects of the third

design iteration,
please refer to [116].

and software framework that evolved during the previous two
design iterations were applied to a new domain, testing the
general applicability of the ontology’s modelling capabilities
as well as the software framework. These approaches were dis-
tilled into a theory of semantic connections, which forms the
basis of the next chapter. The use case implementation evalu-
ated:

• whether the concepts in the ontology are sufficiently de-
fined to use them to implement the required functionali-
ties;

• whether the defined concepts and techniques can be used
universally (for different use cases); and

• whether the defined concepts and techniques form a com-
plete set to describe the behaviour of semantic connec-
tions.

The outcome of the evaluation was favourable for all of the
above. Additionally, the implemented use case can serve as an
example of how the theory described in the next chapter is used
in a relevant and contemporary setting.

We consider the length of the verbal descriptions in Section
5.4 above to become unwieldy when describing more complex
situations. There is a clear need for some kind of diagram no-
tation to describe these situations. In the next chapter we in-
troduce a theory of semantic connections that was created to
help solve this problem. We first describe the concepts that are
central to this theory, and then introduce a diagram notation

5.5 discussion & conclusion 95

based on FSMs, that can be used to model and explain the dif-
ferent concepts and situations.

6
S E M A N T I C C O N N E C T I O N S F R A M E W O R K

Essentially, all models are wrong, but some are useful.

— George Box [17], statistician
We refer to this as a
theory and
framework
interchangeably, as
we acknowledge
that it is not a
theory in the
classical sense of the
word, as used in the
field of computer
science.

Extracting from the lessons learned during the three design
iterations, a theory was developed for interacting with a sys-
tem of devices in a ubiquitous computing environment. This
chapter introduces a theory of semantic connections, in which
the connections and associations between devices play a central
role. Semantic connections focus on the semantics—or meaning—
of the connections between entities in a smart environment.

The theory may be used to analyse (i.e. understand, explain
and predict) what happens with interaction events and other
interaction data when devices are interconnected and form an
ecology of smart objects. As an introduction to the Semantic
Connections theory, we first focus on the Semantic Connections
user interaction model.

6.1 user interaction model

A user interaction model for semantic connections is shown in
Figure 32. It describes the various concepts that are involved in
the interaction in a smart environment and shows how these
concepts work together. The interaction model was inspired by
the MCRpd by Ullmer and Ishii [112] which in turn was based
on the MVC model, both of which are described in Section 3. The terminology of

inherent,
augmented and
functional
feedforward and
feedback is adopted
from [124] and was
previously
introduced in
Section 2.5.1.

We first distinguish between the physical and digital domains
of the user interaction. A user does not observe directly what
is happening in the digital domain, but experiences the effect
it has in the physical world by interacting with various smart
objects. Semantic connections exist between these objects. By
interacting with the objects, users create a mental model of
the system that they are interacting with, which only partly
includes the digital domain. The digital part manifests itself in
the physical world as data, media and services.

When a user interacts with a smart object, he/she senses feed-
back and feedforward, directly from and inherent to the con-
trols of the device (inherent feedback), digital information aug-

97

98 semantic connections framework

DIGITAL

PHYSICAL

AUGMENTED
 FEEDBACK

DATA
MEDIA
SERVICES

MENTAL
 MODEL

A1...n B1...n

a1...n b1...n

USER1...n

INTERACTION

INTERACTION
 EVENTS

SMART
 OBJECT

SMART
 OBJECT

SEMANTIC
 CONNECTION

FUNCTIONAL
 FEEDBACK

INHERENT
 FEEDBACK

Figure 32: Semantic connections user interaction model

mented onto the physical world (augmented feedback) and per-
ceives the functional effect of the interactions (functional feed-
back). The user actions in the physical world are transformedNote that in Figure

32 the arrow on the
left shows the

feedback (or output)
of the smart object,
and on the right it

shows the input
(the interaction
event). This to

avoid repetition, as
they may and in
most cases will,

occur on both sides.

into interaction events and device state changes. This interac-
tion data in terms of user intentions is stored in the smart space.
The notion of a smart space means that data are stored either
by an information broker or the smart objects themselves, and
can be accessed by the other smart objects in the smart space.
We use the term smart environment as a broader term to refer
to both the digital and physical spaces, which include both the
smart space and the smart objects.

6.2 smart objects

Note that our
definition does not

define where the KP
is situated. For

simple smart
objects, such as a
smart light bulb,

the actual KP that is
communicating to

the information
broker may be a

virtual entity
running on any

device in the
network.

Smart objects are the devices that are connected to the smart
space, enabling them to share information with one another.
We now define a smart object as follows:

smart object A smart object is a device with both compu-
tational and network communication capabilities that can
be uniquely identified in both physical and digital space.

According to our definition, an NFC enabled smart phone is
a smart object. A WiFi-connected lamp is also a smart object,
given that it can be physically identified, for example by prox-
imity based on signal strength or RFID.

6.2 smart objects 99

In terms of our definition, a light switch with an RFID tag is
not a smart object. A software agent running on a GUI (e.g. Mi-
crosoft Office’s Clippy1), is not considered a smart object, even
though it is visually perceivable. Despite its apparent physical
existence, i.e. physically and digitally identifiable, it is medi-
ated by a computer. In such cases the computer is considered
the smart object and not the agent running on it, as the agent is
not primarily a physical entity. In the following subsections we
describe the concepts specific to the smart objects themselves.

6.2.1 Identification

For semantic connections to work in the way they are envi-
sioned in this thesis, a smart object needs to be uniquely identi-
fiable in both the physical and the digital domain. In the phys-
ical space it needs to be both user-identifiable and machine-
identifiable. A device that is tagged with an RFID tag is machine-
identifiable in the physical space, and the unique identifier read
from this tag is also linked to the digital representation of the
smart object. NFC—using a near field channel like RFID or in-
frared communication—is an interesting case, because it allows
for direct manipulation of wireless network connections by means
of proximal interactions [96].

Of course, there are many ways in which a smart object may
be identified. An IP address makes a device easily identifiable
in the digital space, but it is difficult to create a physical repre-
sentation of this identity. Consider the case where IP addresses
are printed on stickers and stuck on computers to make them
easier identifiable to IT service personnel. One solution to mak-
ing these stickers machine-identifiable again is to use Quick
Response (QR) codes, two-dimensional barcodes which can be
identified by mobile phone cameras.

6.2.2 Interaction primitives

We defined interaction primitives as a way to describe the user
interaction capabilities of smart objects in ubiquitous comput-
ing environments. These interaction primitives are based on the Interaction

primitives were
introduced in
Section 4.2.2.

work of Foley, Card and others introduced in Section 2.4.
The key on a keyboard labelled “A” is an interaction primi-

tive, as pressing it not just changes the key’s Up state into a Down

1 http://en.wikipedia.org/wiki/Office_Assistant

100 semantic connections framework

state, but carries the meaning to produce a character “A”. A ges-
ture SwipeLeft on a touchpad is also an interaction primitive,
as this is the smallest addressable element to still have meaning.
Describing the input on a lower level would cause it to lose its
meaningful relation to the interaction. A touchpad itself is not
an interaction primitive but rather an input device. An interac-
tion with the touchpad, annotated with its meaning, can be an
interaction primitive. A GUI is not an interaction primitive, but
a GUI element can be.

Interaction primitives are described in terms of their physi-
cal properties that are meaningful to a user. For example, an
unlabelled button should not only be represented in terms of
its On and Off states, but also whether it is in a Up or Down
state. This enables the mapping of physical, generic interaction
primitives like a rocker switch to specific high-level events like
VolumeUpEvent.

An interaction primitive also has a range measure that de-
scribes the range of possible values that it can take on. This
makes it easier to determine if and how they can be mapped to
specific interaction events.

Interaction primitives and interaction events together form
an interaction path [36]. As an example, a typical interaction path
would be:

VolumeSliderLeft! SlideLeftEvent! VolumeDownEvent

where the VolumeSliderLeft is an interaction primitive map-
ped to the SlideLeftEvent interaction event. Based on the avail-
able context information, this can in turn be mapped to a more
specific VolumeDownEvent.

When modelling interaction primitives, only that which is
meaningful to be shared with other devices is considered. It is
not necessary to describe interactions that are internal to the
device and that are not shared. An accelerometer, for exam-
ple, may be modelled as a separate device, sharing the raw ac-
celerometer data to be used by other devices. However, when
integrated into a smart phone, the accelerometer’s data can of-
ten be abstracted as part of an interaction path, e.g. to only
share the orientation of the device, or specific gestures mea-
sured with the accelerometer. In this case, the raw values may
only need to be available locally on the device, to be used by
the developers of other device-specific applications.

6.3 semantic connections 101

Figure 33: Nokia Play 360

� speaker system and N9 mobile phone

One of our academic partners in the SOFIA project, the Uni-
versity of Bologna, created an independent implementation of
our interaction primitives [9].

6.3 semantic connections

Semantic connections is a term we introduced [117, 118] to de-
scribe meaningful connections and relationships between enti-
ties in an ecosystem of interconnected and interoperating smart
objects. Semantic

connections were
introduced in
Chapter 3.

The connection between a remote control and a wirelessly
controllable (on/of or dimmable) light bulb is a semantic con-
nection. The connection exists between two smart objects that
can be physically identified and connected through physical
proximity. The connection’s communication technology is un-
known to its user and the remote control and light are concep-
tually linked by users, based on the perceived behaviour.

Another example of a meaningful connection is the Nokia
Play 360

� speaker system, shown in Figure 33, where music
can be streamed wirelessly to the speaker using an NFC-enabled

102 semantic connections framework

smart phone. By touching the phone to the top of the speaker,
a connection is created that conceptually “carries” the music
from the phone to the speaker.

The WiFi connection between a smart phone and a WiFi router
is not a semantic connection, as the connection in itself has no
clear meaning. A USB cable by itself is also not considered a
semantic connection.

Semantic connections make up a structural layer of inter-
entity relationships on top of the network architecture. These
connections can be the real, physical connections (e.g. wired
or wireless connections that exist between devices), or concep-
tual connections that seem to be there from a user’s perspec-
tive. Semantic connections exist in both the physical world and
the digital domain. They have informative properties which are
perceivable in the physical world. However, some of these phys-
ical qualities might be hidden by default, and only become vis-
ible on demand by means of a mediating interaction device.
The digital parts of semantic connections are modelled in an
ontology. There may be very direct mappings, e.g. a connec-
tion between two real-world entities may be modelled by a
connectedTo relationship between the representations of these
entities in an ontology. Sometimes the mapping is not so direct,
for example where a semantic transformer is used. Semantic
connections have several properties, which are explained in the
following subsections.

6.3.1 Directionality

As discussed in Section 5.2, we consider a semantic connection
to have a specified direction, or to be bidirectional/symmetric.
Smart objects that are connected should then be identified as
sources and/or sinks. Directionality may intentionally be spec-
ified through user action, or it can emerge from the capabilities
of the smart objects e.g. connecting a source to a sink will au-
tomatically create a connection going from the source to the
sink.

6.3.2 Transitivity

When connections have directionality and multiple devices (i.e.
a minimum of three devices) are involved, devices can also act
as bridges, transferring data due to transitivity. For example,
if a music player is connected to speaker A, and speaker A is

6.4 semantic transformers 103

connected to speaker B, speaker A acts as a bridge between the
music player and speaker B.

6.3.3 Permanent and temporary connections

Semantic connections can vary in persistence. Connections can
be made during an interaction cycle involving several devices
to transfer content or data from the one device to another, and
the connection then stops existing when the interaction cycle
is completed. Connections can also be used to configure more
permanent information exchange between entities in a smart
space, much like setting up a connection to a wireless network
router. These permanent connections will persist, and will be
automatically reconnected every time the smart objects that are
connected co-exist in the same smart space.

6.3.4 Connections connect different entities

Connections can exist between smart objects, people and places.
Not only objects and devices have meaning in a system of net-
worked devices — according to [92] physical location within
the home and device ownership (or usage) are of central im-
portance for understanding and describing home networks by
users. Ownership can be seen as a connection between a device
and a person. Connections from and to places or locations can
be seen as a way of structuring contextual information such as
location. With very personal devices (such as smart phones and
laptops or tablets) we can, when these devices are used in an
interaction, implicitly infer the user’s identity. With shared de-
vices, we need a way to identify the user. In such cases, making
explicit connections from the device at hand to something per-
sonal of the user (e.g. a phone or keychain) may be a way to
indicate identity.

6.4 semantic transformers

Semantic
transformers were
introduced in
Section 4.2.1.

Semantic transformers were first defined in [81] as virtual enti-
ties that transform one type of information into another when
a direct mapping is not possible. They transform user actions
into interaction events and perform matching and transforma-
tion of shared data and content. Semantic transformers enable
interoperability between devices by utilising device capability

104 semantic connections framework

descriptions and content types to determine how devices may
interoperate.

Semantic transformers can be used to map and transformed
shared content between smart devices, for example a service
that transforms a music stream into coloured lighting patterns
that can be rendered by a lighting device. Semantic transform-
ers can also be used to transform physical actions (such as
pressing a button or performing a gesture) into representational
events like adjusting the level of lighting in a room, or the ad-
justing the volume of a speaker. Semantic transformers may
also be employed to perform simpler transformations such as
inverting values.

Physical identifiable objects are not considered semantic trans-
formers and should rather be modelled as smart objects. Seman-
tic transformers are services, and therefore have no physical ap-
pearance or tangible form. They can only be perceived through
the smart objects they transform the information for. A seman-
tic transformer is not considered a smart object, as it is a virtual
object and not addressable in the physical environment.

6.5 finite state machine examples

We now use FSMs to model and explain the different concepts
introduced so far. FSMs allow us to talk about user interaction
in a way that describes how users could think about user in-
teraction, but that still makes sense to interaction programmers
and designers [109]. The use of FSMs also encourages simplicity.States where the

light bulb is
removed or broken

are not described, as
these are discussed

extensively in [109].

As a first example, consider a simple light with an up/down
switch as a single device (seen in Figure 34 on the left). There
are two states (On/Off), an initial state (Off) and two events
(SwitchDownEvent/SwitchUpEvent) that cause transitions between
the states. If the switch is labeled, we can use more specific
(meaningful) wording, for example switchOffEvent instead of
switchDownEvent (as shown in Figure 34 on the right).

In Figure 35 one of the simplest examples of a semantic con-
nection is shown - a light (as a smart object) connected to a
simple up/down switch (a second smart object). The light con-
sists of two states (On/Off) with an initial (default) state of
Off, and two events (LightOnEvent / LightOffEvent) indicat-
ing the transitions between these states. Boxes with rounded
corners are used to signify smart objects, while the semantic
connection is indicated using a solid arrow point. Using arrows
to denote semantic connections allows us to specify a direction

6.5 finite state machine examples 105





 





 

 

Figure 34: FSMs for a simple light with a switch and a light with a
labelled switch

  









 

Figure 35: Light and light switch as two separate smart objects with
a semantic connection

for the connection. Note that the light has functional feedback, The concept of
directionality was
described in Section
6.3.1.

with perceivable light when it is switched on. The switch on
the other hand has inherent feedback, with a perceivable Up or
Down state.

We can create mappings between the events to create an in-
teraction path (see section 6.2.2), for example we use

SwitchUpEvent ! LightOnEvent

to indicate the most meaningful default mapping. It should
of course be possible to change this mapping, for example by
using a semantic transformer that inverts mappings between
devices.

In the case where a smart object is not in the same physical
location as the smart object it is connected to, additional aug-
mented feedback may be required. Consider the case where the
light switch may be in a different room than the light - we could
use an indicator on the switch to give augmented feedback to
show whether the light actually switched on. This is shown in
Figure 36.

A more complex example is shown in Figure 37. In this ex-
ample there is a symmetric (bidirectional) connection between

106 semantic connections framework

 

 











 






Figure 36: Light connected to light switch with augmented feedback

 





 





 





 





 





 





  

Figure 37: FSM showing semantic connection with symmetry

6.5 finite state machine examples 107

SmartLight B SmartLight CSmartLight A

Figure 38: FSM showing a semantic connection with transitivity

SmartLight B SmartLight CSmartLight A

SmartLight D

Figure 39: A semantic connection with transitivity and persistence

smart object A and B, with the result that pressing the switch
on smart object A will turn the light in smart object B either on
or off, and vice versa, B will control A. Since B is connected to
C, actions on A and B, will also be reflected on C. On the other
hand, pressing the switch of C will have no effect on either A
or B. Due to the symmetric connection, we expect A and B to
be in an identical state. One possible

solution for such a
light switch is a
push button with
an indicator light,
such that the switch
able to change its
state by itself.

In Figure 38 we use the SmartLight abstraction to denote the
FSM of a smart light as shown in previous figures. When Smart-
Light A is connected to SmartLight B, and in turn is connected
to C, transitivity allows us to infer a direct connection (indi-
cated by a dashed arrow) between A and C. Pressing the light
switch on A will in this case affect both B and C.

108 semantic connections framework

ON OFF

lightOnEvent

lightOffEvent

UP DOWN

switchUpEvent

switchDownEvent

Kitchen Hallway

Figure 40: Semantic connections between smart objects and places

We use locked/unlocked icons next to semantic connections
to indicate persistence (see Figure 39). The locked icons be-
tween A, B and D indicate persistent connections between those
objects, and a persistent transitive connection is then inferred
between A and D. This means that if smart object D moves to
another location, all three connections (including the A!D con-
nection) continue to exist. The connection between B and C is
temporary, which means that the inferred transitive connection
between A and C is also temporary. If smart object C moves to
another location, both the B!C and A!C connections will be
removed.

In Figure 40 we show semantic connections between smart
objects and specific locations, where the dashed-double circle
denotes a location. This places semantic connections between
places and objects on the same abstraction level. We use seman-
tic connections between smart objects and places as a way to
structure relevant contextual information. In our example in
Figure 40 we cannot infer that a user actually is able to observe
the functional feedback of switching the light on and off, as
they are not located in the same space, and might not be able
to see the light. The importance of feedback and feedforward
and how they should be handled between different locations is
described in more detail in section 5.4.1.

When two switches are connected to the same light as is
shown in Figure 41, the issue of priority arises. We define the
most meaningful default to be that the last event that occurred

6.6 feedback and feedforward 109

ON OFF

lightOnEvent

lightOffEvent

UP DOWN

switchUpEvent

switchDownEvent

UP DOWN

switchUpEvent

switchDownEvent

Figure 41: FSM showing a situation where the issue of priority arises

ON OFF

lightOnEvent

lightOffEvent

UP DOWN

switchUpEvent

switchDownEvent

PRESENT AWAY

presenceSensorAwayEvent

presenceSensorPresentEvent

Figure 42: FSM showing incidental (presence sensor) and intentional
(light switch) interactions

has priority. In Figure 42 where the one interaction is inciden-
tal, generated by a presence sensor, and the other is intentional
(as described in Section 2.5.2), the intentional interaction takes
priority.

6.6 feedback and feedforward

If we view our concept of semantic connections in terms of the
Interaction Frogger framework (as discussed in Section 2.5.1),
the following interesting insights emerge.

6.6.1 Feedback of objects

When we consider multiple interconnected smart objects and
the functionalities and services they provide, information like
feedback and feedforward gets spatially distributed. A user
may operate a device, receiving inherent feedback locally, but
receiving augmented and/or functional feedback remotely.

As inherent feedback is inherent to the operational controls
of the device, these reside only in the physical world and are
local to the device. We thus do not model this feedback in the
digital domain. Augmented feedback is feedback that is aug-
mented from the digital domain onto the physical world. This

110 semantic connections framework

type of feedback is subject to change when devices are con-
nected to other devices. In the domain of networked digital
artefacts, functional feedback is of a digital nature. Data, media
and services that exist in the digital domain become available
in the physical world, through the various devices and their
connections. In Figure 32, the several types of feedback are in-
dicated.

Although many functionalities of digital devices can be re-
garded as displaying media, data or services, for some simple
functionalities this seems problematic. If we, for example, look
at functional lighting, it seems that the presence of light as the
functionality of a lighting device is not a concept that is part
of the digital domain. However, if we view a lighting device
as a networked smart object, the presence of lighting, based
on some sensor data, can be regarded as the functionality of a
digital service.Refer to Van der

Vlist’s thesis [116]
for more detail on
how the theory of

product semantics
can be applied to

feedback and
feedforward.

6.6.2 Feedback of connections

Inherent feedback becomes feedback that is mediated through
an interaction device used to make or break the connection,
as one can not manipulate a wireless connection directly. This
inherent feedback may however be closely related to the action
of making or breaking a physical connection, like a snap or click
when the connection is made or broken. Augmented feedback
to indicate a connection possibility or an existing connection
may be in the form of lights, or in the form of projected or
displayed lines. Functional feedback is information about the
actual function of the connection, like music playback from a
speaker that was just connected to a media player. This type
of feedback always reaches the user through the devices being
connected.

6.6.3 Feedforward

Inherent feedforward, conceptually similar to the notion of af-
fordances [84], provides information about the action possibili-
ties with the devices or the individual controls of an interface.
Inherent feedforward is always physical and local on the de-
vice. However, when devices or objects are part of a larger sys-
tem, feedforward also emerges where interaction possibilities
between objects exist (e.g. a key that fits a lock, a connector of
one device or cable that fits another). The same holds for aug-

6.6 feedback and feedforward 111

mented feedforward, where lights, icons, symbols and labels
provide additional information about the action possibilities.
These may concern the action possibilities locally at the device,
as well as action possibilities that concern the interaction with
other devices in the environment.

While inherent and augmented information are primarily con-
cerned with “the how”, functional feedforward communicates
“the what”, the general function of the device or the function
of a control. This type of information often relies on associ-
ation, metaphors and the sign function of products, and are
described in theories such as product semantics and product
language. With multifunctional devices, and even more with
smart objects, this becomes increasingly difficult. Introducing
the concept of semantic connections tries to address these prob-
lems, therefore the functional feedforward is the main chal-
lenge when designing semantic connections. Functional feed-
forward gives information about the function of the semantic
connection before the interaction takes place. Properly design-
ing functional feedforward is therefore the crucial part of under-
standing semantic connections, smart services and smart envi-
ronments. An example of

where functional
feedforward was
used in the third
design iteration is
described in Section
5.4.1.

Wensveen [124] further proposes that in interaction, these
types of information can link action and function together in
time, location, direction, modality, dynamics and expression.
Strengthening these couplings between action and function will
lead to richer and more intuitive interactions [123].

We can also view semantic connections in the Frogger frame-
work in more general terms. Although semantic connections
are not a physical device or product, but rather describe the
structure or configuration of a system of devices, the Frogger
framework can teach us important lessons. When we look at
the link between action and functional information in time or
location, a strong link would mean they coincide in time and
location. For location this would mean that the connection that
is made between devices corresponds to the location of the ac-
tual devices in physical space. But also that the feedback that
is provided is coupled to the action in time an location. Addi-
tionally, the direction of the action of connecting/disconnecting
devices, being moving devices towards or away from each other,
strengthens the coupling in terms of direction. Also, the direc-
tion of the action could have a link to the directionality of the
semantic connection that is made (e.g. the order in which end-
points of a connections are defined). Couplings in dynamics (of

112 semantic connections framework

the action) can be used in similar ways and may express the
persistence of the connection that is made.

6.7 discussion & conclusion

In this chapter we introduced our Semantic Connections the-
ory and used finite state machines to model and explain the
different concepts. We defined the following main concepts:

• Smart objects, and the means to describe them in terms of
a unique physical and digital identity

• Interaction primitives, and how they can be used to de-
scribe the user interaction capabilities of smart objects

• Semantic connections, and how they can be used to model
meaningful connections between smart objects

• Semantic transformers, and how they transform informa-
tion from one type into another

We identified some of the principles of semantic connections,
including directionality and transitivity, as well as permanent
and temporary connections. We also identified principles of the
various types of feedback and feedforward that are required,
not only for connections but also for smart objects.

The importance of being able to uniquely identify smart ob-
jects in both the physical and digital space, as well as sharing
their interaction capabilities and states, was shown, including
how it was grounded in the theory of interaction models by
Nielsen, Card and others.

We showed how augmented and functional feedback and
feedforward can help users to better predict the functional re-
sult of the connections they create. Functional and augmented
feedback also showed to be key in maintaining the causal links
between user action and function, distributed over intercon-
nected smart objects.

A fundamental difficulty encountered during the implemen-
tation of the feedback and feedforward (and which is also a
big challenge in interoperability in general), is what we call the
awareness paradox. To foster emergent functionality, efforts are
aimed at enabling smart objects to interoperate without their
combined functionality being specifically designed. This means
that the smart objects are unaware of each other, exchanging in-
formation though an information broker. For the users however,

6.7 discussion & conclusion 113

it is imperative that smart objects show behaviour as to appear
to be aware of each another.

The way out of the paradox is to make use of proper use
of feedback and feedforward that can be generated at runtime.
Since the connections that may be created during use are not
known at design time, smart decisions have to be made on how
to describe the interaction events and functionalities that are
shared.

By describing feedback and feedforward of the semantic con-
nections as a result of the match in capabilities and function-
alities, and having the semantic transformers and sink objects
(instead of the source) produce the preview and indicator feed-
back, we make sure that they are capable of displaying (i.e. in
the widest sense of the word, not limited to the visual modality)
this feedback. Our reasoning is that, if a sink can be the sink of
a functionality, it should also be capable of giving feedforward
and feedback for this functionality. Examples of

preview events were
shown in Chapter 5.

Moreover we showed that semantic connections and using
semantic transformers to create services is an appealing idea,
leading to additional and, more importantly, more meaning-
ful functionalities of ensembles of existing devices. This may
reduce the number of devices needed in our daily lives by re-
ducing redundant devices.

The theory of semantic connections described in this chap-
ter provides a foundation for modelling user interactions with
interoperating smart objects in smart environments, and there-
with the possibility to improve the interoperability among them.
We considered the notions of feedback and feedforward to en-
hance perception of connectivity and the perceived causality
between user action and feedback.

In the next part of the thesis, we will look at other concepts
and techniques that can be used in smart environments, like
device capability modelling and event modelling. Similarly to
how we extracted the theory of semantic connections from the
work completed in the design iterations, these more general
concept and techniques are also based on the work done during
the three design iterations.

Part III

G E N E R A L I S E D M O D E L S , S O F T WA R E
A R C H I T E C T U R E A N D E VA L U AT I O N

In this part of the thesis, the more general concepts
and techniques that can be applied to ubiquitous
computing are described, followed by the final itera-
tion of the software architecture. These concepts and
techniques were extracted from work done during
the three design iterations. A performance evalua-
tion and usability study are described, followed by
a discussion and conclusion of the work.

7
D E V I C E C A PA B I L I T Y M O D E L L I N G

Whenever we capture the complexity of the real world in
formal structures, whether language, social structures, or

computer systems, we are creating discrete tokens for
continuous and fluid phenomena. In doing so, we are bound

to have difficulty. However, it is only in doing these things
that we can come to understand, to have valid discourse,

and to design.

— Alan Dix [30], HCI researcher

In order to share device capabilities with other devices in
the environment, we require ways to describe these capabili-
ties. While we have touched lightly on some of the techniques
in the thesis so far, this chapter will focus in more detail on
the current state-of-the-art, as well as how we extended these
techniques to create a new way of modelling device capabilities
using ontologies.

Most of the existing work on modelling interaction capabili-
ties focuses on GUI based techniques.

7.1 gui-based techniques

A universal user interface language describes user interfaces that
are rendered by mapping a description’s device-independent
interaction elements to a target platform’s concrete interface ob-
jects [69]. This allows developers to create the user interface in
an abstract language without targeting a specific device. Exam-
ples of interface languages include User Interface Markup Lan-
guage (UIML), Extensible Interface Markup Language (XIML),
Personal Universal Controller (PUC) and International Commit-
tee for Information Technology Standards Universal Remote
Console (INCITS/V2 URC). These languages allow devices to de-
termine the most suitable presentation based on a predefined
set of abstract user interface components.

UIML maps interface elements to target UI objects using a
styling section, resulting in one styling section per target de-
vice type. However, it does not include a vocabulary to describe
more abstract widgets [130]. PUC describes device functions in

117

118 device capability modelling

terms of state variables and commands, with a grouping mech-
anism used for placement of UI objects. The INCITS/V2 URC stan-
dards define a generic framework and an XML-based user in-
terface language to let a wide variety of devices act as a remote
to control other devices, called targets.

User interface remoting uses a remote interface protocol that
relays I/O events between an application and its user inter-
face. The user interface resides on a remote platform instead
of on the device itself. The UPnP Remote User Interface (RUI),
that forms part of the UPnP AV standard, belong to this cate-
gory. UPnP RUI follows the Web server-client model, where the
controller acts as a remote user interface client, and the target,
acting as a remote user interface server, exposes a set of user
interfaces [113].

CEA-2014, that builds on the UPnP RUI interface, uses a match-
making process for a controller device to select a user inter-
face protocol that is supported by the controller platform [130].
Supported protocols include AT&T Virtual Network Comput-
ing (VNC) and Microsoft Remote Desktop Protocol (RDP). VNC
uses the Remote Framebuffer (RFB) protocol to send pixels and
event messages between devices.

Universal user interface languages and user interface remot-
ing are orthogonal approaches [69]. User interface remoting
might be used in parallel with device-independent user inter-
face languages.

In this thesis we are more interested in tangible interactions
in ubiquitous computing environments, instead of the usual
GUI-based solutions. Smart environments need not only descrip-
tions of GUI-based input/output, but also descriptions of the
physical input/output capabilities, hardware capabilities, net-
work capabilities and other characteristics of smart objects. The
first attempt to define a vocabulary that conveys these device
characteristics was the W3C Composite Capabilities/Preferences
Profile (CC/PP)1. Other approaches to describe device character-
istics that are not GUI specific are described in the next section.

1 http://www.w3.org/Mobile/CCPP/

7.2 non-gui techniques 119

7.2 non-gui techniques

7.2.1 UAProf

The WAP Forum’s User Agent Profile (UAProf) specification is
an RDF-based schema for representing information about de-
vice capabilities. UAProf is used to describe the capabilities of W3C’s CC/PP is also

an RDF-based
schema.

mobile devices, and distinguishes between hardware and soft-
ware components for devices.

For example, in the Nokia 5800 XpressMusic UAProf profile2,
its interaction capabilities are described as follows:

• PhoneKeyPad as Keyboard

• 2 as NumberOfSoftKeys

• 18 as BitsPerPixel

• 360x640 as ScreenSize

• Stereo as AudioChannel

Other user interaction capabilities are defined in a Boolean
fashion of yes/no, e.g. SoundOutputCapable, TextInputCapable,
VoiceInputCapable.

7.2.2 Universal Plug and Play (UPnP)

UPnP with its device control protocols is one of the more suc-
cessful solutions3 to describing device capabilities. However, it
only allows for the definition of one level of tasks [80].

UPnP was developed to support addressing, discovery, event-
ing and presentation between devices in a home network, and
the current version (1.1) was released as the ISO/IEC 29341

standard in 2008. It consists of a number of standardised Device
Control Protocols (DCPs) - data models that describe certain
types of devices. The DCPs that have been adopted by indus-
try include audio/video, networking and printers. DCPs for low
power and home automation have not yet been adopted.

Digital Living Network Alliance (DLNA) is a complete pro-
tocol set around Internet Protocol (IP) and UPnP, where to be
certified for DLNA, a device needs to have UPnP certification

2 nds1.nds.nokia.com/uaprof/Nokia5800d-1r100-2G.xml
3 http://upnp.org/sdcps-and-certification/standards/sdcps/

120 device capability modelling

first. This protocol set was developed mainly to increase inter-
operability between Audio/Video (AV) equipment in the home.
It achieves this by limiting the amount of options available in
the original protocol standards.In an IEEE ComSoc

online tutorial
entitled Consumer

Networking
Standardizations,
Frank den Hartog
from TNO stated
that “DLNA has

been a major effort
to get computer
people to talk to

consumer
electronics people”.

When describing the capabilities of a smart object, not only
the interaction capabilities are important, but also the device
states. With UPnP, two types of documents are used to describe
device capabilities and states. A device description document de-
scribes the static properties of the device, such as the manufac-
turer and serial number [62]. UPnP describes the services that
a device provides in service description documents. These XML-
based documents specify the supported actions (remote func-
tion calls) for the service and the state variables contained in
the service.

The state variable descriptions are defined in a similar way to
how we define our interaction primitives, with a unique name,
required data type, optional default value and recommended al-
lowed value range. The UPnP Forum has defined their own cus-
tom set of data types, with some similarity to the XML Schema
data types used by OWL 2. As an example, consider a state vari-
able to describe the darkness of a piece of toast, where ui1 is
defined as an unsigned 1-byte integer:

<stateVariable sendEvents= "no" >
<name>darkness</name>
<dataType>ui1</dataType>
<defaultValue>3</defaultValue>
<allowedValueRange>

<minimum>1</minimum>
<maximum>5</maximum>
<step>1</step>

</allowedValueRange>
</stateVariable>

The sendEvents attribute is required for all state variable
descriptions. If set to "yes", the service sends events when it
changes value. Event notifications are sent in the body of an
HTTP message and contain the names and values of the state
variables in XML.

Let us consider these device states in terms of user interac-
tion. There are four key concepts in an interaction - actions,
states (internal to the device), indicators, and modes (physi-
cally perceivable device states) [109]. The user performs actions,

7.3 registering devices on startup 121

which change the device state, which in turn control indica-
tors (augmented feedback). Users may not know exactly which
state or mode a system is in. If we want to fully capture the Our approach to

modelling devices
states and state
transitions using
FSMs is described in
Section 6.5.

capabilities of the device, we need to specify the device states,
the transitions between these states, the interaction primitives
which can cause these state changes, as well as the default and
current states of the device. When this device is then connected
to another device, we also need a way to communicate state
changes to the other device.

7.2.3 SPICE DCS

The Service Platform for Innovative Communication Environ-
ment (SPICE) Mobile Ontology4 allows for the definition of de-
vice capabilities in a sub-ontology called Distributed Commu-
nication Sphere (DCS) [121]. A distinction is made between de-
vice capabilities, modality capabilities and network capabili-
ties. While the ontology provides for a detailed description of
the different modality capabilities, e.g. being able to describe
force feedback as a TactileOutputModalityCapability, there
are no subclass assertions made for other device capabilities.
Most physical characteristics of the devices are described via
their modality capabilities, e.g. a screenHeight data property
extends the VisualModalityCapability with an integer value,
and the audioChannels data property is also related to an inte-
ger value with AcousticModalityCapability. The input format
of audio content is described via the AcousticInputModality-
Capability through an inputFormat data property to a string
value.

7.3 registering devices on startup

Based on this existing work, we now look at our approach to
registering device functionalities, as well as how we identify
devices in the digital and physical domain.

On device startup, the smart object registers its digital and
physical identification information (e.g. RFID tag or IP address)
and its functionality with the SIB, and then subscribes to new
connections and events as shown in Figure 43. The startup

sequence contains
instances of the
blackboard and
publish/subscribe
patterns described
in Section 10.2.

This sequence is the same for all smart objects that connect to
the SIB, and should be implemented in every KP that uses our

4 http://ontology.ist-spice.org/

122 device capability modelling

Smart Object A SIB Connector Object

Register identification info

Register functionality

Check for existing connections

If connection exists
1

Connection exists to B

Subscribe to source events

End if
1

Subscribe to connection changes

Waits for new event or connection

New connection from B to A

New connection

Subscribe to source events from A

Waits for new event or connection

Connection removed from B to A

Connection removed

Unsubscribe from source events

Waits for new event or connection

Figure 43: Startup sequence between smart object and SIB

approach. You might notice some parallels between the con-
cept of a SIB and the Microsoft Windows Registry. The Registry
is used to store configuration information of software applica-
tions on a single device, while the SIB is used (among other
things) to store device functionality descriptions of a system of
devices. However, compared to the Windows Registry, which is
a basic hierarchical key-value store, the triple store and reason-
ing engine used in the SIB provide a number of advantages, in-
cluding subsumption testing, consistency checking and the abil-
ity to use restrictions to constrain data instances. This means weSubsumption

testing, consistency
checking and

restrictions are
discussed in more

detail in Section 9.3.

can use reasoning to verify the consistency and stability of the
data in the SIB.

We now discuss the first two steps of the sequence diagram in
Figure 43, registering identification and functionality, in more
detail.

7.3.1 Identifying devices

In order to discover a device’s capabilities, it is first necessary
to be able to uniquely identify the device. Today it is common
to identify groups of products using barcodes and other num-
bering systems. Before ubiquitous computing, only expensive

7.3 registering devices on startup 123

things such as precious metals, currency, or large machines
were individually identified with any regularity [66]. New track-
ing technologies like RFID tags and smart cards allow us to link
a unique identification number to a specific physical product,
like a smart phone that identifies a specific person to the phone
network. IPv6, an extension to the Internet Protocol standard,
allows us to identify approximately 3.4⇥ 10

38 objects in the dig-
ital domain.

Mavrommati et al [73] linked an XML-based description of
an object’s properties, services and capabilities with an arte-
fact ID. This alphanumeric ID is mapped to a namespace-based
identification scheme, using a similar process to the one used
for computer MAC addresses.

Tungare et al [110] identified an information object in their
Syncables framework, used to migrate task data and state in-
formation across platforms, via a Uniform Resource Identifier
(URI). They used the structure

sync://<info-cluster-id>/<collection>/<type>/<path>/<object-name>

where the information cluster is the set of all devices a user
interacts with during the course of a day. Each of the devices
in an information cluster “offers a unique set of affordances
in terms of processing capabilities, storage capacities, mobility
constraints, user interface metaphors, and application formats”.

Most service discovery mechanisms, for example those used
by UPnP, assume the user will use the Internet to establish
connections [62]. However, when we are in close proximity to
things, we can address these things by pointing at them, touch-
ing them or by standing near them, instead of having to search
or select them through a GUI.

Olsen et al. [89] used the domain name or IP address of a soft-
ware client associated with a device to identify it, and a URL to
identify services associated with a specific device. A user was
associated with a URL used for that user’s current session. The
physical user was identified using a Java ring, with a small Java
virtual machine running on the ring’s microcontroller.

O’Reilly and Battelle [90] argue that formal systems for adding
a priori meaning to digital data are actually less powerful than
informal systems that extract that meaning by feature recog-
nition. They think that we will get to an Internet of Things
via a “hodgepodge of sensor data, contributing, bottom-up to
machine-learning applications that gradually make more and

124 device capability modelling

more sense of the data that is handed to them”. As an exam-
ple, consider that using smart meter data to extract a device’s
unique energy signature, it is possible to determine the make
and model of each major appliance.

Jeff Jonas’s work on identity resolution uses algorithms that
semantically reconcile identities [102]. His Non-Obvious Rela-
tionship Awareness (NORA) technology is a semantically recon-
ciled and relationship-aware directory that is used by the Las Vegas
gaming industry to identify cheating players within existing
records. A semantically reconciled directory recognises when a
newly reported entity references a previously observed entity.

We agree that waiting until every object has a unique iden-
tifier for the Internet of Things to work is futile. However, the
Semantic Web was designed with this problem in mind. We
can use a URI to identify an entity we are talking about. Differ-
ent people will use different URIs to describe the same entity.
We cannot assume that just because two URIs are distinct, they
refer to the same entity [3]. This feature of the Semantic Web
is called, the Non-unique Naming Assumption. When using OWL,
it is necessary to assert that individuals are unique using the
owl:allDifferent or owl:differentFrom elements. Individu-
als can be inferred to be the same, or asserted using owl:sameAs.
For OWL classes and properties, we can use owl:equivalentClass
and owl:equivalentProperty.

xsd:string

SmartObject IdentificationhasIdentification
idValue

IDType

ofIDType

Figure 44: Modelling identification in the ontology

We modelled the identification of smart objects as shown in
Figure 44. An example of how the Squeezebox KP can be linked
to both its IP address and RFID tag is shown below:

SqueezeboxKP a SmartObject .
SqueezeboxKP hasIdentification id1234 .
SqueezeboxKP hasIdentification id4567 .
id1234 ofIDType IPAddress .

7.4 reasoning with device capabilities 125

id1234 idValue "192.168.1.4:1234" .
id4567 ofIDType RFID_Mifare .
id4567 idValue "12AB45CD67EF" .

7.3.2 Registering a device’s functionality

In the first design iteration we used a very simple approach
to modelling the capabilities of devices, where provides and
consumes properties linked smart objects to the names of the
capabilities. During the later design iterations we modelled ca-
pabilities as functionalities of a device instead. Examples of

provides and
consumes were
shown in Section
3.2.

To register the functionality of a device such as the Squeeze-
box internet radio, we can use the following triples:

squeezeboxKP a SmartObject .
squeezeboxKP functionalitySource Alarm .
squeezeboxKP functionalitySink Alarm .
squeezeboxKP functionalitySink Music .

This indicates that the device is capable of acting both as a
source and as a sink for Alarm functionality, while it can act
as a sink for Music functionality. Once these device capabilities
are registered, we can use semantic reasoning to infer which
devices can be connected to each other.

7.4 reasoning with device capabilities

A smart object can have one or more functionalities that can
be shared with other smart objects. As shown in the previous
section, we model a functionality as

ie:Alarm a ie:Functionality .
ie:phone1 a ie:SmartObject .
ie:phone1 ie:functionalitySource ie:Alarm .

or in the case of modelling the functionality of a sink we use

ie:Music a ie:Functionality .
ie:speaker1 a ie:SmartObject .
ie:speaker1 ie:functionalitySink ie:Music .

To infer that two devices can be connected based on function-
ality as shown in Figure 45, we use an OWL 2 property chain:

126 device capability modelling

Smart Object 1 Smart Object 2
canConnectTo

Functionality

hasFunctionality hasFunctionality

Figure 45: Inferring connection possibilities based on functionality

functionalitySource � isFunctionalityOfSink v canConnectTo
where we use isFunctionalityOfSink, the inverse property ofA similar method

was used to match
media types in

Section 4.4.2.

functionalitySink, to be able to create the property chain.
To prevent a smart object from having a canConnectTo re-

lationship to itself (which will be the case for semantic trans-
formers), the relationship is defined to be irreflexive. Inferring
indirect connection possibilities is also possible with a property
chain:

canConnectTo � canConnectTo v canIndirectlyConnectTo

7.4.1 Representing functionalities as predicates

If we want to model the common functionalities between two
smart objects, we can use the n-ary ontology design pattern
[86]. Unfortunately, this is not intuitively readable from its on-Ontology design

patterns are
discussed in

Chapter 9.

tological representation, as shown in the top half of Figure 46.
The representation looks complicated and is difficult to read.
On the other hand, we can also directly infer the matched func-
tionalities as predicates, instead of using n-ary representations.
The result can be represented using three triples instead of nine
triples, and it is also more intuitively understandable, as shown
in the bottom half of Figure 46.

Representing an individual as a predicate is not valid in OWL
2 DL and places the ontology into OWL 2 Full. However, since
we are using an OWL 2 RL/RDF Rules reasoning mechanism,
this is not an issue. Thus we choose to use predicates instead
of n-ary relations, and so we do not stay within OWL 2 DL. We
can easily infer this relation using a SPIN rule:

7.4 reasoning with device capabilities 127

Matched functionalities as n-ary relations

Matched functionalities as predicates

lamp1

phone2

FP1hasFunctionalityPath

FP2hasFunctionalityPath

wakeup2

Alarm

lamp2

wakeup2

Light
hasFunctionality

wakeup1hasSource FP3
hasFunctionalityPath

hasSource Alarm
hasFunctionality

hasFunctionality

phone1
hasSource

Light

Figure 46: Representing matched functionalities: N-ary relations ver-
sus predicates

CONSTRUCT{
?this ?functionality ?sink .

}
WHERE{

?this :functionalitySource ?functionality .
?sink :functionalitySink ?functionality .

}

where ?this ⌘ SmartObject. For example, if we have a phone
and a speaker with a common Music functionality, defined as

:phone1 :functionalitySource :Music .
:speaker1 :functionalitySink :Music .

the above SPIN rule will infer

:phone1 :Music :speaker1 .

such that the functionality itself is represented as a predicate.
For a semantic transformer, which is indirectly connected to
smart objects, we need an additional SPIN rule:

CONSTRUCT{
?source ?this ?sink .

}
WHERE{

?source :canIndirectlyConnectTo ?this .
?this :canIndirectlyConnectTo ?sink .

}

128 device capability modelling

where ?this ⌘ SemanticTransformer. This infers the seman-
tic transformer itself as the relation between the source and the
sink, since it transforms the original functionalities. For exam-
ple, using the smart objects in Figure 46, if we have

:phone2 :functionalitySource :Alarm .
:wakeup2 :functionalitySink :Alarm .
:wakeup2 :functionalitySource :Light .
:lamp2 :functionalitySink :Light .

and using the two property chains from Section 7.4, we can
infer that

:phone2 :canConnectTo :wakeup2 .
:wakeup2 :canConnectTo :lamp2 .
:phone2 :canIndirectlyConnectTo lamp2 .

If we then apply the SPIN rule defined above we can infer that

:phone2 :wakeup2 :lamp2 .

where the semantic transformer itself becomes the predicate
between the two smart objects, signifying the possibility of hav-
ing wakeup service functionality between the two objects.

How can we provide feedback or feedforward to the user that
these possible functionalities exist between smart objects? This
can be done using the feedback capability of the Connector ob-
ject and the feedback capabilities of the devices themselves. Just
after the user scans the second device, and before the connec-
tion is actually made, feedback of the different possibilities for
shared functionality can be provided to the user.The dataValue

property of
interaction events is

discussed in more
detail in Section 8.2.

When two devices can be connected directly, the Connec-
tor object creates a temporary connection from itself to the
sink. This temporary connection is specified using the temp-
ConnectedTo property, a sub-property of the connectedTo prop-
erty. The Connector object generates a PreviewEvent with the
matching functionality as dataValue. This triggers the sink toPreview events and

the
tempConnectedTo
property were first

discussed in Section
5.4.1.1.

create a preview of the functionality described by the Preview-
Event and its dataValue. When the sink completes the preview,
it generates its own PreviewEvent to indicate that it has fin-
ished. The Connector object sees the sink’s PreviewEvent and
removes the temporary connection.

However, when there is a semantic transformer between the
source and the sink, the Connector object creates a temporary
connection to the semantic transformer instead of the sink, in

7.4 reasoning with device capabilities 129

Source Semantic Transformer
canConnectTo

Sink

canIndirectlyConnectTo

tempConnectedTo
canConnectTo

Connector

tempConnectedTo

Figure 47: Temporary connections for PreviewEvent when semantic
transformer is used

order to generate the appropriate PreviewEvent, as shown in
Figure 47. Keep in mind that the semantic transformer is a vir-
tual object, and therefore only the preview functionality gener-
ated by the sink will be perceivable by the user.

The Connector object uses the inferred canIndirectlyConnect-
To and canConnectTo properties to determine where to insert
the tempConnectedTo properties. After inserting the tempCon-
nectedTo properties, the Connector object generates a Preview-
Event. Due to the tempConnectedTo relationship between the
Connector object and the semantic transformer, the semantic
transformer responds to this event and also generates a Pre-
viewEvent with its own functionality as dataValue. Due to the
tempConnectedTo relationship between the semantic transformer
and the sink, the sink responds to the preview event of the se-
mantic transformer and generates the appropriate preview of
its functionality.

Now that we have a way to model the capabilities of devices
and provide previews of their functionality, we can start look-
ing at ways to represent the different kinds of events that are
generated on these devices in the next chapter.

8
E V E N T M O D E L L I N G

[Artefacts] mediate activity that connects a person not only with
the world of objects, but also with other people. This means

that a person’s activity assimilates the experience of humanity.

— Aleksei N. Leontiev [60], founder of activity theory
Parts of this chapter
appear in [81].Events are notable occurrences that can be associated with

people, places and objects at a specific time instant, or during
a specific time interval. In the previous chapter the modelling
of objects and their capabilities was described. The focus of this
chapter is on how the event and its associated time instant/in-
terval can be modelled. The modelling of people and places is
considered to be outside the scope of this thesis. Interaction events

were first
introduced in
Section 3.2.

The W3C Web Events Working Group defined four concep-
tual layers for interactions, in the context of touch- and pen-
tablet interaction [1]:

physical This is the lowest layer, and deals with the physical
actions that a user takes when interacting with a device,
such as pressing a physical button.

gestural This is layer describes mappings between the lower
and upper layers; for example, a “pinch” gesture may rep-
resent the user placing two fingers on a screen and mov-
ing them together at the physical layer. This may map to
a “zoom-in” event at the representational layer.

representational This layer indicates the means by which
the user is performing a task, such as zooming in, pan-
ning, navigating to the next page, activating a control, etc.

intentional This layer indicates the intention of the task a
user is trying to perform, such as viewing more or less
detail (higher-level abstraction of zooming in and out),
viewing another part of the larger picture (higher-level
abstraction of panning), and so forth.

Interaction events can be defined at three of the layers, with
the exception of the intentional layer. In Table 3 examples of
possible interaction events are shown, together with possible

131

132 event modelling

interaction event can be performed on

AdjustLevelEvent Volume, Lighting
switchOnEvent Lighting, any SmartObject
NavigateEvent Playlist, Menu, SequentialData
UndoEvent Any other interaction event
StopEvent Application, Media

Table 3: Examples of interaction events in a smart environment

entities associated with these events. Most of these interaction
events exist at the representational layer, which are events that
have significant meaning. This high level of abstraction enables
developers to write applications which will work across differ-
ent devices and services, without having to write specific code
for each possible input device.

These events all occur at a specific time or during a specific
time interval. In OWL, there are are two approaches to mod-
elling time:

• Using datatype properties – event instances can be re-
lated to a literal with a XSD datatype such as xsd:date
or xsd:dateTime.

• Using object properties – classes are used to define tem-
poral intervals, and event instances are linked to instances
of these classes using object properties.

The advantage of linking event instances directly with dates
is simplicity. There are fewer abstractions to deal with, and it
is easier to sort events chronologically and compare them [107].
On the other hand, working with temporal intervals provide
more flexibility and allows for more detailed temporal reason-
ing.

This chapter is structured as follows: First we look at cur-
rent approaches to modelling events using ontologies, which is
then followed by our approach to modelling interaction events,
based on the concepts of the existing event ontologies.

8.1 related work

We now look at various existing event ontologies that we build
upon to model interaction events in ubiquitous computing en-

8.1 related work 133

vironments. We will also look at how temporal reasoning is
performed with ontologies.

8.1.1 The Event Ontology

The Event Ontology (EO)1 was developed within the context
of the Music ontology2 at Queen Mary, University of London.
Although originally created to describe musical performances
and events, it is currently the most commonly used event ontol-
ogy in the Linked Data community [107].

The Timeline3 ontology, used to define time instants and in-
tervals, also forms part of this collection of ontologies. Reason-
ing with temporal information is discussed further in Section
8.1.5.

8.1.2 DUL

The DOLCE+DnS UltraLight (DUL) upper ontology is a light-
weight version of the DOLCE ontology. DUL defines the class
Event next to the disjoint upper classes Object, Abstract and
Quality [101]. DUL allows for both the approaches to modelling
time with OWL, either with the hasEventDate datatype property,
or with a TimeInterval class and the isObservableAt object
property.

Events can be related to a Place with the hasLocation prop-
erty. Alternatively, events can be related to a SpaceRegion with
the hasRegion property, where SpaceRegion resolves to a geospa-
tial coordinate system. DUL uses a hasParticipant property to
relate an event to an object, and uses the hasPart property to
link events to sub-events.

8.1.3 Event-Model-F

The Event-Model-F ontology extends the DUL ontology to de-
scribe events in more detail. To describe the participation of
an object in an event, the Event-Model-F ontology uses the DnS
ontology design pattern [107]. The DnS pattern is

described in more
detail in Chapter 9.

An object is defined as a Participant, where LocationPara-
meter is used to describe the general spatial region of the ob-

1 http://motools.sf.net/event/event.html
2 http://purl.org/ontology/mo/
3 http://motools.sf.net/timeline/timeline.html

134 event modelling

ject [101]. TimeParameter describes the general temporal region
when the event happened by parametrizing a DUL TimeInterval.
A composite event Composite is composed out of a number of
Components.

8.1.4 Linked Open Descriptions of Events (LODE)

The Linked Open Descriptions of Events (LODE) ontology4 is
an ontology for publishing descriptions of historical events as
Linked Data. It builds upon the work of the previous ontologies
described in this section, in order to improve interoperability
with legacy event collections. Its Event class is directly equiva-
lent to those defined by EO and DUL.

It uses time intervals to link events to ranges of time, where
its atTime property is a sub-property of the DUL isObservableAt
property. There is also a distinction between places and spaces,
where the inSpace property relates the event to a space, and
the atPlace property is a sub-property of the DUL hasLocation
property.

8.1.5 Ontologies for temporal reasoning

Temporal reasoning is used when working with time intervals,
for example when using Allen’s Interval Algebra to define tem-
poral relations between events. There are 13 base relations in
this algebra, for example to define that event X happens before
event Y, or that event X occurs during event Y. Allen’s Interval
Algebra is used by a number of ontologies, including the DOLCE
[101] upper ontology.The DOLCE upper

ontology is
discussed in more

detail in Chapter 9.

SWRL Basic Temporal Built-ins support xsd:date and xsd:-
dateTime with Allen’s Interval Algebra. The Advanced Tem-
poral Built-ins uses the temporal ontology [87] to provide ad-
ditional functionality, for example having different granularity
levels.

The Dublin Core (DC) Terms ontology has a temporal prop-
erty to describe temporal coverage of a resource with a range
periodOfTime.

TopBraid Composer has a Calendar ontology that defines an
Event and its startTime and endTime (as xsd:dateTime). This
can then be used with the Calendar View widget in the editor.

4 http://linkedevents.org/ontology/

8.2 interaction events 135

In SPARQL, we can use the < and > operators on dates, for
example

FILTER(?date > "2005-10-20T15:31:30"^^xsd:dateTime)

Using SPIN, can also cast a xsd:dateTime value to a string
using the fn:substring function, for example

fn:substring(xsd:string(afn:now()),0,10)

We build on these event models to create our own interaction
event model. In the next section, a mapping between the entities
in the various ontologies show how our work relates to the
existing work.

8.2 interaction events

We now turn our focus to how interaction events are modelled
in the work described in this thesis. In order to perform seman-
tic reasoning with events, we need to know when they occur
and be able to uniquely identify them. An interaction event
happens at a specific time, is generated by a smart object and
has an optional data value associated with the event.



















Figure 48: An interaction event as modelled in the ontology

An example of an event generated when an alarm is set is

:event-43495d51-29e3-11b2-807e-ac78eefc1f82
rdf:type :AlarmSetEvent ;
:generatedBy :phone1 ;
:inXSDDateTime "2012-01-17T11:22:06.887+01:00"^^xsd:dateTime ;
:dataValue "2012-01-17T12:00:00+01:00"^^xsd:dateTime .

136 event modelling

dul eo lode interaction events

isObservableAt time atTime inXSDDateTime
place inSpace

hasLocation atPlace
hasParticipant factor involved
involvesAgent agent involvedAgent generatedBy

dataValue

Table 4: Mappings between the various event models (adapted from
[107])

A mapping between our interaction event model and the
other event ontologies is shown in Table 4. Note that we do not
model people or places in the current version of the ontology,
as we consider these entities to be optional when describing
interaction events.

The duration property is used to define the length of event.
For example to increase the brightness of a lamp, we can gener-
ate an event to increase a value to a set maximum over a time
period:

:event-43495d51-29e3-11b2-807e-ac78eefc1f83
rdf:type :IncreaseLevelEvent ;
:generatedBy ie:wakeup1 ;
:inXSDDateTime "2012-01-17T11:23:06.887+01:00"^^xsd:dateTime ;
:dataValue 255 ;
:duration "PT3S"^^xsd:duration .

We consider interaction events to be identifiable and trace-
able. Each interaction event has an associated timestamp and a
unique ID that is generated when the event occurs. All interac-
tion events that occur are stored in the triple store.Intentional,

incidental and
expected

interactions were
introduced in
Section 2.5.2.

An intentional interaction, like pressing a light switch, is an
interaction event if the light switch shares this information with
other devices. Incidental or expected interactions, like the light
turning on if the presence sensor is triggered, are also inter-
action events. System events, like a TimeSetEvent, which are
invisible to the user are not considered to be interaction events.

8.2 interaction events 137

8.2.1 System events

When a smart object first subscribes to the smart space, it specif-
ically listens for events that are generated by other smart objects
connected to it. This means that we also need some way of dis-
tributing system-wide events that all devices listen for. As an ex-
ample, consider the TimeSetEvent. When the user sets the time
on one device, we want the time to be immediately updated on
all the other smart objects in the smart space, even if they are
not connected to the device that generated the TimeSetEvent.
If we define TimeSetEvents as a subset of SystemEvents, each
smart object only need to subscribe to events of type SystemEvent.

8.2.2 Feedback

When setting an alarm for example, augmented feedback should
be provided on all devices. Functional feedback, i.e. the alarm
sound when an alarm fires is triggered, is delayed. This means
that augment functional feedforward should be provided. We
thus define two types of feedback events: Preview events and

indicator events
were first
introduced in
Section 5.4.1.1.

• PreviewEvent - generated when a possible connection is
being explored, displaying the possible functionalities en-
abled by the connection, i.e. augmented functional feed-
forward.

• IndicatorEvent - augmented feedback when smart object
is connected and there is no immediate functional feed-
back, e.g. a sink “beeping” when the alarm is set on the
source; used to confirm actions.

The type of feedback required depends on the functionality
of the connection. It is important for the feedback to coincide
in time and modality with the event generated, as to maintain
the causal link that is perceived by the user.

The device used to make the connection, for example the
Connector object, creates a temporary connection to the de-
vices to be connected in order to generate a PreviewEvent. This
tempConnectedTo property is a sub-property of the connectedTo
property. This means that the smart objects will handle it as if it
is a regular connection, and when the Connector object removes
the tempConnectedTo relationship, the inferred connectedTo re-
lationship will disappear as well.

138 event modelling

8.2.3 Discussion & Conclusion












 


Figure 49: Examples from Arnall’s “A graphic language for touch”
(adapted from [4])

Tungare et al. [110] defined a task disconnect as “the break
in continuity that occurs due to the extra actions outside the
task at hand that are necessary when a user attempts to ac-
complish a task using more than one device.” Kuniavsky [66]
states that consistency is the key aspect in creating task con-
tinuity across devices, and that interaction vocabularies have re-
cently emerged as a way of consistently interacting with a range
of devices. This ranges from simple vocabularies of light pat-
terns and motion as used by the (now discontinued) Nabaztag
Internet-connected rabbit that could compose “sentences” with
more complex meaning, to a set of visual icons by Timo Arnall
[4] that represents various kinds of touch-based RFID interac-
tions.

These interaction vocabularies try to smooth over task dis-
connects through consistency. We argue that by having a vocab-
ulary, or ontology, of interaction events could improve consis-
tency in ubiquitous computing environments. This is the inten-
tion of the work in this chapter — to provide an ontology of
interaction events that improves consistency for users, as well
interoperability between devices.

8.2 interaction events 139

Arnall’s touch-based vocabulary is shown in Figure 49. Ar-
nall categorises his vocabulary of visual icons into four classes
of interactions:

• Circles, of which the “Aura” is an example

• Card, of which the “Card in hand” is an example

• Wireless, of which the “Wireless dot” is an example

• Mobile, of which the “Phone beaming” is an example

The “Aura” icon communicates both the near-field communi-
cation capabilities of the technology, but also indicates that the
physical object has capabilities beyond its form. The icons with
cards or mobiles could improve consistency for a wide range of
users which use these technologies on a daily basis.

Arnall’s work is specific to touch-based RFID interactions,
and helps to provide users with feedforward of device func-
tionality that might not be immediately apparent otherwise. An
ontology of interaction events, on the other hand, provides de-
signers of smart objects with a vocabulary to describe the events
that are shared between devices in order to improve interoper-
ability and consistency.

9
O N T O L O G Y E N G I N E E R I N G

Perfection is achieved, not when there is nothing more to add,
but when there is nothing left to take away.

— Antoine de Saint Exupéry [60], writer and poet

This chapter deals with the ontology- and reasoning-related
aspects of the work in more detail. First, an overview of the
different types of ontologies is provided, followed by a descrip-
tion of how semantic reasoning is performed with ontology lan-
guages. Our implementation, with reasoning performed using
OWL and SPIN, is described. A set of 10 ontology design patterns
that were identified during the three design iterations forms the
second part of this chapter.

An ontology is a representation of knowledge (facts, things,
etc.) in terms of concepts within a specific domain, as well as
the relationships between them. Ontologies make it easier to
publish and share knowledge. They are both machine-readable
and human-understandable. The power of ontologies lies in
their ability to create relationships among classes of objects,
and to assign properties to those relationships that allows us
to make inferences about them [61].

The word ontology is used in the literature to mean different
things:

• a formal specification of concepts and relations in a do-
main, using axioms to specify the intended meaning

• an informal specification using UML class diagrams or
entity-relationship models

• a vocabulary, or collection of named concepts agreed on
by a group, defined in natural language

An example of clear
conceptual
modelling using
roles is shown in
Section 9.5.1.

What these different usages of the word have in common
is that an ontology is a community contract about the represen-
tation of a domain [55]. It also has to be maintained during
its lifespan, and is created through clear conceptual modelling
based on philosophical notions.

An OWL file can be used to represent an ontology or the in-
dividuals (instances) it describes, or both the ontology and its

141

142 ontology engineering

restriction dl manchester owl

Existential 9 some owl:someValuesFrom

Universal 8 only owl:allValuesFrom

Value 3 value owl:hasValue

Equivalence ⌘ equivalentTo
owl:equivalentProperty,

owl:equivalentClass

Cardinality = exactly owl:cardinality

Minimum
cardinality

> max owl:minCardinality

Maximum
cardinality

6 min owl:maxCardinality

Table 5: OWL restriction definitions using different syntaxes: Descrip-
tion Logic, Manchester OWL Syntax[35] and OWL syntax

instances can be contained within the same file. For example,
the concept Man could be defined as part of the ontology, and
the individual Gerrit would be an instance of Man. The differ-
ent types of restrictions that can be defined in OWL are shown
in Table 5, together with the various syntaxes that can be used
to represent these restrictions.

Even without using a reasoner to infer new facts, an ontology
improves the usefulness of the data. Using unique identifiers to
represent concepts and relationships enables a computer to find
and aggregate new information. For example, the relationship
knows in the FOAF ontology can be used to find and aggregate
relationships between two individuals, where asserting

:Jun :knows :Gerrit .
:Gerrit :knows :Bram .

we can infer that

:Jun :knows :Bram .

We distinguish between four layers of ontologies, that are
used to present concepts ranging from the more general to the
more specific: foundational ontologies, core ontologies, domain
ontologies and application ontologies.

9.1 layers of ontologies 143

9.1 layers of ontologies

9.1.1 Foundational ontologies

Foundational or upper ontologies are aimed at modelling very
basic and general concepts, as to be highly reusable in differ-
ent scenarios [101]. They are used to align concepts in other
ontologies, and to ensure consistency and uniqueness of these
concepts. Examples of foundational ontologies include DOLCE,
Basic Formal Ontology (BFO), OpenCyc and Suggested Upper
Merged Ontology (SUMO). These ontologies can serve as refer-
ence ontologies when a new ontology is developed.

9.1.2 Core ontologies

Core ontologies are used to model knowledge about a specific
field. A core ontology is based on a foundational ontology and
should be modular and extensible [101]. A number of core on-
tologies exist for modelling things like events and multime-
dia objects. Core ontologies refine foundational ontologies by
adding field-specific concepts and relations. The Event-Model-
F ontology, for example, is used to model the causality, corre-
lation and interpretation of events, and is based on DUL. Core
ontologies achieve modularity and extensibility by following a
pattern-oriented approach. Event-Model-F uses the DnS and In-
formation Object patterns provided by DUL.

The Core Ontology Multimedia (COMM) ontology is used
represent multimedia objects such as images, video and au-
dio, and is also based on DUL. An audio recording could be
modelled as AudioData, while a text description could be mod-
elled as TextData. However, AudioData (a subconcept of DUL
InformationObject) represents the information that is contained
in the audio recording, not the digital audio stream itself [101].
The location of the audio file is represented with a concept that
denotes the URI. Ontologies are

particularly
well-suited to
domains such as
biomedical research,
where there is an
abundance of
available data with
non-hierarchical
relationships.

9.1.3 Domain ontologies

Domain ontologies represent reusable knowledge in a specific
domain and are usually handcrafted. The Gene ontology, for
example, describes gene products in terms of their biological
processes, cellular components, and molecular functions in a
species-independent manner [61].

144 ontology engineering

9.1.4 Application ontologies

An application ontology is created for a specific application,
so they are not considered to be reusable. However, the tools
or processes used to create the ontology may be reusable. The
Cell Cycle ontology1, for example, is specific to modelling the
cell cycle process, a rather specialised domain.

9.2 our approach

In the following sections we will describe our approach to mod-
elling ontologies, as well as ontology design patterns that we
have identified. First we introduce the features of OWL that we
used. OWL can be used to define classes and relationships, as
well as restrictions. A restriction is used to define a formal de-
scription of a class that restricts class membership [3].An example of an

OWL restriction is
shown in Section

9.3.5.

In some cases we need more expressiveness than what is
allowed by OWL. Rule languages go beyond what can be ex-
pressed by OWL, or can be easier to understand [54]. We made
use of SWRL in the first design iteration, and in some of the ex-
amples in this chapter. Later, we discovered some limitations of
SWRL, like not being able to construct new individuals. We also
experienced some performance issues when using SWRL.SWRL performance

issues are described
in more detail in

Section 4.5.

This necessitated the switch to another way of defining rules,
called SPIN. SPIN allows us to specify rules in SPARQL. These
SPARQL rules are contained within the ontology itself. The Top-
SPIN reasoning engine, implemented in our version of the SIB,
supports both OWL 2 and SPIN.

9.3 reasoning with owl

In order to make the data generated by the smart environment
more useful, we need a consistent way of understanding the
combination of data from multiple sources. Reasoning or infer-
encing provides a robust solution to understanding the mean-
ing of novel combinations of terms [54]. A reasoner may be
used for truth maintenance, belief revision, information consis-
tency and information creation in an information space [88].

As of October 2009 the OWL 2 Web Ontology Language is the
W3C recommendation for creating ontologies. Most semantic

1 http://www.CellCycleOntology.org

9.3 reasoning with owl 145

reasoners have some kind of support for OWL as well as support
for a rule language like SWRL:

• Pellet (Java): Supports OWL 2 and SWRL (DL-safe rules),
has a command-line option with explain command.

• Fact++ (C++): Supports OWL DL, does not fully support
OWL 2.

• HermiT (Java): Supports OWL 2 and SWRL (DL-safe rules
without built-ins), uses hypertableau calculus to perform
reasoning, comes pre-installed with Protégé editor, has a
command-line option.

• TopSPIN (Java): Supports OWL 2 RL/RDF Rules defined
as SPIN rules, comes pre-installed with TopBraid Com-
poser.

Let us now look at a number of services provided by reason-
ers.

9.3.0.1 Subsumption testing

One of the services provided by a reasoner is to test whether or
not one class is a subclass of another class, also known as sub-
sumption testing. The descriptions of the classes are used to
determine if a superclass/subclass relationship exists between
them. It also infers disjointness and equivalence of classes. By
performing such tests on the classes in an ontology it is possible
for a reasoner to compute the inferred ontology class hierarchy.
The reasoner can also determine class membership for individ-
uals based on their properties, i.e. class membership does not
always have to be asserted. It is also possible to infer new prop-
erty relations with other individuals.

Subsumption refers to the reflexive, transitive and antisym-
metric relationship between classes, that states that a class A
subsumes a class B if and only if the set of instances of class A
includes the set of instances of class B [93]. The same principle
holds for OWL properties.

Preuveneers and Berbers [93] evaluated the Pellet ontology
reasoner on a smart phone for semantic matching, but it was
considered unsuitable due to performance requirements. They
developed an encoding scheme to provide a compact repre-
sentation of subsumption relationships. It is based on the idea
that subsumption of classes in an ontology is somewhat related

146 ontology engineering

to multiple inheritance in an object-oriented programming lan-
guage, which means that inheritance-encoding algorithms can
be used for subtype testing. However, the algorithm cannot test
for satisfiability - whether instances of a specific class can actu-
ally exist.

Being able to use a reasoner to automatically compute the
class hierarchy is one of the major benefits of building an ontol-
ogy using OWL. When constructing large ontologies the use of a
reasoner to compute subclass-superclass relationships between
classes becomes almost vital. Without a reasoner it is very dif-
ficult to keep large ontologies in a maintainable and logically
correct state.

With ontologies it is possible for a class to have many super-
classes, also called multiple inheritance. Usually it is easier to
construct the class hierarchy as a simple tree, and leave com-
puting and maintaining multiple inheritance to the reasoner.
Classes in the asserted hierarchy therefore have no more than
one superclass. This helps to keep the ontology in a maintain-
able and modular state and minimises human errors that are
inherent in maintaining a multiple inheritance hierarchy. For
example, in our ontology we have

AlarmSetEvent rdfs:subClassOf SetEvent .
TimeSetEvent rdfs:subClassOf SystemEvent .

where TimeSetEvent is asserted to belong to one superclass
TimeSetEvent, but could also be inferred by the reasoner to
belong to SetEvent if that is preferred.

9.3.1 Consistency checking

A reasoner performs consistency checking to check whether all
axioms and assertions are consistent. Based on the description
of a class the reasoner can check whether or not it is possible
for the class to have any instances. A class is deemed to be
inconsistent if it cannot possibly have any instances.

9.3.2 Necessary versus necessary and sufficient

RDF
Schema (RDFS) is a

subset of OWL [3].
A necessary condition will allow a class to be inferred as a sub-
class (rdfs:subClassOf), compared to a necessary and sufficient
condition, which will make a class equivalent to another class
(owl:equivalentClass). The second condition usually requires
an intersection of classes to be defined using the and keyword.

9.3 reasoning with owl 147

9.3.3 Inverse properties

If one defines a new inverse property of an existing property
with a specified domain and range, the inverse domain and
range will be inferred for new individuals with this property.
As an example: Note that in

Protégé this inverse
domain and range
might not show up
for the property
itself, but that it
will be inferred for
new individuals.

SmartObject ⌘ isSmartObject 9 Self

This can also be represented in OWL as:

:SmartObject
a owl:Class ;
owl:equivalentClass
[a owl:Restriction ;

owl:hasSelf "true"^^xsd:boolean ;
owl:onProperty :isSmartObject

] .

Any individual that is related to itself via the isSmartObject
property will be identified as an instance of SmartObject, and
any individual asserted as an instance of SmartObject will be
related to itself via that property [57].

9.3.4 Property chains

A new feature introduced in OWL 2 is property chains, which
allows for the specification of the propagation of a property
along some path of interconnected properties [58]. Examples of
property chains are shown in Section 4.4.2 and Section 7.4.

9.3.5 Using cardinality restrictions

When modelling cardinality in OWL 2, one might expect to be
able to infer that an individual is a member of a class based on
a cardinality restriction, for example

Class: TwoButtonDevice

SubClassOf:
Device hasButton exactly 2 Button

Unfortunately, due to the OWA, it cannot be known whether
an individual might have additional properties of that type. The

148 ontology engineering

only way to identify an individual is using minimum cardinal-
ity. However, this approach can be problematic if the concept is
underspecified [58].

In OWL 2, it is possible to define a Qualified Cardinality Re-
striction (QCR), which means the cardinality restriction can be
applied to a specific class [54].

This means that it is possible to define that a smart object has
only one current state:

SmartObject
rdfs:subClassOf

[
rdf:type owl:Restriction;
owl:qualifiedCardinality 1;
owl:onProperty hasCurrentState;
owl:onClass State

];

If we then assert a certain smart object to have two current
states, e.g.

phone1 hasCurrentState playing .
phone1 hasCurrentState stopped .

it will violate the QCR if playing and stopped are distinct. InIndividuals are
distinct if it is

asserted that they
are different from

one another.

earlier versions of OWL, it was not possible to define a specific
class for a cardinality restriction.

9.4 reasoning with spin

SPIN2 is a W3C Member Submission created and maintained by
TopQuadrant, who is also responsible for the TopBraid Com-
poser ontology editor. With SPIN, rules are expressed in SPARQL,
the W3C recommended RDF query language, which allows for
the creation of new individuals using CONSTRUCT queries.
Let us now look at some features of SPIN.

9.4.1 Integrity constraints

SPIN allows us to specify integrity constraints, e.g. that

:event1 :generatedBy :device1 .

2 http://www.spinrdf.org

9.4 reasoning with spin 149

should exist. Domain and range are not integrity constraints,
but allow us to infer for example the class type of new individ-
uals, e.g. if

:generatedBy rdfs:range :SmartObject .

then asserting

:event1 :generatedBy :device1 .

would infer

:device1 rdf:type :SmartObject .

9.4.2 SPARQL Rules

SPIN allows for fine-grained control of how rules are executed.
For example, it is possible to have a rule fire only once, by set-
ting the SPIN property spin:rulePropertyMaxIterationCount
to 1, in cases where new inferences could cause the rule engine
to iterate infinitely. It is also possible to specify the order in
which rules are executed using spin:nextRuleProperty.

9.4.3 Built-in SPARQL Functions

Built-in functions
with fn:
(XPath/Xquery) or
afn: (ARQ
Functions) prefix
are also available as
part of ARQ, the
Jena query engine.
The spif: prefix
denotes the SPIN
Standard Functions
Library.

SPIN has a number of built-in functions3 that provides addi-
tional functionality not available in OWL 2. These built-in func-
tions can be very helpful when creating your own SPIN rules,
functions or magic properties. They can be used to retrieve sub-
strings (fn:substring), perform modulo arithmetic (spif:mod),
or generate random numbers (spif:random).

An example of where they are used in our ontology is the
afn:now() function in the currentDateTime magic property:

SELECT ?datetime
WHERE{BIND(afn:now() AS ?datetime) .
}

Magic properties
are described in
Section 9.4.5.

Some built-in functions, like spif:buildUniqueIRI (used to
create new URIs), are only available as part of the extended Top-
Braid SPIN API4, and cannot be used with the free open-source

3 The reference documentation for the built-in functions can be accessed in
TopBraid Composer from Help ! Help Contents ! TopBraid Composer !
Reference ! SPARQL Functions Reference

4 Available under a commercial license from TopQuadrant

150 ontology engineering

edition5. That said, it is possible to build your own buildURI
function using fn:concat as we did in the second design itera-
tion:

BIND (IRI(fn:concat("example.com#mediaPath_", afn:localname(?this),
"_to_", afn:localname(?x3))) AS ?mp) .

9.4.4 Custom functions

It is possible to create your own custom functions in SPIN. These
functions are written in SPARQL and stored in the ontology.If you use the

.spin.rdf
extension to store
the ontology file,

custom functions
will be loaded into

TopBraid Composer
on startup.

An example of a custom function we built6 is getMaxDateRsc,
which is used to retrieve the last interaction event that was gen-
erated by a specific smart object:

SELECT ?lastEvent
WHERE{

?lastEvent events:generatedBy ?arg1 .
?lastEvent events:inXSDDateTime ?last .

}
ORDER BY DESC (?last)
LIMIT 1

This was then combined with a SPIN rule to create an object
for the hasLastEvent property:

CONSTRUCT{
?this events:hasLastEvent ?lastEvent .

}
WHERE{BIND (events:getMaxDateRsc(?this) AS ?lastEvent) .
}

The SPIN rule is
required as magic

properties cannot be
used in local

restrictions on their
own.

When loading an ontology with SPIN functions into Jena, the
functions should be registered using

SPINModuleRegistry.get().registerAll()

An extension of SPIN, called SPINx, allows for the definition
of more elaborate custom functions using JavaScript. Unfortu-
nately it cannot access the triple graph at execution time, but
it does operate on arguments. Jena allows similar functionality
to SPIN and SPINx functions using a FunctionFactory, which
allows you to define and register your own functions in Java.

5 http://topbraid.org/spin/api/
6 With help from Scott Henninger and Holger Knublauch from TopQuadrant

9.5 ontology design patterns 151

9.4.5 Magic properties

Magic properties, also called property functions, may be used
in SPIN to dynamically compute values, even if there are no
corresponding triples in the model. For example, we created
the magic property currentDateTime with the SPIN body The inferencing

engine does not
always infer
superclasses for
SPARQL queries,
which could cause
problems for magic
properties.8

SELECT ?x
WHERE{BIND (afn:now() AS ?x) .
}

When we now create a query for something like

:phone1 :currentDateTime ?date

the current date/time is returned as an object. This allows
us to write KP queries at triple-level, without having to send a
SPARQL query from the KP to the SIB. Magic properties are more
flexible than SPIN functions and can return multiple values.

9.5 ontology design patterns

In software engineering, design patterns are generalised solu-
tions to problems that commonly occur in a specific software
context. An example of such a pattern is the observer pattern,
in which a software object maintains a list of observers which
are notified of state changes. The observer pattern is one of the
original patterns described in the seminal book on design pat-
terns by Gamma et al. [45]. The blackboard pattern, used in our
software architecture, is a generalised version of the observer
pattern that allows multiple readers and writers. The blackboard

pattern was first
mentioned in
Section 1.2.5.

A similar approach to design patterns has been applied to
ontologies [47, 56, 33]. Dodds and Davis [33] used the following
pattern template to document an ontology design pattern in
their book “Linked Data Patterns”:

• Question - A question indicating the problem the pattern
is designed to solve

• Context - Description of the goal and context of the pat-
tern

• Solution - Description of the pattern

• Example(s) - Real-world implementations that make use
of this pattern

152 ontology engineering

• Discussion - Analysis of the pattern and where it can be
used

• Related - List of comparable patterns

They formalised a number of linked data patterns into a pat-
tern catalogue, and we will now use the same pattern template
to describe ontology design patterns that can be applied in the
context of smart environments. In this section we first look at
three examples of existing ontology design patterns, before we
focus on new patterns that were identified during the course of
the work described in this thesis.

One of the example patterns, DnS, is an ontology design pat-
tern provided by the Ontology Design Patterns (ODP) initiative9.
They maintain an entire online library of ontology design pat-
terns, to be used as building blocks for creating new ontologies.

ODP distinguishes between a number of different pattern types,
including:

• Content patterns, e.g. the Role pattern that defines Student
as a role instead of a subclass of Human

• Logical patterns, like the n-ary relation or Situation pat-
tern

• Reengineering patterns, e.g. converting microformats to
RDF

• Alignment patterns, e.g. aligning FOAF with the VCard
format

• Anti-patterns, e.g. modelling City as a subclass of Country

The first example pattern below, called the Role pattern, is
required reading for understanding the DnS pattern.

9.5.1 The Role pattern

How can we represent the roles of devices and agents in an ontology?

9.5.1.1 Context

An example of clear conceptual modelling is that a Student is
not a subclass of Human, but a role.

9 http://ontologydesignpatterns.org/wiki/Submissions:DescriptionAndSituation

9.5 ontology design patterns 153

9.5.1.2 Solution

Roles can be modelled as classes, individuals or properties.

9.5.1.3 Example(s)

Roles can be modelled as classes:

Object rdf:type Role .

or as individuals:

Jim rdf:type Person .
SongWriter rdf:type Role .
Jim hasRole SongWriter .

or even as properties:

Table legs Books .

where books are being used in the role of table legs.

9.5.1.4 Discussion

A commonly occurring issue when modelling ontologies is to
whether model the concept as a property or a class. Consider
the role student, where Mark can be seen as either an individ-
ual of the Student class, or have a relationship via a student
property with his university. Classes have stronger ontological
commitment10 than properties, but using properties are often
more convenient for practical use [57]. OWL 2 punning allows
an entity to be treated as both a property and a class without
comprising ontological commitment.

9.5.1.5 Related

• The Role pattern is described in detail in Hoekstra’s PhD
thesis [56]

• The Time Indexed Person Role Pattern [47]

9.5.2 Descriptions and Situations (DnS) pattern

How do we model non-physical objects like plans, schedules and con-
text in an ontology?

10 See Section 11.2.1

154 ontology engineering

dolce:Endurant

dolce:AgentivePhysicalObjectdolce:PhysicalObject dolce:InformationObjectDnS:CommunicationRole

Encoder

InterpreterRole

Decoder

ChannelRole MessageMessageRole Context

Figure 50: Example of modelling communication theory using DnS
and DOLCE

9.5.2.1 Context

While modelling physical objects using an ontology is relatively
straightforward, it becomes non-trivial when modelling non-
physical objects [46] such as plans, schedules, social constructs,
etc. Existing theoretical frameworks like BDI theory [18] are not
at the level of concepts or relations, which we need to be able
to model non-physical objects as a set of statements. The DnS
pattern grew out of the work done on the DOLCE ontology toDuring a summer

school attended by
the author, Aldo

Gangemi (co-creator
of DOLCE)

mentioned that he
considers DOLCE

to be a collection of
ontology design

patterns.

solve this problem.

9.5.2.2 Solution

The DnS design pattern provides an ontological formalisation
of context [101]. It achieves this by using roles to classify enti-
ties into a specific context. The pattern defines a situation that
satisfies a description. The describes object property is used be-
tween a Description and an object, while the satisfies object
property relates a Situation with a Description.

9.5.2.3 Example(s)

As an example, consider communication theory [106] as mod-
elled with DnS in Figure 50, where there is an encoder, a mes-
sage, a context11, a code and channel. In DnS, the encoder and
decoder are modelled as agentive physical objects in DOLCE,
while the channel is a non-agentive physical object. Messages
are considered information objects.

11 What the message is about, not the circumstances surrounding the commu-
nication

9.5 ontology design patterns 155

9.5.2.4 Discussion

With DnS one can also reify events and objects and describe the
n-ary relation that exists between multiple events and objects.

9.5.2.5 Related

• The DUL ontology [47]

9.5.3 Defining n-ary relations

How do we represent relations among more than two individuals?

9.5.3.1 Context

In OWL, a property is a binary relation between two individuals.
However, some relationships are not binary and involve more
than two resources, for example when modelling events.

9.5.3.2 Solution

We can use n-ary relations [86] to model relationships between
more than two resources. A class is created to represent the
relationship, with an instances of the class used to represent
the relationship between the various resources.

9.5.3.3 Example(s)

event-43495d51-29e3-11b2-807e-ac78eefc1f83 is an example
of an Event instance that represents the n-ary relation between
the device phone1 and the various event resources:

:phone1 :generatesEvent :event-43495d51-29e3-11b2-807e-ac78eefc1f83.

:event-43495d51-29e3-11b2-807e-ac78eefc1f83
rdf:type :IncreaseLevelEvent ;
:inXSDDateTime "2012-01-17T11:23:06.887+01:00"^^xsd:dateTime ;
:dataValue 255 ;
:duration "PT3S"^^xsd:duration .

9.5.3.4 Discussion

This pattern is commonly used to represent complex relation-
ships. This is quite a powerful pattern, as it can also be used to
define the temporal order of sequences [86].

156 ontology engineering

9.5.3.5 Related

• Qualified Relation pattern [33]

9.5.4 Naming interaction events

How should the URI of an interaction event be structured so that the
name forms a natural hierarchy?

9.5.4.1 Context

Interaction events tend to form natural groups, such as events
related to a specific device class. Reflecting these groups in the
name of the interaction event itself makes it easier for devel-
opers to understand existing and/or inferred groupings, and
to classify new events into an existing hierarchical event struc-
ture.

9.5.4.2 Solution

We use the notation

[DeviceClass][Action]Event

to define the interaction event.

9.5.4.3 Example(s)

Consider a simple light switch with two states, Up and Down.
We can define two interaction events, switchDownEvent and
switchUpEvent, which can then later be grouped by either de-
vice class or by action.

9.5.4.4 Discussion

If the naming convention of a URI follows a common pattern,
they become easier to remember and easier to work with. They
can even be constructed automatically. It makes the URI human-
readable and improves the relation between the name and the
event it describes.

9.5.4.5 Related

• Hierarchical URIs [33]

• Patterned URIs [33]

9.5 ontology design patterns 157

9.5.5 Using local reflexivity in property chains

How can we specify classes as part of an OWL 2 property chain?

9.5.5.1 Context

Sometimes it is necessary to restrict property chains to specific
classes. We need to be able to specify these classes as part of
the property chain.

9.5.5.2 Solution

The self keyword12 is used to indicate local reflexivity (also
called a self restriction) in OWL 2 and can be used to transform
classes to properties when creating property chains.

9.5.5.3 Example(s)

We can apply local reflexivity to the class Student, for example

Student ⌘ isStudent some self

If the individual Mark has a isStudent relation with itself, it
will be inferred that Mark is a Student. Also, if Mark is asserted
as a Student, then the isStudent property will be inferred. This
can then be combined with property chains where necessary,
e.g.

hasRole � isStudent v student

9.5.5.4 Discussion

In his PhD thesis on ontology design patterns, Hoekstra [56]
uses this pattern extensively to model actions, beliefs, inten-
tions and social constructs. For example,

Intention ⌘ isIntention some self

v PropositionalAttitude
holds � isIntention � towards v intends

12 Manchester syntax, used when editing ontologies in Protégé and other on-
tology editors. See Table 5.

158 ontology engineering

9.5.5.5 Related

• DnS pattern

9.5.6 Semantic matching with property chains

How can we perform semantic matching of functionalities between
devices using property chains?

9.5.6.1 Context

Property chains are useful for semantic matching, but with ba-
sic property chains the inverse is inferred as well, which is not
always desired. Property chains cannot be made irreflexive, as
only simple properties can be irreflexive in order to guarantee
decidability [8]. Defining domain and range to as constraints
just makes the ontology inconsistent. Thus, when using prop-
erty chains, the properties involved need to be symmetric, as in

hasFunctionality � isFunctionalityOf

9.5.6.2 Solution

Smart Object 1 Smart Object 2
canConnectTo

Functionality

hasFunctionality hasFunctionality

Figure 51: Two individuals related to the same object

When we have two individuals with the same object, but dif-
ferent predicates (see Figure 51), and we want to infer a new
property, this is intuitively represented in SWRL:

hasFunctionality(?s1,?f), hasFunctionality(?s2, ?f)) canConnectTo(?s1,?s2)

However, this cannot be represented in the same fashion us-
ing a property chain, as

hasFunctionality � hasFunctionality v canConnectTo

9.5 ontology design patterns 159

is not equivalent. This is however, easily solved by introduc-
ing an inverse property isFunctionalityOf, and the property
chain becomes

hasFunctionality � isFunctionalityOf v canConnectTo

Modelling the above using the Relation Partition Algebra
(RPA) of Feijs [40], where
hasFunctionality � hasFunctionality-1 ✓ canConnectTo

shows the property chain can also be represented using RPA,
apart from the inverse relation, which is denoted by R

-1 =
{(x,y)|(y, x) 2 R}.

9.5.6.3 Example(s)

First we define two smart objects and their corresponding func-
tionalities:

:Music a :Functionality .

:phone1 a :SmartObject .
:phone1 :functionalitySource :Music .

:speaker1 a :SmartObject .
:speaker1 :functionalitySink :Music .

Using the property chain

functionalitySource � isFunctionalityofSink v canConnectTo

where isFunctionalityofSink is the inverse property of functionality-
Sink, we can infer that

:phone1 :canConnectTo :speaker1 .

9.5.6.4 Discussion

There are two caveats when using property chains to perform
semantic matching. First, OWL 2 property chains cannot be built
with datatype properties, only object properties, i.e. use

:device1 :hasFunctionality :Audio .

instead of

160 ontology engineering

:device1 :hasFunctionality "audio" .

This means we cannot infer

:device1 :hasRFIDTag "ABCD123F" .

and we have to use a rule language like SWRL or SPIN.SWRL was used for
semantic matching

in the second design
iteration in Section

4.4.2. SPIN was used
in the third design
iteration, with the

implementation
described in more

detail in Chapter 7.

The second caveat is that property chains cannot be used for
cardinality restrictions. We have only tested this with the Pellet
reasoner, and it is possible that other reasoners could allow for
this to happen.

9.5.6.5 Related

• The Role pattern

9.5.7 Inferring new individuals

How can new individuals be created when an existing literal value
changes?

9.5.7.1 Context
SWRL built-in atoms

in rule heads [54]
present another
solution to this

problem, but these
built-in atoms

cannot be handled
by reasoners like

Pellet, which only
supports DL-safe

rules.

Ontology languages like OWL are used to classify existing in-
dividuals, not create new ones. In some cases we want to in-
sert a new individual when a literal value changes or is in-
serted. When using only OWL and DL-safe rules (e.g. SWRL),
no new individuals may be inserted, and the work-around is
that individuals are pre-populated in the triple store. For exam-
ple, if OnEvent and OffEvent are pre-populated, you can model
that

:event1 :dataValue 1 .

should infer

:event1 :mappedTo :OnEvent .

9.5.7.2 Solution

A SPARQL CONSTRUCT query, defined as a SPIN rule, can be
used to insert a new individual into the triple store.

9.5 ontology design patterns 161

9.5.7.3 Example(s)

A new individual, representing a media path, can be inferred
using:

CONSTRUCT{
?mp a sc:MediaPath .
?x3 sc:hasMediaPath ?mp .
?mp bonding:mediaSourceSO ?x2 .
?mp bonding:mediaOriginator ?this .

}
WHERE{

?this sc:convertsMediaType ?x2 .
?x2 sc:convertsMediaType ?x3 .
?this sc:connectedTo ?x3 .
BIND (IRI(fn:concat("example.com/ontology#mediaPath_" ,

afn:localname(?this), "_to_" ,afn:localname(?x3))) AS ?mp) .
}

In the example, a new mediaPath individual is created if
two smart objects are connected to each other and there is a
mediaSourceSO (semantic transformer) that converts the media
types between them. This could be a media player transmitting
music as source, an ambient lighting object that accepts RGB
colour values as sink, and a semantic transformer that converts
audio streams into RGB lighting information. For more infor-
mation about media paths and semantic transformers, see [81].

The ?this variable indicates to SPIN how the definition should
be applied to the members of a class, as the rule itself is defined
as part of the class definition - thus defining the scope of the
query. fn:concat and afn:localname are SPIN functions used
to concatenate the name of the individual and retrieve the local
names of the variables used respectively.

9.5.7.4 Discussion

When a new individual is inserted using a SPIN rule, care should
be taken in how the name of the individual is generated. If we
define the new individual as a blank node, the TopSPIN rea-
soning engine will not terminate, because a new blank node is
defined with each iteration. The same issue arises if we assign
a random value as the name. Using a fixed URI is a simpler
solution, as shown in the example above.

9.5.7.5 Related

None.

162 ontology engineering

9.5.8 Removing inferred triples

How do we remove inferred triples from the triple store when an as-
serted triple changes?

9.5.8.1 Context

Removing inferred triples when an asserted triple changes, or
is deleted from the model, can be notoriously difficult. For ir-
reflexive properties, it is possible to use constraint violations to
detect them, and then remove them one by one. Unfortunately
constraint violation checking is very slow, for example taking
834 ms when the inferencing itself takes only 313 ms13. Creat-
ing a SPIN rule to clean up irreflexive properties does not work,
as the properties get inserted and removed after each iteration
of the inference engine.

9.5.8.2 Solution

Two models are used in the triple store, one for the asserted
model and one for the inferred model. The inferred model is
cleared before each reasoning iteration.

9.5.8.3 Example(s)

Not applicable.

9.5.8.4 Discussion

According to TopQuadrant14, removing inferred triples based
on a triple that was deleted is a tricky use case, requiring a
BufferingGraph that is not available in the open source SPIN
API.

9.5.8.5 Related

None.

9.5.9 Inferring subclass relationships using properties

Can we infer subclass relationships based on existing properties using
OWL?

13 Based on a model size of 2304 inferred triples
14 topbraid-users mailing list discussion

9.5 ontology design patterns 163

9.5.9.1 Context

Suppose we wanted to use an object property called mappedTo
to create a mapping between interaction events, for example

SwitchUpEvent mappedTo SwitchOnEvent .

This prompts the question: Is it possible to create an OWL re-
striction that says

If Class A is related via Property B to Class C, then Class A is
a subclass of Class C.

When modelled in SPARQL, it looks like this:

CONSTRUCT{
?A rdfs:subClassOf ?C .

}
WHERE{

?A :B ?C .
}

9.5.9.2 Solution

Evidently, this could be implemented as a SPIN rule, but we
would prefer an OWL-only solution. It turns out that while it
is not possible in OWL 2 DL, it is possible in OWL 2 RL/RDF
Rules:

:B rdfs:subPropertyOf rdfs:subClassOf .

9.5.9.3 Example(s)

To solve our original problem in the Context, we would define

mappedTo rdfs:subPropertyOf rdfs:subClassOf .
SwitchUpEvent mappedTo SwitchOnEvent .

which would then infer

SwitchUpEvent rdfs:subClassOf SwitchOnEvent .

9.5.9.4 Discussion

This simple but powerful pattern is a good example of meta-
modelling.

164 ontology engineering

9.5.9.5 Related

None.

9.5.10 Inferring connections between smart objects and semantic
transformers

When we use semantic transformers to control devices, how can we
infer these connections between the smart objects and the semantic
transformer?

9.5.10.1 Context

In the sleep use-case, a semantic transformer was implemented
in order to generate lighting values for the dimmable lamp to
create the desired wakeup experience. During the implementa-
tion, several observations and decisions were made:

• Between smart objects and semantic transformers only
indirectlyConnectedTo connections can exist, as the se-
mantic transformers are virtual entities that cannot be di-
rectly connected to smart objects using the Connector ob-
ject.

• When a canIndirectlyConnectTo relationship is inferred
between smart object A and the semantic transformer B,
and between B and smart object C, a canConnectTo rela-
tion between A and C should be inferred (transitive).

• When a connection is made between two smart objects
that can be connected through a semantic transformer,
the semantic transformer is connected to the smart objects
with indirectlyConnectedTo relationships, and a connect-
edTo relationship between the smart objects is then auto-
matically inferred.

• A semantic transformer thus acts as a bridge.

• A semantic transformer is not a smart object.

When using semantic transformers to control other smart ob-
jects, we could make use of the n-ary ontology design pattern,
which was also applied to creating media paths in Section 4.4.2
on semantic matching:

• Subscribe to controlSource to see if it becomes a control
source

9.5 ontology design patterns 165

• When it becomes a control source, subscribe to the events
generated by the control originator

While this is feasible, it is complicated and we would like to
use a simpler solution using connectedTo relationships. What
we would like to infer is shown in Figure 52.

Source Semantic Transformer
canConnectTo
connectedTo

Sink

connectedTo

canConnectTo
connectedTo

Figure 52: Inferring connectedTo relationships between
sources/sinks and a semantic transformer

9.5.10.2 Solution

At first glance, it seems like this might be expressed using prop-
erty chains and local reflexivity, as described in the ontology
design pattern in Section 9.5.5.2. However, this is a special case
which cannot be expressed in OWL. It can, however, easily be
expressed as a SPIN rule as follows:

CONSTRUCT{
?source :connectedTo ?semanticTransformer .
?semanticTransformer :connectedTo ?sink .

}
WHERE{

?source :canConnectTo ?semanticTransformer .
?semanticTransformer :canConnectTo ?sink .
?source :connectedTo ?sink .

}

9.5.10.3 Example(s)

If the following triples are asserted:

:phone1 a :SmartObject .
:phone1 :functionalitySource :Alarm .

:lamp1 a :SmartObject .
:lamp1 :functionalitySink :AdjustLevel .

166 ontology engineering

:wakeup1 a :SemanticTransformer .
:wakeup1 :functionalitySource :Alarm .
:wakeup1 :functionalitySink :AdjustLevel .

:phone1 :connectedTo :lamp1 .

Using the pattern defined in Section 9.5.6, we infer:

:phone1 :canConnectTo :wakeup1 .
:wakeup1 :canConnectTo :lamp1 .

Using this pattern, we infer the following connectedTo rela-
tionships:

:phone1 :connectedTo :wakeup1 .
:wakeup1 :connectedTo :lamp1 .

9.5.10.4 Discussion
RPA was first
mentioned in

Section 9.5.6.2.
In some cases, SPIN rules can be easier to compose and interpret
than ontology restrictions and property chains. In this case, it
cannot even be expressed in OWL, as OWL has no support for
modelling property intersections. In RPA, on the other hand, re-
lations are first class citizens, and Figure 52 can be composed
using:

connectedTo ✓ canConnectTo \ connectedTo � canConnectTo-1

9.5.10.5 Related

• N-ary pattern

• Semantic matching with property chains

9.6 discussion

When applying inference to the physical world, the level of am-
biguity and uncertainty is quite high. A system might infer that
you are in a room because your RFID badge is in a room. What
if you forgot your badge in the office? The challenge is to figure
out what functions in the smart home are possible with lim-
ited inference, which are possible only through inference, and
which require an oracle [37]. Systems that rely on inference will

9.6 discussion 167

be wrong some of the time, and users will need to have models
to figure out how the system arrives at its conclusions, along
with ways to override the system’s behaviour.

Sabou [100] argues that smart objects will require more so-
phisticated reasoning mechanisms than what is currently used
in the area of sensor networks, which primarily relies on sub-
sumption matching. They expect that smart spaces will rely on
rule engines rather than DL reasoners, and that the ambiguities
and uncertainties in smart environments will require fuzzy or
probabilistic methods.

Throughout the development of the ontology, we tried to
avoid rule-based formalisms where possible, to see to what
extent we can push the limits of OWL 2’s expressive power.
Hoekstra and Beuker [58] noted that to avoid problematic inter-
actions between the two formalisms, it is undesirable to com-
bine them. However, they also accepted that it is sometimes
unavoidable, given the real problems that occur with elaborate
concepts.

When performing semantic reasoning with a triple store, there
is the potential for a combinatorial or state explosion problem.
There are various methods that we used to avoid this problem.
In cases where rules could cause the reasoning engine to iter-
ate indefinitely, for example where new individuals were con-
structed, we ensured that the new triple representing the indi-
vidual is not generated with a different URI after every iteration.
Another strategy we used was to limit the complexity of the on-
tology itself.

It is our experience that people commonly underestimate the
differences between data modelling and ontology engineering.
While some concepts in an ontology can be modelled using
UML class diagrams or represented using Java objects, there are
some fundamental differences. Data modelling does not allow
for axiomatisation to specify the semantics of the information,
nor is it much concerned with conceptual modelling based on
philosophical notions.

However, much is already gained with using some simple
ontology engineering techniques, such as unique identifiers or
distinguishing between actors and roles. As James Hendler, one
of the authors of the seminal article on the Semantic Web in
Scientific American [12], once stated, “a little semantics goes a
long way”.

10
S O F T WA R E A R C H I T E C T U R E

Interaction is an iterative process of listening, thinking,
and speaking between two or more actors.

— Chris Crawford [83], game designer
Parts of this chapter
have previously
appeared in [80]
and [82]

Existing architectural patterns for software like the MVC model,
Document-View and Presentation-Abstract-Control are consid-
ered to be inadequate when trying to design software archi-
tectures in the ubiquitous computing domain. Ubiquitous com-
puting needs new kinds of mechanisms to meet the flexibility
needed to change the purpose, functionality, quality and con-
text of a software system [79]. MVC was first

mentioned in
Section 2.3.

In this chapter the software architecture used in the three
design iterations is described in more detail. It is quite a short
chapter, as most of the software architecture issues have already
been discussed in the three design iteration implementations
in Sections 3.4, 4.4 and 5.4. However, we consider it important
that the final software architecture design has its own dedicated
chapter, so that it can act as a reference design for future imple-
mentations.

We first look at some characteristics of ubicomp middleware,
followed by a discussion of the publish/subscribe paradigm
and the blackboard architectural pattern. We then look at the
Message-Oriented Middleware (MOM) implementation used with-
in the SOFIA project, called SSAP. The rest of the chapter is ded-
icated to the two main implementations of the software archi-
tecture as used within the SOFIA project – Smart-M3 and ADK-
SIB. These implementations are interoperable with one another
through the use of SSAP.

10.1 characteristics of ubicomp middleware

There are a number of characteristics, or quality attributes, that
are specific to middleware for ubiquitous computing, as de-
fined by Niemelä and Vaskivuo [79]:

• Interoperability

• Scalability

169

170 software architecture

• Reusability

• Maintainability

• Extensibility

• Portability

• Adaptability

• Survivability

• Agility

• Fidelity

Interoperability is defined as the ability for software applica-
tions written in different programming languages, running on
different platforms with different operating systems, to commu-
nicate and interaction with one another over different networks.
Scalability is the ability of the system to handle larger numbers
of smart objects. Reusability, maintainability and extensibility
are characteristics that consider the evolution of software sys-
tems. Portability and adaptability are important characteristics
for software that has to work in a heterogenous system of de-
vices and networks. Survivability is the ability of a system to
timely deliver essential services in the face of attack, failure or
accident. Agility is the sensitivity to changes in resource avail-
ability. Fidelity is defined to mean to degree to which data pre-
sented on a client matches the reference copy at the server.

We focused on a subset of these attributes while working on
the software architecture, including interoperability, reusability,
maintainability and extensibility. Interoperability was achieved
by adhering to the SSAP specification, as described in more de-
tail in Section 10.3. Using ontologies and other Semantic web
technologies helped us to improve reusability, while elements
of maintainability were tested using the Cognitive Dimensions
framework, described in more detail in Chapter 11. Extensibil-
ity was achieved by modelling devices and their capabilities
in such a way that other devices could easily be added to the
system.Potential scalability

was tested by
evaluating the

performance of the
software

architecture, as
described in Section

11.1.

10.2 publish/subscribe paradigm and the blackboard

pattern

In publish/subscribe systems, subscribers register their interest
in a specific event, and are notified when this event occurs after

10.2 publish/subscribe paradigm and the blackboard pattern 171

a publisher publishes the event. The strength of the publish/-
subscribe paradigm is that entities are decoupled in time, space
and synchronisation [39]. Space decoupling means that the in-
teracting entities do not need to be aware of each other. Time
decoupling means that the entities do not need to participate
in the interaction at the same time. Synchronisation decoupling
means that subscribers can asynchronously be notified when an
event occurs. Removing synchronisation dependencies between
entities increases scalability.

There are three variants of publish/subscribe systems:

• Topic-based – Entities subscribe to individual topics, usu-
ally with some form of hierarchical addressing to organise
the topics

• Content-based – Consumers subscribe to selective events
by specifying filters, using some kind of subscription lan-
guage

• Type-based – Events are filtered according to their type

In the SOFIA project, KPs communicate with a message bro-
ker using the blackboard architectural pattern, where the mes-
sage broker uses a triple store as a common knowledge base.
Communication between KPs occurs through the insertion and
removal of triples into or from the triple store. Given a set of
smart devices, the blackboard may be used to share information
between these devices, rather than have the devices explicitly
send messages to one another. If this information is also stored
according to some ontological representation, it becomes possi-
ble to share information between devices that do not share the
same representation model, and focus on the semantics of that
information [88]. The SIB is the information store of the smart
space, and contains the blackboard, ontologies, reasoner and
required service interfaces for the KPs or agents.

This blackboard approach is complemented by a publish/-
subscribe component, that allows KPs to subscribe to specific
triples in the triple store. The KPs are then notified when these
triples are added, removed or updated in the triple store. Com-
munication between the KPs and SIB occurs using SSAP, which
is the focus of the next section.

172 software architecture

10.3 smart space access protocol (ssap)

MOM is used to send messages between components in a dis-
tributed system. Commercial options include Java Message Ser-
vice (JMS), Microsoft Message Queuing (MSMQ) and IBM’s Web-
Sphere framework. Advanced Message Queuing Protocol (AMQP)
is an emerging standard, of which RabbitMQ1 is a popular im-
plementation. ZeroMQ2, also written as ØMQ , was created to
be simpler and faster than the AMQP standard, and does not
require a dedicated message broker. Other message protocols
include Extensible Messaging and Presence Protocol (XMPP),
Message Queue Telemetry Transport (MQTT) and Streaming Text
Oriented Messaging Protocol (STOMP).XMPP is an Internet

Engineering Task
Force (IETF)

standard.

In the SOFIA software architecture, KPs communicate with the
SIB through SSAP messages [59] over TCP/IP. SSAP consists of a
number of operations to insert, update and subscribe to infor-
mation in the SIB. These operations are encoded using XML.

For operations initiated by a KP, the KP sends a request mes-
sage and the SIB responds with a corresponding confirmation
message. For SIB initiated operations, the SIB sends an indica-
tion message. The KP does not respond to SIB initiated opera-
tions, as indication messages contain non-essential information.
Every session must start with a join operation, and a leave op-
eration ends a session.

To insert information into the triple store, an insert operation
is used by the KP, where the triples are encoded in RDF/XML.
A SIB confirmation message indicate whether the operation was
successful or not. Similarly, a remove operation is used to re-
move information from the triple store. An update operation
removes information from the triple store and inserts new in-
formation as an atomic operation.

To query the triple store, a template consisting of a list of
triples is used, where each triple may have a wildcard as its
subject, predicate or object. The result of the query is a list of
all triples that match the template. All triples in the triple store
that match any of the triples in the list are returned.

A subscribe operation creates a persistent query that is stored
in the SIB and is re-evaluated automatically after each change
to the contents of the triple store. An unsubscribe operation
will terminate a persistent query. The publish/subscribe mech-

1 http://www.rabbitmq.com/
2 http://www.zeromq.org/

10.4 smart-m3 architecture 173

anism used is closest in scope to the content-based variant de-
scribed in the previous section.

SSAP is supported by both the SIB implementations used in
our work, such that software developed for the one implemen-
tation is also interoperable with the other implementation. We
now focus in more detail on these two implementations: Smart-
M3 and ADK-SIB. The Smart-M3

implementation was
used during the
first design
iteration, while the
ADK-SIB
implementation was
used during the
second and third
design iteration.

10.4 smart-m3 architecture

The M3 (multi-device, multi-vendor, multi-domain) architecture
is an interoperability platform based on a blackboard architec-
tural model that implements the ideas of space-based comput-
ing [59]. It consists of two main components: a SIB that acts as
a common, semantic-oriented store of information and device
capabilities, and KPs, virtual and physical smart objects that
interact with one another through the SIB. Various SIB imple-
mentations exist that conform to the M3 specification of which
Smart-M3, developed by Nokia, was the first open source refer-
ence implementation released in 2009

3. RDF Information Base
System (RIBS), developed by VTT, is a C-based implementation
of M3 targeted for devices with low processing power, but re-
quires a large amount of memory [38].

10.5 adk-sib

The SIB implementation used during the second and the third
design iteration is called ADK-SIB (Application Development
Kit SIB) and was developed within the SOFIA project. The ADK-
SIB is a Jena-based4 SIB written in Java and runs on the OSGi
framework.

Reasoning in the standard ADK-SIB is implemented using
the Jena Ontology API, but only basic reasoning with symmet-
ric properties and transitive properties is supported. Our main
contribution to improve the ADK-SIB implementation was to
implement support for OWL 2 RL/RDF Rules reasoning, as
well as SPIN rules using the TopBraid SPIN API5. The ADK-SIB and

SPIN API was first
mentioned in
Section 4.4.1.

When the SIB starts up, we first load the ontology, written in
OWL 2, from a specified web address into our asserted model.
We then load the OWL 2 RL specification, specified as SPIN

3 http://sourceforge.net/projects/smart-m3/
4 http://jena.sourceforge.net/
5 http://topbraid.org/spin/api/

174 software architecture

rules, from another OWL file. We also load any custom SPIN
functions into a third model. We then build a union model of
the three models and store all the asserted triples in a hashmap
to improve lookup efficiency. Finally the TopSPIN reasoning
engine performs inferencing across the union model, and all
the inferences are stored in the inferred model.

Whenever a new triple is added, removed or updated, the
inferred model is cleared and inferencing is performed using
the reasoning engine. This means that no inferencing needs to
be performed when a query is run.


























Figure 53: Our software architecture

The final software architecture is shown in Figure 53. The
system performance of the software architecture was evaluated
during the Smart Home pilot of the second design iteration,
and this evaluation is described in the next chapter. A valida-
tion of the entire system, including the ontology, using the Cog-
nitive Dimensions framework is also described.

11
E VA L U AT I O N

Statistics are a little like anarchists:
if you force them to stay in line, you’re begging for trouble.

— Sarah Slobin [108], Graphics Editor, The Wall Street Journal
Parts of this chapter
have previously
appeared in [82].

In this chapter, two evaluations are described. First we will
look at an evaluation of the system performance of the software
architecture. This evaluation was performed during the smart
home pilot of the second design iteration described in Chapter
4. Secondly, we will look at a method the author developed to
evaluate ontologies based on the CD framework, as well as an
evaluation of the ontology described in this thesis using the
method. The CD framework

was first mentioned
in Section 2.1.4.

11.1 evaluating the system performance

11.1.1 Introduction

To evaluate the software architecture described in Chapter 10,
we compared it against a previous evaluation of the two M3-
based smart space implementations, Smart-M3 and RIBS, de-
scribed in Section 10.4. These implementations were evaluated
by Eteläperä et al [38]. They performed both a qualitative eval-
uation and quantitative measurements. The performance mea-
surements were made on a Intel Atom 1.6GHz laptop connected
via a 100Mbps Ethernet router to a Intel Pentium M 1.7GHz
laptop. The qualitative evaluation focused on documentation,
installation process and portability as well as run-time usability.
According to [38] RIBS is up to 237 times faster than Smart-M3

in certain instances, but it is reported that its memory model
limits the number of use cases it can be applied to. RIBS uses
static memory allocation with no disk storage and a bitcube
triple store, which means that the maximum number of triples
has to be known a priori.

Query time measurements for Smart-M3 indicated a query
time of 4.4ms for one triple and 8.6ms for 10 triples. For RIBS
a query time of 0.65ms was measured for one triple. RIBS did
not support querying 10 triples at the time the evaluation was

175

176 evaluation

performed. Subscription time measurements indicated a sub-
scription indication time of 140ms for Smart-M3, while RIBS
measured 0.75ms.

Bhardwaj et al. [13] compared Smart-M3 against their Open
Source Architecture for Sensors (OSAS) framework. They did a
performance analysis based on end-to-end delay measurements
between the smart objects in smart spaces. The analysis shows
that the end-to-end delays are mostly dominated by KP-to-SIB
updates, rather than the processing delays on KPs or on the SIB.

Luukkala et al. [70] used Smart-M3 with Answer Set Pro-
gramming (ASP) techniques to handle resource allocation and
conflict resolution. They used the SPICE Mobile Ontology1 to
describe device capabilities and ASP as a rule-based approach
to reasoning. The SPICE ontology allows for the definition of
device capabilities in a sub-ontology called DCS [121].The SPICE DCS

ontology was first
mentioned in
Section 7.2.3. 11.1.2 Experimental setup

The smart home
pilot scenario was

first described in
Section 4.1.

In the smart home pilot, media content is shared among several
devices in a smart home setting. Music is shared between a mo-
bile device, a stereo speaker set and a lighting device that ren-
ders the mood of the music with coloured lighting. The music
experience, consisting of both light and music information, is
also shared remotely between friends living in separate homes
through the lighting device. Other lighting sources, like the
smart functional lighting and the smart wall wash lights are
sensitive to user presence and the use of other lighting sources
in the environment.An overview of the

smart home pilot is
shown in Figure 20
on page 69, while a

diagram showing
the technical details
is shown in Figure

21 on page 71.

The performance measurements were made in an environ-
ment that approximates a real-world home environment for
these kinds of devices. Two wireless routers were placed in
two different locations, bridged with an ethernet network ca-
ble. One router was configured to act as a DHCP server, while
the other acted as a network bridge. The Connector KP, Music
Player KP and SIB were connected to the router in location A,
while the Sound/Light Transformer (SLT) KP was connected to
the router in location B. All components were connected to the
network via the 802.11g wireless protocol. The system specifi-
cations of each component used in the performance evaluation
are shown in Table 6.

1 http://ontology.ist-spice.org/

11.1 evaluating the system performance 177

component cpu os memory language

SIB Core 2 Duo 2.8GHz Ubuntu 10.04 4GB Java
SLT KP Core 2 Duo 2.2GHz Ubuntu 11.04 2GB Java
Connector KP Core 2 Duo 2.6GHz OS X 10.6.8 4GB Python
Music Player KP ARM Cortex-A8 Maemo 5 256MB Python
Presence KP Pentium M Ubuntu 10.04 512MB Python
Lamp KP Pentium M Ubuntu 10.04 512MB Python

Table 6: System specifications of components used in evaluation

















Figure 54: Sequence diagram of Sound/Light Transformer KP query
measurement

Figure 54 and Figure 55 show the sequence diagrams of the
measurements made for the SLT KP and the Connector KP re-
spectively. During the pilot, 86 measurements were made by
the SLT KP – each time an event was received. 961 measure-
ments were made by the Connector KP – each time a user scans
a tag. Note that the query name in 55 could differ between sub-
sequent queries, as the user could be scanning a different tag
every time.

For the music player KP, we measured the time between in-
serting a new event, and receiving an update from the SIB indi-
cating that the specific event had occurred. First a subscription
is made to the PlayEvent type, as shown in Figure 56. A new
PlayEvent is generated by the KP, and when the KP is notified
of this event by the SIB, the KP queries the SIB to determine if
the notification is indeed for the event that it generated itself.

The Lamp-KP was connected to the decorative wall-wash
lights (four LED lamps), creating coloured illumination on the
wall of the room. The lamps are shown in Figure 58, including a
description of its components. The Presence-KP determines the

178 evaluation



















Figure 55: Sequence diagram of Connector KP query measurement

presence of a user in an activity area of a room and sends the
presence information to the SIB. The Lamp-KP is subscribed to
this presence information, and gets updated whenever the pres-
ence is updated by the Presence-KP to the SIB. There are two
states to be updated by the Presence-KP on the SIB: Away and
Present. Based on these states, the Lamp-KP turns the lamps
on or off. For example, when the Present state is specified by
the Presence-KP, the Lamp-KP sends the ON command to all
lamps, and the OFF command when the Away state is specified.
The Lamp-KP is also subscribed to the states of the SLT KP. The
sequence diagram for the Presence-KP, SLT KP, Lamp-KP and
SIB is shown in Figure 57.

11.1.2.1 Reasoning setup

For the pilot, constraint violation checking was disabled, as this
introduced quite a large delay (> 1000ms), and was not neces-
sary for the purposes of the pilot. Constraint checking ensures
that instances in the triple store meet the constraints attached
to classes and properties in an ontology. Constraint violation
checks are computationally expensive and cannot be performed
for each add, remove and update operation. One possible solu-
tion is to perform constraint violation checks at regular inter-
vals and then remove the offending triples.

We made use of OWL 2 RL/RDF Rules in the smart home
pilot, which is a semantic subset of OWL 2 Full. This should not
be confused with the first part of the OWL 2 RL Profile2, which
is a syntactic subset of OWL 2 DL, and restricted in the type

2 http://www.w3.org/TR/owl-profiles/

11.1 evaluating the system performance 179

























Figure 56: Sequence diagram of Music Player KP subscription mea-
surement

of inferences that can be performed. In practice, most OWL
2 reasoners implement OWL 2 RL/RDF Rules (from here on
known as OWL 2 RL). OWL 2 RL addresses a significant subset
of OWL 2, including property chains and transitive properties.
It is fully specified as a set of rules - in our case, as a set of SPIN
rules. This means that it is even possible to select only the parts
of OWL 2 that are required for a specific ontology, to allow for
scalable reasoning.

During the smart home pilot, all SSAP messages received by
the SIB were logged for further analysis. SSAP is described in

Section 10.3.









































Figure 57: Sequence diagram of Presence-KP and Lamp-KP

180 evaluation

Phidget LED Board
(inside)

Power Supply

UBS Cable

LEDs

64 LED Connectors

Power Supply
(6~12V)
USB Connector

64-PhidgetLED Board

Figure 58: Lamp-KP

11.1.3 Experimental Results

After every reasoning cycle both the asserted and inferred mod-
els were written to disk, generating a total of 8306 models
during the pilot. Reasoning was performed once, after all on-
tologies were loaded, and then for every add, remove and up-
date operation. This resulted in a total of 5158 measurements of
model size and reasoning time during the pilot. No reasoning
was performed during queries.

During the pilot, 70655 total queries were performed by de-
vices connected to the SIB. The time to perform each query was
recorded on the SIB, and is shown in Figure 59. The histogram
with bin size 25 is plotted on a logarithmic scale. Around 70000

queries take 2ms or less to complete, accounting for more than
99% of the queries. Of all the queries, only 3 queries took 30ms
or longer to complete, with all queries completing in less than
60ms. Keep in mind that these measurements were performed
on the SIB, hence the measurements do not take network latency
into account.

Figure 60 shows the histograms, Gaussian Kernel Density Es-
timates (KDEs) and Cumulative Distribution Functions (CDFs)
of the Connector KP and SLT KP query time measurements. A bin
size of 20 and a bandwidth of 0.5 was used to plot the figures. It
shows that the typical query time for the Connector KP is very
short, with a few outliers that took a very long time to com-
plete (35.2s). For the SLT KP, the case is similar, but there are
no extreme outliers, with the longest query taking only 587ms
to complete. Note that the KDE provides similar information

11.1 evaluating the system performance 181

Figure 59: Query time measurements on SIB

to the histogram, but handles outliers more gracefully by not
using binning, and also results in a smoother graph.

The CDF of the Connector KP indicates that queries taking
more than two seconds to complete are very rare. The queries
that do take longer than two seconds, take an unusually long
time to complete. We believe that it could be related to prob-
lems in the wireless network, or related to the Python imple-
mentation of the Knowledge Processor Interface (KPI), as the
problem did not present itself when using other KPI implemen-
tations.

For the SLT KP, most queries completed within 100ms, with
very few queries taking longer than 500ms to complete.

For the music player KP, most subscription notifications com-
pleted in an average of 0.86s, as shown in Figure 61. Keep in
mind that after the new PlayEvent is added, inferencing is per-
formed on the triple store before the subscribe notification is
generated. Summary statistics of Music Player KP, Connector
KP and Sound/Light Transformer KP measurements are shown
in Table 7.

In Figure 62, the following is shown:

182 evaluation

Figure 60: Histograms, kernel density estimates and cumulative dis-
tribution functions of Connector KP and Sound/Light
Transformer KP measurements

Figure 61: Subscription measurements of Music Player KP

11.1 evaluating the system performance 183

component nr . of obs . min. (s) max . (s) mean (s) std. dev. (s)

Music Player KP 264 0.074 9.975 0.861 1.017

Connector KP 961 0.044 35.184 0.275 1.942

Sound/Light KP 86 0.06 0.587 0.131 0.122

Lamp-KP 98 0.012 0.049 0.03 0.006

Presence-KP 172 0.145 0.244 0.176 0.018

Table 7: Summary statistics of Music Player KP, Connector KP and
Sound/Light Transformer KP measurements

component nr . of obs . min. max . mean std. dev.

Model size (nr of triples) 5158 1346 3396 2916.7 201.07

Inferred model size 5158 1369 1819 1501.8 107.6
Reasoning time (ms) 5158 181 2912 274.99 152.96

Table 8: Summary statistics for asserted and inferred model sizes
and reasoning time, with model size indicated as number
of triples

• Model size: Number of triples asserted by ontology or
connected KPs

• Inferred model size: Number of triples inferred by reason-
ing engine

• Inferencing duration: Time (in ms) to complete one rea-
soning cycle

The sharp peaks indicate the times that the SIB was restarted.
The first reasoning cycle after a restart takes about 3 seconds,
with subsequent cycles taking on average 275ms (as seen in
Table 8).

There is a slow but steady increase in the number of triples
as new events get added to the triple store. After each restart
these events are cleared and the base assertions loaded from the
ontology. These assertions include the OWL 2 RL specification,
stored as SPIN rules, which account for the large number of
triples.

In Figure 63, the measurements show that the delay between
the Presence-KP and the SIB is rather large with a considerable
variance. The communication from the Presence-KP to the SIB

184 evaluation

Figure 62: Size of asserted and inferred models for each iteration, in-
cluding reasoning time

11.1 evaluating the system performance 185

�

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200 250 300

Pr
ob

ab
ili

ty

Delay (milliseconds)

Cumulative Probability Distribution

Presence-KP updates
on SIB Subscription updates

on Lamp-KP

Figure 63: Cumulative probability distribution of delays between
Presence-KP and SIB, as well as SIB and Lamp-KP

consists of an update request and the related confirmation re-
sponse. The average delay of 176.71 milliseconds is the largest
component of the total end-to-end delay between the links. The
communication from the SIB to the Lamp-KP consists of an indi-
cation event from the SIB due to a subscription and results in a
query request from the Lamp-KP, terminated by a confirmation
response by the SIB. There is some variance in the communica-
tion delay and the average delay of 25.87 milliseconds might
become problematic when the SIB has to inform and handle
multiple subscribers.

11.1.4 Discussion

During the pilot, most problems could be attributed to prob-
lems with the wireless network. A number of devices from dif-
ferent manufacturers experienced intermittent problems while
connected to the SIB. For the purposes of the pilot, these devices
were then connected to the SIB via ethernet. This does, however,
demonstrate some of the problems with existing wireless net-
working technologies. It cannot be expected that a device with
a wireless connection will always stay connected to the smart
space, even when it is within range of the wireless router.

If we compare our query time measurements to the ones per-
formed on Smart-M3 (4.4ms) and RIBS (0.65ms), we can see
that the KPs were substantially slower: The Connector KP at
44ms, the Music Player KP at 74ms and the Sound/Light KP
at 60ms. This can be attributed to additional network latency

186 evaluation

in the field study that approximated a real-world environment.
Query measurements that were performed on the ADK-SIB di-
rectly (0.445ms) shows that it performs even better than RIBS,
but this is not directly comparable as the measurements do not
include network latency time. If network latency is taken into
account, measured at 0.43ms per packet round-trip by [38], RIBS
is still faster.

The subscription indication measurements of our setup are
also significantly slower. While the Smart-M3 measurement was
only 140ms, the Music Player KP measures around 860ms. This
is mostly due to the additional time required for reasoning,
which on average takes about 275ms. Reasoning improves the
flexibility and capabilities of the SIB to such an extent that it
is worth the hit in performance. Other contributing factors in-
clude the number of devices used, the number of triples and the
network environment. While the Smart-M3 and RIBS measure-
ments were made in a lab environment, our ADK-SIB measure-
ments were made in conditions that approximate a real-world
environment, including having a larger number devices active
at the same time.

In the 1960s there already existed some controversy over the
maximum allowable response times in human-computer inter-
faces [75]. It was shown that different human actions will have
different acceptable response times. While the delay between
pressing a key and visual feedback should be no more than 0.1-
0.3 seconds, the response to a inquiry request may take up to 2

seconds. The performance measurements are still well within
this two-second limit, indicating that from a user’s point of
view, when performing routine tasks, the system is responsive
enough. The user study and interviews performed during the
pilot seem to confirm this, as no participant indicated any is-
sues with regards to the responsiveness of the system.

The scalability of the system could still be evaluated with
larger triple sizes, but we do not foresee any scalability issues,
due to the platform and software architecture used.

Not only the software architecture described in this thesis
should be evaluated, but also the ontology that was developed
during the three design iterations. This is the focus of the next
section.

11.2 evaluating the ontology 187

11.2 evaluating the ontology

11.2.1 Introduction

In the book Beautiful Data [102], the notion of beauty is de-
scribed as “a simple and elegant solution to some kind of prob-
lem”. In a paper on the notion of beauty when building and
and evaluating ontologies, D’Aquin and Gangemi [27] argue
that the GoodRelations3 e-commerce ontology could be consid-
ered an example of a beautiful ontology. GoodRelations is an
OWL 1 DL ontology that is used by stores to describe products
and their prices and features. Companies using the ontology in-
clude, Google, BestBuy, Sears, K-Mart and Yahoo. It addresses
a complex domain and covers many of the complex situations
that can occur in the domain. It is well designed, ontologically
consistent, lightweight and used extensively by practitioners in
the domain.

Hepp [55], creator of the GoodRelations ontology, describes
a number of characteristics that can be used to evaluate an on-
tology:

• High expressiveness: An ontology of higher expressive-
ness would be richly axiomatised in higher order logic,
while a simple vocabulary would be of low expressive-
ness.

• Large size of community: As ontologies are considered
community contracts, an ontology targeted towards a large For more on

community
contracts, see
Section 9.

community should be easy to understand, well document-
ed and of a reasonable size.

• Small number of conceptual elements: A larger ontology
is more difficult to visualise and review. A reasoner could
also take a long time to converge when the ontology is
very large.

• Low degree of subjectivity: This is very much related to
the domain of the ontology, where something like religion
would be more subjectively judged than engineering.

• Average size of specification per element: The number of
axioms or attributes used to describe each concept influ-
ences the ontological commitment that must be made be-
fore adopting the ontology.

3 http://www.heppnetz.de/projects/goodrelations/

188 evaluation

We consider our ontology to be of higher expressiveness com-
pared to other ubiquitous computing ontologies. Most of the
existing technologies try to describe a large number of con-
cepts, while the number of actual axioms used to describe these
concepts are rather low. The size of the community is small at
the moment, as only project partners in the SOFIA project and
students have been using the ontology up to now. Although
the final version of our ontology contains 1192 asserted triples,
the number of conceptual elements are low. There are only 34

OWL classes, 29 object properties, 7 datatype properties and one
magic property, making the ontology easy to visualise and re-
view. Based on our experiments as described in the previous,
the ontology also converges in a reasonable amount of time.

We now look at a method we developed to evaluate ontolo-
gies using the CD framework, a framework that has been used
to evaluate notational systems and programming environments
[51], and has also been used to evaluate two of the related
projects described in Section 2.1: AutoHAN [15] and e-Gadgets
[73].

11.2.2 Validating the work using Cognitive Dimensions

The CD framework is a broad-brush approach to evaluating the
usability of interactive devices and non-interactive notations,
e.g. programming languages and APIs. It establishes a vocabu-
lary of terms to describe the structure of an artefact and shows
how these terms can be traded off against each other. These
terms are, at least in principle, mutually orthogonal.

Traditional HCI evaluation techniques focus on ’simple tasks’
like deleting a word in a text editor, or trying to determine
the time required to perform a certain task. They are not well
suited to evaluating programming environments or notational
issues. The CD framework has been used to perform usability
analyses of visual programming environments [51] as well as
APIs [25]. Mavrommati et al. [73] used the framework to evalu-
ate the usability of an editing tool that is used to manage device
associations in a home environment.

Microsoft [25] used the CD framework to evaluate API usabil-
ity, as part of a user-centred design approach to API design.
Every API has a set of actions that it performs. However, devel-
opers browsing the API might not comprehend all the possible
actions that the API offers. In a usability study they asked a
group of developers to use an API to perform a set of tasks,

11.2 evaluating the ontology 189

and then asked a set of questions for each dimension. For ex-
ample, for role expressiveness(see Section 11.2.2), the question
was posed that when reading code that uses the API, if it was
easy to tell what each section of the code does and why.

For our evaluation, we focused on a subset of cognitive di-
mensions that are related to ubiquitous computing ontologies
and systems. What follows is a list of these dimensions, includ-
ing a short description where necessary, as well as an example
question.

levels of abstraction An abstraction is a grouping of ele-
ments that is treated as one entity, either for convenience
or to change the conceptual structure [51]. What are the
minimum and maximum levels of abstractions?

closeness of mapping How clearly did the available compo-
nents map onto the problem domain?

consistency When some part of the ontology has been learnt, how
much of the rest can be inferred by the developer? Where there
were concepts in the ontology that mean similar things, is the
similarity clear from the way they appear?

viscosity To solve problems of viscosity, usually more ab-
stractions (see earlier definition) are introduced in order
to handle a number of components as one group, for ex-
ample in object-oriented programming [51]. An example
of viscosity is where it is necessary to make a global change
by hand because the environment used does not have a
global update tool. How much effort was required to make a
change to the environment?

role expressiveness The dimension of role expressiveness
is intended to describe how easy it is determine what a
certain part is for. Are there parts of the ontology that are
particularly difficult to interpret?

hard mental operations Are there places where the devel-
oper needs to resort to fingers or pencilled annotation to keep
track of what is happening? What kind of things required the
most mental effort with this system and ontology?

error-proneness Did some kinds of mistakes seem particularly
common or easy to make?

190 evaluation

hidden dependencies If some parts were closely related to other
parts, and changes to one may affect the other, are those depen-
dencies visible?

11.2.3 Method

The original CD questionnaire [14] was adapted for use with
ubiquitous computing ontologies. Non-relevant questions were
eliminated and some wording and questions were adjusted to
the subject matter, without changing the fundamental meaning
of the questions themselves.As mentioned in

Section 6.2.2, our
academic partners

in Bologna
published a journal
paper [9] based on

an independent
implementation of

our work.

Developers of the SOFIA smart home pilot completed the ques-
tionnaire, as well as students and developers affiliated to the
University of Bologna, for a total of 17 correspondents. The
SOFIA developers used the ontology and software architecture
for a couple of weeks in order to construct the smart home pilot.
The students in Bologna took part in a course based on technol-
ogy developed within the SOFIA project, where they also made
use of the ontology and software architecture.

Three additional questions not directly related to the cogni-
tive dimensions, but meant to elicit more general responses
about the usability of the ontologies and the system, were in-
cluded in the questionnaire.

11.2.4 Results

11.2.4.1 Levels of abstraction

Were you able to define your own concepts and terms
using the system and ontology? Did you make use of dif-
ferent levels of abstraction? An abstraction is a group-
ing of elements to be treated as one entity. In the
ontology, these are defined as superclasses and sub-
classes, e.g. PlayEvent is a subclass of MediaPlayerEvent.
Please indicate to what extent you made use of dif-
ferent levels of abstraction. If you did not use it,
please indicate why.

Most developers (14 out of 17) were able to make use of the
existing concepts as defined, where the definition included dif-
ferent abstraction levels. Where necessary, developers (7 out of
17) were able to define their own concepts using different ab-
straction levels. One group used a simple ontology that did not

11.2 evaluating the ontology 191

� � � � � � � � �� �
� � � �

� � �� 	
 � � �
� � � �

� 	 � 	 �� �
 	 � �
� � � �

� � � � 	 � � �
� � � �

(a) Background of correspondents

� �
 � � � � � � � �

� �

� �

� �

� �
 � � � � 	
 � �

� � � � � � � � � � � � � � � �
� � � � � � �
 � � �
 � � �
 �
 	 � � 	 �
 �

(b) Correspondents’ experience
with software engineering and
programming

� � � � � � � � � � � � � �

� � � �
 � 	 �
 � � � �

� � � � � � � � � � �

� �

� �

� �

� � � �
 	 �
 � � �

� � � � � � �
 � � �
 � � �
 �
 	 � � 	 �
 �

(c) Correspondents’ experience
with ontologies and semantic
technologies

Figure 64: Correspondent demographics

require different levels of abstraction. As the level of knowl-
edge about ontologies differed between different parties work-
ing on the same project, this necessitated the simplification of
the ontology to a schema without semantics in some cases. One
group avoided ontological reasoning altogether by embedding
the logic in the KP itself.

11.2.4.2 Closeness of mapping

How clearly did the available components map to the prob-
lem domain? Did you have to define any of your own
components, or were any special tricks needed to
accomplish specific functionality?

Most of the developers (13 out of 17) experienced a clear, con-
sistent mapping, with the domain mapped to already available
components. In a few cases, developers developed their own
components from scratch, or in addition to the available com-
ponents (5 out of 17).

192 evaluation

While it was easy to achieve the required functionality, it
remains difficult to achieve component re-use. This becomes
problematic for achieving emergent intelligent behaviour. It was
also stated that more detailed descriptions of device capabil-
ities, for example the coverage area of a presence sensor, are
required.

11.2.4.3 Consistency

Where there were concepts in the ontology that mean
similar things, is the similarity clear from the way they
appear? Are there places where some things ought
to be similar, but the ontology defines them differ-
ently? Please give examples.

Most developers (9 out of 13 - 4 developers chose not to an-
swer this question) thought that similar entities in the ontology
were subclassed correctly. It was indicated that owl:sameAs may
be useful to indicate that different terms with the same mean-
ing are in fact the same thing.

Afterwards we realised that developers not well acquainted
with ontologies found it difficult to understand the difference
between declaring entities using rdfs:subClassOf and declar-
ing them as individuals or instances, as well as how to model
an entity that contains another entity.

Similar entities were not always instantiated in the same way,
for example no state information was available for some smart
objects. Where multiple domain ontologies with similar con-
cepts were used, these concepts were not aligned - most de-
velopers expected some upper (or core) ontology to align and
unify main concepts. Concepts need a clear textual description
and usage examples to make them easier to understand.

11.2.4.4 Viscosity

How much effort was required to make a change to the en-
vironment? Why? How difficult is it to make changes
to your program, the ontology or the system? For ex-
ample, was it necessary to make a global change by
hand because no global update tools were available?

Although different domains used different terms to define
ontological concepts, most developers (10 out of 17) found it
quite easy to make changes for ontological agreement. How-
ever, changes to the ontology sometimes necessitated changes

11.2 evaluating the ontology 193

at code level. In most cases, it was easier to adapt to changes
on a semantic level, as the KP domain boundaries were well
defined.

Using ontologies made it easier to allow for definition changes
at run-time. Depending on the inferencing method used, changes
to the ontology could require some existing inferences to be re-
moved.

One developer working with an embedded system found
changes to be more difficult to implement, as it still required re-
building images and downloading them to embedded boards
for each modification. Another developer found it difficult to
view changes made to the environment, due to a lack of tools
to explore the contents of the SIB.

11.2.4.5 Role expressiveness

Are there parts of the ontology that are particularly diffi-
cult to interpret? How easy is it to answer the ques-
tion: ’What is this bit for?’ Which parts are difficult
to interpret?

Most responses (12 out of 17) indicated that the ontology was
easy to understand. More clarifying comments inside the on-
tology could be useful - this can be implemented using the
rdfs:comment field. One developer indicated that application
ontologies (ontologies that are device-specific) were still hard
to interpret.

Some concepts might be instinctively interpreted differently,
but the defined meaning became clear when viewed in context
with the rest of the ontology. The ontology provides the struc-
ture that is necessary to make sense of the concepts.

11.2.4.6 Hard mental operations

What kind of things required the most mental effort with
this system and ontology? Did some things seem es-
pecially complex or difficult to work out in your
head (e.g. when combining several things)? What
are they?

5 of the 17 developers indicated that ontologies are not an
easy concept to grasp and that common practice is not always
clear. Once familiar with ontologies, and understanding the spe-
cific ontologies involved, developers thought they were easy to
use.

194 evaluation

There is still effort required to make the system adaptive.
This issue is also mentioned in Section 11.2.4.2.

11.2.4.7 Error-proneness

Did some kinds of mistakes seem particularly common or
easy to make? Which ones? Did you often find yourself
making small slips that irritate you or make you feel
stupid? What are some examples?

At least two developers found it quite easy to mistype string
literals, indicating that it would be better to define entities to
represent strings that occur more than once. Mistyping URIs
was another common error, mentioned by two developers. One
developer mentioned mixing up namespaces as an error that
commonly occurred. Developers not familiar with ontologies
also mixed up or misunderstood the differences between URIs
and literals.

11.2.4.8 Hidden dependencies

If some parts were closely related to other parts, and changes
to one may affect the other, are those dependencies visible?
What kinds of dependencies were hidden? How dif-
ficult was it to test the implemented system? Were
there hidden faults that were difficult to find?

Three developers noted that using ontologies made the rela-
tionships among entities/parts more visible.

Changes to the ontology may affect others, therefore version-
ing and update notification are important. In the system used
no errors were raised when components adhered to different
versions of the ontology. Broken dependencies were only visi-
ble when the overall system failed.

One developer indicated that the publish/subscribe approach
followed by the system architecture allowed for minimal depen-
dencies due to loose coupling.

Three developers noted that it was difficult to determine when
something did not work. This was especially noticeable in the
case of subscriptions, were it becomes really difficult to under-
stand why a certain subscription-based notification was not re-
ceived.

One developer suggested that an ontology viewer could be
used to make dependencies more visible, and that the Protégé
ontology editor is too complex for most users.The Protégé

ontology editor was
first mentioned in

Section 4.6.

11.2 evaluating the ontology 195

11.2.5 Non-CD related questions

Some questions in the questionnaire were not directly related
to the cognitive dimensions, but were meant to elicit more gen-
eral responses to the usability of the ontologies and system.

Question 1. What obstacles made it difficult to use the system?

This question was based on a survey done by [98] to deter-
mine aspects that make APIs hard to learn. The question was
phrased as follows:

What obstacles made it difficult for you to use the sys-
tem? Obstacles can have to do with the system itself,
with your background, with learning resources etc.
List the three most important obstacles, in order of
importance (1 being the biggest obstacle). Please be
more specific than the general categories mentioned
here.

Responses included:

• Stability, performance, network issues (6 responses)

• Lack of background in ontologies (4 responses)

• Difficult setup and installation procedure (4 responses)

• Poor documentation (3 responses)

• Lack of proper tools for viewing and exploring contents
of SIB (2 responses)

• Insufficient code examples (1 response)

• SSAP poorly documented (1 response) SSAP is described in
more detail in
Section 10.3.• Reliability of subscription mechanism, especially on wire-

less networks (1 response)

• QNames not supported on all platforms, requiring full
URI to be specified (1 response) QNames enable full

URIs to be
substituted by short
prefixes.

• Ontology agreement (1 response)

196 evaluation

Question 2. What did you appreciate most about the system and
ontology?

Responses included:

• Semantic interoperability between different devices, man-
ufacturers and architectures (6 responses)

• Ontology usable in different domains and more complex
scenarios (3 responses)

• Easy and quick to define new applications based on on-
tologies (3 responses)

• Decoupling of interaction between components, i.e. all
communication through broker, but could be single point
of failure (2 responses)

• Using semantic connections to connect devices (1 response)

• Ability to react to context changes through subscriptions
(1 response)

One respondent had the following insight: “Once you have
agreed on the ontologies and the KP’s functionalities, you can
focus on handling the various subscriptions and inserting the
necessary triples. One does not have to focus on the communi-
cation protocols used or on the communication with the other
components themselves.”

Question 3. Can you think of ways the design of the system and
ontology can be improved?

Responses included:

• Tools for ontology design, as currently external tools are
required (2 responses)

• Authentication/security/locking (2 responses)

• SIB discovery (1 response)

• Agreement on ontological concepts to be used by a tech-
nical group (1 response)

• Better documentation (1 response)

11.2 evaluating the ontology 197

• Self-description of UI concepts and component function-
ality (1 response)

• Hierarchic Smart Spaces (1 response)

• Locality/routing/separation of message buses (1 response)

• Forcing a programming paradigm like Object-Oriented
Programming (OOP) influences semantic treatment (1 re-
sponse)

• How to handle faulty smart objects (1 response)
These results were
communicated by
the author to the
other project
partners in the
SOFIA project at a
review meeting.

11.2.6 Discussion & Conclusion

Ontologies allow developers to create additional levels of ab-
straction when the existing abstractions are not sufficient. The
bigger issue seems to be unfamiliarity with ontologies, with
some developers going so far as to embed all logic in the code
itself in order to avoid using ontologies, as mentioned in Sec-
tion 11.2.4.1.

For the ontologies we defined, there seems to be clear map-
ping between objects in the domain and the ontological entities
that they are mapped to. Adding additional components where
necessary did not present any problems. One area that needs
more attention is the extending the level of detail for device
capability descriptions. Keep in mind, however, that too many
low-level primitives create a cognitive barrier to programming
[51]. It is not easy to deal with entities in the program domain
that do not have corresponding entities in the problem domain.
For example, having many ways to describe a presence sensor,
when only one or two of these are relevant to the problem do-
main, makes it more difficult for the developer to comprehend.

When creating an ontology, it is important to provide clear
textual descriptions, clarifying comments and usage examples
for concepts to make them easier to understand. The GoodRela-
tions e-commerce ontology is a good example of how this can
be achieved. GoodRelations was

first discussed in
Section 11.2.1.

Tools to explore the contents of the triple store more effi-
ciently could decrease viscosity, as it would simplify viewing
changes made to the environment and make dependencies more
visible. Existing ontology viewers are still considered complex
to use, usually only by ontology experts. Tools to automatically

198 evaluation

detect namespaces and prevent mistyping of URIs and strings
used in the ontology would also be very useful.

Even though the Semantic Web community has been working
on improving ontology standards for more than a decade, the
main hurdle to adoption seems to be developers’ unfamiliarity
with ontologies. Education and more examples of successful
implementations could help to alleviate this problem. The other
issue that needs to be addressed is improving the tools used to
create and view ontologies.

In addition to the strengths and limitations of the software
architecture and the ontology described in this chapter, we dis-
cuss more general conclusions and achievements in the next
chapter.

12
C O N C L U S I O N

The holy grail of context awareness is
to divine or understand human intent.

— Anind Dey [29], ubicomp researcher

In this chapter we will discuss some of the results achieved by
the work described in this thesis, and to what extent it validates
the hypothesis and answers the research questions set out in
Section 1.2.5. We will also discuss some of the lessons learned
during the time spent working on this project.

Research work is no longer a one-man show. Apart from the
close collaboration between Van der Vlist [116] and myself, we
also had to work closely with the other partners in the SOFIA
project. A large part of such a project is the work on techno-
logical integration, where the focus is on the interoperability
of devices. This technological integration work was not always
discussed in detail in the descriptions of the three design itera-
tions, where the focus was mainly on showing our own contri-
butions. Intentional,

incidental and
expected
interactions were
introduced in
Section 2.5.2.

One thing we learned from working in the ubiquitous com-
puting domain is that automation should be used to simplify
the complexities of technology, not necessarily to automate ev-
erything in the real world. It is much easier for a user to create
a working mental model of his/her surroundings when explic-
itly interacting with things in the world. When incidental inter-
actions occur and something happens automatically, there is a
greater chance that the user will construct an incorrect mental
model, and then expect a result that may be inconsistent with
how the system actually works.

12.1 achievements and observations

The word
serendipitous in the
context of this
thesis means that
something is
discovered by
chance in a
beneficial way, i.e.
devices discover
each others’
functionality and
make use of it.

At the beginning of the project we set out to create an ontol-
ogy and software architecture that could enable serendipitous
interoperability between devices in a smart environment. An
ontology was created to model user interaction and devices in a
smart environment consisting of multiple interactions and mul-
tiple devices.

199

200 conclusion

The ontology and software architecture described in this the-
sis enable the creation of ensembles of devices. For example, the
alarm functionality of a mobile phone, a wakeup service and a
lamp can be combined to create an ensemble of devices with
wakeup light functionality. This enables serendipitous interop-
erability, and we are excited to see what kinds of ensembles
people come up with in future.

One side effect of enabling serendipitous interoperability in
a smart environment is that there are now multiple ways to
achieve the same goal. For example, if the user connects the
alarm clock functionality on his/her mobile phone to the clock
radio on his/her bedside table, the alarm can be set on either
the phone or the clock radio – whichever way the user prefers.
Van der Vlist’s [116] observations indicate that this means that
even though the users’ mental models only partly matches the
system they are interacting with, they are still able to achieve
their goals.

A method to evaluate the usability of ontologies and systems
for developers of smart environments was developed, based on
the CD framework. While the evaluation method does not allow
us to assign quantitive measures for usability, it does provide a
vocabulary and framework for discussing usability issues with
ontologies and smart environments.

The ontology and software architecture described in this the-
sis has proven to be easier to use and more flexible than exist-
ing methods, like storing device and service descriptions in a
relational database. Developers were able to make use of exist-
ing ontology concepts as defined, as well as define their own
concepts where necessary. Once familiar with how ontologies
work, they found the ontology easy to understand. Ontologies
also made the relationships between various entities more visi-
ble.

The system performance of the software architecture com-
pares favourably to similar systems, as described in Section
12.3 below. Semantic reasoning was also shown to be a viable
alternative to other approaches, like verification modelling lan-
guages and model checkers, also described in more detail in
Section 12.3 below.

We now discuss some of the results of the work in more de-
tail.

12.2 providing affordances and feedback for smart objects 201

12.2 providing affordances and feedback for smart

objects

In a GUI, there are six fundamental interaction tasks, as de-
scribed in Foley’s seminal paper [42] In contrast, there are nu- Foley’s taxonomy

was discussed in
Section 2.4.

merous activities that can be performed with or on a physi-
cal object, for example squeeze, tap and push. There are also
no standard input/output devices, for example movement may
be measured with an accelerometer, camera or infrared sensor.
A user action, within a given interaction, may be distributed
across multiple physical objects, as there is no single point of
interaction [34]. Tangible interfaces

were discussed in
Section 2.3.1.

Addressing a system with a GUI is very clear: the user uses
an input device attached to the system. In a smart environment
it is not always clear which devices form part of the system. In
most systems using tangible interfaces, devices are augmented
with RFID tags or IR transmitters, where they can be scanned or
pointed at to initiate communication. If these tags and sensors
are attached unobtrusively to devices, it is difficult for users to
distinguish which devices form part of the smart environment,
as there are no visual affordances. Feedback and

feedforward is
discussed in more
detail in Section
5.4.1.

Our approach to solving this problem was to make extensive
use of feedback and feedforward. For example, we use aug-
mented feedforward to display a device’s functional possibili-
ties at the time a connection between two devices is being made.
We also use feedback to confirm user actions, using augmented
feedback where direct functional feedback is not available.

12.3 software architecture

Even with all the different toolkits and systems to demonstrate
the usefulness of ubiquitous computing technology, as described
in Section 2.1, building these kind of systems is still a complex
and time-consuming task due to a lack of appropriate infras-
tructure or middleware-level support [53].

Chapter 10 in this thesis can act as a reference design for fu-
ture implementations. From the work described in this thesis
we have shown that having an architecture based on the black-
board pattern and publish/subscribe paradigm works well. We
evaluated the suitability of such a combination to handle ontol-
ogy-based ubiquitous computing environments, with promis-
ing results. The ØMQ protocol,

mentioned in
Section 10.3, can
run with or without
a dedicated message
broker.

202 conclusion

However, having a centralised information broker is only one
solution. Hybrid approaches using both centralised and decen-
tralised techniques should also be explored.

The EventHeap system, first mentioned in Section 2.1.2, also
used a tuple space protocol to establish communication be-
tween devices. A performance evaluation on a Pentium II 450

MHz with 256 MB of RAM shows that the system can provide
latency below 100 ms for 12 different applications each gener-
ating and receiving 10 events per second [63]. Our query time
measurements in Section 11.1.3 were also all below 100 ms.

Johanson and Fox [63] noted that both latency and scalability
in an interactive environment are bounded by social constraints
and human factors. Scalability is bounded by the number of
people and devices interacting with one another to solve some
problem, while latency on a local subnet is usually fast enough
to be imperceptible to humans.

For subscription measurements, however, where time is also
required for reasoning, our system performs slower. While an
independent evaluation of the Smart-M3 platform showed a
subscription measurement time of 140 ms [38], our implemen-
tation takes an average of about 275 ms. As already discussed
in Section 11.1.4, the reasoning improves the flexibility and ca-
pabilities of the system to such an extent that it is worth the hit
in performance.

12.4 ontologies

Most systems use programming language objects to represent
knowledge about their environment. Because these representa-
tions require an a priori agreement on how they will be imple-
mented in a system, they do not facilitate knowledge sharing
in an open and dynamic environment [24]. Based on our work,
we believe strongly that using ontologies to describe and reason
about smart environments have a lot of potential.

Semantic Web technologies are well suited to ubiquitous com-
puting scenarios. They have been designed to work at Web
scale, they provide interoperability between heterogeneous data
sources, and they rely on existing Web standards which allow
for easy adoption [100].The model checker

is called SPIN
(Simple Promela

Interpreter), with
no relation to the

SPIN rules
described elsewhere

in this thesis.

One alternative to semantic reasoning and ontologies is to
use verification modelling languages and model checkers. Cal-
der et al [21] used the Promela language to represent the rule-
set of an event-driven, context-aware homecare activity moni-

12.5 low cost, high tech 203

tor system. Promela is a C-Like state-based language for mod-
elling communicating, concurrent processes. A model checker
was used to perform redundancy checking. Verification times
for a ruleset of eight rules varied between 12 and 34 minutes. A
specialised SAT1 solver only took around 15 ms to solve each in-
stance as a SAT model, but converting the rule set to SAT mod-
els and then performing redundancy checking takes around 5

seconds.
Given that the verification modelling language approach is

geared towards a full state space exploration, the results are
not directly comparable to ours. However, considering what
both these approaches are trying to achieve, it is still an inter-
esting comparison. Our average reasoning time of 275 ms for Reasoning times are

shown in the
experimental results
in Section 11.1.3.

a ruleset of similar size indicates that using ontologies is a vi-
able approach for ubiquitous computing scenarios. It should be
noted that they were investigating using semantics and ontolo-
gies to perform verification as part of their future work.

12.5 low cost, high tech

One area that we focused on in this project was to see what kind
of low-cost products are available that have similar function-
ality to more expensive equipment. For example, while some
13.56MHz RFID readers currently retail for thousands of euros,
the Touchatag reader we used retails for around e30. The Touchatag

reader was first
discussed in Section
3.3.1.

The Nokia 5800 XpressMusic phone we used in the first de-
sign iteration provides a touch screen, WiFi and Bluetooth con-
nectivity and accelerometer for a fraction of the cost of other
phones with similar functionality. Of course, there are some
tradeoffs that need to be made, for example less processing
power or slower responsiveness compared to more expensive
models. We see this approach in a similar light to using rapid
prototyping techniques, like paper or video prototypes, were
tradeoffs are required in order to test out your ideas.

Another example is the Squeezebox radio used in our third
design iteration, which currently sells for around e120. Com-
parable state-of-the-art wireless media systems cost upwards
of e300 per device.

In their book on mobile interaction design, Jones and Mars-
den [64] describe the effect of ubiquitous computing with mo-
bile devices in developing countries, using cheap and simple

1 SAT is an abbreviation for the Boolean satisfiability problem in computer
science.

204 conclusion

technologies. For example, while Internet penetration in SouthGreenfield
mentioned the issue

of second class
technology during a

summer school
panel attended by

the author.

Africa was only 7.1% of the population by 2005, mobile pene-
tration was around 50%. We believe there is a lot of work to
be done in this area. However, there is a note of caution from
Adam Greenfield, author of the book Everyware [52], where
he is worried about the creation of second class technology, for
example where translating financial web applications into an
SMS-based system.

12.6 future work

The ontologies developed as part of the work described in this
thesis are considered a good starting point for future work.
While they provide a good foundation for modelling device
capabilities and interaction events, they cannot be considered
comprehensive yet, due to the sheer number of devices out
there. However, being written in OWL 2 and SPIN means that
they can be easily extended.

Concepts introduced in the thesis, like semantic transformers
and interaction primitives, can be improved upon. Interaction
primitives do not yet fully describe all the possible user interac-
tion capabilities of smart objects, while the features of semantic
transformers can also be extended. The software architecture
and ontologies were deployed and evaluated in the smart home
environment, but could also be applied to other environments,
like smart personal spaces or the smart city.

One aspect that we would like to explore in the future is to
study the possibilities of minimising information overload in
more detail. It should be possible to adapt the amount of infor-
mation in the environment to your mood, for example whether
you want to increase your performance, or just want to focus
on relaxation and enjoyment.n3pygments was

used to perform
syntax highlighting
for the ontology and

SPARQL fragments
in this thesis.

There is room for improvement when it comes to documen-
tation tools for ontologies. For example, there exist many tools
that enable the automatic generation of API documentation from
source code, like Doxygen2 and Sphinx3. At the time of writing,
there is only a limited set of documentation generators avail-
able for ontologies, for example OWLDoc4. An effort by the
author to improve syntax highlighting for SPARQL and Turtle

2 http://doxygen.org
3 http://sphinx.pocoo.org
4 http://code.google.com/p/co-ode-owl-plugins/wiki/OWLDoc

12.6 future work 205

syntax, called n3pygments, is available as open source5 and was
developed during this project. The smart home

pilot was discussed
in Section 4.1.

Another aspect that was considered out of scope for the pro-
ject was social awareness, for example notifying a close friend
performing a similar activity or having a similar goal. We touch-
ed on this aspect during the smart home pilot, where music and
lighting patterns could be shared between friends in two differ-
ent locations. Combining research on social networks with the
work described in this thesis could be an interesting direction
for future research.

5 https://github.com/gniezen/n3pygments

Part IV

A P P E N D I X

A P P E N D I X

In this appendix the final version of the ontology is given in
Turtle format. It is also available to download from:

https://github.com/gniezen/ontologies/

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix : <http://semantic.gerritniezen.com/ontologies/UserInteractionEvents.owl#> .
@prefix afn: <http://jena.hpl.hp.com/ARQ/function#> .
@prefix spin: <http://spinrdf.org/spin#> .
@prefix sp: <http://spinrdf.org/sp#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix spl: <http://spinrdf.org/spl#> .

<http://semantic.gerritniezen.com/ontologies/UserInteractionEvents.owl>
spin:imports <http://topbraid.org/spin/owlrl-all> ;
a owl:Ontology ;
owl:imports <http://spinrdf.org/spin> ;
owl:versionInfo "Created with TopBraid Composer"^^xsd:string .

:AdjustLevel
a :Functionality .

:AdjustLevelEvent
a owl:Class ;
rdfs:subClassOf :InteractionEvent .

:Alarm
a :Functionality .

:AlarmAlertEvent
a owl:Class ;
rdfs:subClassOf :AlarmEvent .

:AlarmEndEvent
a owl:Class ;
rdfs:subClassOf :AlarmEvent .

:AlarmEvent
a owl:Class ;
rdfs:subClassOf :InteractionEvent .

:AlarmRemoveEvent
a owl:Class ;
rdfs:subClassOf :AlarmEvent .

:AlarmSetEvent
a owl:Class ;
rdfs:subClassOf :AlarmEvent, :SetEvent ;
owl:equivalentClass [

a owl:Class ;
owl:intersectionOf (:SetEvent

209

210 appendix

[
a owl:Restriction ;
owl:allValuesFrom xsd:dateTime ;
owl:onProperty :dataValue

]
[

a owl:Restriction ;
owl:cardinality "1"^^xsd:nonNegativeInteger ;
owl:onProperty :dataValue

]
)

] .
:Audio

a :MediaType .
:Binary

a :RangeMeasure ;
rdfs:comment "True/False, 0 or 1"^^xsd:string .

:Bridge
a owl:Class ;
rdfs:subClassOf :SmartObject ;
owl:equivalentClass [

a owl:Class ;
owl:intersectionOf (:SmartObject

:Sink
:Source

)
] .

:CueEvent
a owl:Class ;
rdfs:subClassOf :MediaPlayerEvent ;
owl:disjointWith :PlayEvent, :StopEvent .

:Double
a :RangeMeasure ;
rdfs:comment "Capable of representing values from 0-99 (double digits)" .

:Event
a owl:Class ;
rdfs:subClassOf owl:Thing .

:FeedbackEvent
a owl:Class ;
rdfs:subClassOf :PreviewEvent .

:Functionality
a owl:Class ;
rdfs:subClassOf owl:Thing .

:IDType
a owl:Class ;
rdfs:subClassOf owl:Thing .

:IPAddress
a :IDType .

:Identification
a owl:Class ;
rdfs:subClassOf owl:Thing .

:IncreaseLevelEvent

appendix 211

a owl:Class ;
rdfs:subClassOf :AdjustLevelEvent ;
owl:equivalentClass [

a owl:Class ;
owl:intersectionOf (:AdjustLevelEvent

[
a owl:Restriction ;
owl:onProperty :duration ;
owl:someValuesFrom xsd:integer

]
)

] .
:IndicatorEvent

a owl:Class ;
rdfs:subClassOf :PreviewEvent .

:InteractionEvent
a owl:Class ;
rdfs:subClassOf :Event .

:InteractionPrimitive
a owl:Class ;
rdfs:comment "Smallest addressable interaction element

that has a meaningful relation to the interaction itself"^^xsd:string ;
rdfs:subClassOf owl:Thing .

:MediaPath
a owl:Class ;
rdfs:subClassOf owl:Thing .

:MediaPlayerEvent
a owl:Class ;
rdfs:subClassOf :InteractionEvent .

:MediaType
a owl:Class ;
rdfs:subClassOf owl:Thing .

:Music
a :Functionality .

:PlayEvent
a owl:Class ;
rdfs:subClassOf :MediaPlayerEvent ;
owl:disjointWith :CueEvent, :StopEvent .

:PreviewEvent
a owl:Class ;
rdfs:subClassOf :InteractionEvent .

:RFID_Mifare
a :IDType .

:RGBValues
a :MediaType .

:RangeMeasure
a owl:Class ;
rdfs:subClassOf owl:Thing .

:Real
a :RangeMeasure ;
rdfs:comment "Capable of representing more than 1000 discrete values (infinite)" .

:SemanticTransformer

212 appendix

spin:rule [
sp:templates ([

sp:object spin:_this ;
sp:predicate :connectedTo ;
sp:subject _:A2

]
[

sp:object _:A3 ;
sp:predicate :connectedTo ;
sp:subject spin:_this

]
) ;
sp:where ([

sp:object spin:_this ;
sp:predicate :canConnectTo ;
sp:subject _:A2

]
[

sp:object _:A3 ;
sp:predicate :canConnectTo ;
sp:subject spin:_this

]
[

sp:object _:A3 ;
sp:predicate :connectedTo ;
sp:subject _:A2

]
) ;
a sp:Construct

], [
sp:templates ([

sp:object _:A1 ;
sp:predicate spin:_this ;
sp:subject _:A0

]
) ;
sp:where ([

sp:object _:A1 ;
sp:predicate :canConnectTo ;
sp:subject _:A0

]
) ;
a sp:Construct

] ;
a owl:Class ;
rdfs:subClassOf owl:Thing ;
owl:disjointWith :SmartObject ;
owl:equivalentClass [

a owl:Class ;
owl:intersectionOf (:SemanticTransformer

[
a owl:Restriction ;

appendix 213

owl:cardinality "1"^^xsd:nonNegativeInteger ;
owl:onProperty :functionalitySource

]
)

], [
a owl:Class ;
owl:intersectionOf ([

a owl:Restriction ;
owl:onProperty :canAcceptMediaTypeFrom ;
owl:someValuesFrom :SmartObject

]
[

a owl:Restriction ;
owl:onProperty :convertsMediaType ;
owl:someValuesFrom :SmartObject

]
)

] .
:SetEvent

a owl:Class ;
rdfs:subClassOf :InteractionEvent .

:Single
a :RangeMeasure ;
rdfs:comment "Capable of representing values from 0-9 (single digits)" .

:Sink
a owl:Class ;
rdfs:subClassOf :SmartObject ;
owl:equivalentClass [

a owl:Class ;
owl:intersectionOf (:SmartObject

[
a owl:Restriction ;
owl:onProperty :functionalitySink ;
owl:someValuesFrom :Functionality

]
)

] .
:SmartObject

spin:rule [
sp:templates ([

sp:object _:A5 ;
sp:predicate _:A4 ;
sp:subject spin:_this

]
) ;
sp:where ([

sp:object _:A4 ;
sp:predicate :functionalitySource ;
sp:subject spin:_this

]
[

sp:object _:A4 ;

214 appendix

sp:predicate :functionalitySink ;
sp:subject _:A5

]
) ;
a sp:Construct

], [
sp:templates ([

sp:object _:A6 ;
sp:predicate :hasLastEvent ;
sp:subject spin:_this

]
) ;
sp:where ([

sp:expression [
sp:arg1 spin:_this ;
a :getMaxDateRsc

] ;
sp:variable _:A6 ;
a sp:Bind

]
) ;
a sp:Construct

], [
sp:templates ([

sp:object _:A8 ;
sp:predicate :hasRFIDTag ;
sp:subject spin:_this

]
) ;
sp:where ([

sp:object :RFID_Mifare ;
sp:predicate :ofIDType ;
sp:subject _:A7

]
[

sp:object _:A7 ;
sp:predicate :hasIdentification ;
sp:subject spin:_this

]
[

sp:object _:A8 ;
sp:predicate :idValue ;
sp:subject _:A7

]
) ;
a sp:Construct

] ;
a owl:Class ;
rdfs:subClassOf owl:Thing .

:Source
a owl:Class ;
rdfs:subClassOf :SmartObject ;

appendix 215

owl:equivalentClass [
a owl:Class ;
owl:intersectionOf (:SmartObject

[
a owl:Restriction ;
owl:onProperty :functionalitySource ;
owl:someValuesFrom :Functionality

]
)

] .
:StopEvent

a owl:Class ;
rdfs:subClassOf :MediaPlayerEvent ;
owl:disjointWith :CueEvent, :PlayEvent .

:SystemEvent
a owl:Class ;
rdfs:subClassOf :Event .

:TCPIPObject
a owl:Class ;
rdfs:subClassOf :SmartObject ;
owl:equivalentClass [

a owl:Restriction ;
owl:hasValue :IPAddress ;
owl:onProperty :hasIDType

], [
a owl:Restriction ;
owl:hasValue true ;
owl:onProperty :communicatesByTCPIP

] .
:TimeSetEvent

a owl:Class ;
rdfs:subClassOf :SystemEvent .

:Triple
a :RangeMeasure ;
rdfs:comment "Capable of representing values from 0-999 (triple digits)" .

:acceptsMediaType
a owl:ObjectProperty .

:canAcceptMediaTypeFrom
a owl:ObjectProperty ;
owl:inverseOf :convertsMediaType .

:canConnectTo
a owl:IrreflexiveProperty, owl:ObjectProperty ;
owl:propertyChainAxiom (:functionalitySource

:functionalitySink
) .

:canIndirectlyConnectTo
a owl:ObjectProperty ;
rdfs:subPropertyOf :canConnectTo ;
owl:propertyChainAxiom (:canConnectTo

:canConnectTo
) .

:communicatesByTCPIP

216 appendix

a owl:DatatypeProperty ;
rdfs:domain :SmartObject ;
rdfs:range xsd:boolean .

:connectedFrom
a owl:ObjectProperty ;
owl:inverseOf :connectedTo .

:connectedTo
a owl:IrreflexiveProperty, owl:ObjectProperty ;
rdfs:domain :Source ;
rdfs:range :Sink .

:convertsMediaType
a owl:IrreflexiveProperty, owl:ObjectProperty ;
owl:propertyChainAxiom (:transmitsMediaType

:isAcceptedMediaTypeOf
) .

:cueAt
a owl:DatatypeProperty ;
rdfs:comment "Cue at time (in milliseconds)"^^xsd:string ;
rdfs:domain :CueEvent ;
rdfs:range xsd:integer .

:currentDateTime
spin:body [

sp:resultVariables (_:A9
) ;
sp:where ([

sp:expression [
a afn:now

] ;
sp:variable _:A9 ;
a sp:Bind

]
) ;
a sp:Select

] ;
a spin:MagicProperty ;
rdfs:subClassOf spin:MagicProperties .

:dataValue
a owl:DatatypeProperty ;
rdfs:range xsd:anySimpleType .

:duration
a owl:DatatypeProperty .

:functionalitySink
a owl:ObjectProperty .

:functionalitySource
a owl:ObjectProperty .

:generatedBy
a owl:ObjectProperty ;
rdfs:range :SmartObject .

:getMaxDateRsc
spin:body [

sp:limit "1"^^xsd:long ;
sp:orderBy ([

appendix 217

sp:expression _:A11 ;
a sp:Desc

]
) ;
sp:resultVariables (_:A10
) ;
sp:where ([

sp:object spin:_arg1 ;
sp:predicate :generatedBy ;
sp:subject _:A10

]
[

sp:object _:A11 ;
sp:predicate :inXSDDateTime ;
sp:subject _:A10

]
) ;
a sp:Select

] ;
spin:constraint [

spl:predicate sp:arg1 ;
a spl:Argument ;
rdfs:comment "Smart object that generated the interaction event"^^xsd:string

] ;
a spin:Function ;
rdfs:subClassOf spin:Functions .

:hasIDType
a owl:ObjectProperty ;
owl:propertyChainAxiom (:hasIdentification

:ofIDType
) .

:hasIdentification
a owl:ObjectProperty ;
rdfs:range :Identification .

:hasInteractionPrimitive
a owl:ObjectProperty .

:hasLastEvent
a owl:ObjectProperty .

:hasMediaPath
a owl:ObjectProperty .

:hasRFIDTag
a owl:DatatypeProperty .

:hasRangeMeasure
a owl:ObjectProperty ;
rdfs:domain :InteractionPrimitive ;
rdfs:range :RangeMeasure .

:idValue
a owl:DatatypeProperty ;
rdfs:domain :Identification .

:identificationOf
a owl:ObjectProperty ;
owl:inverseOf :hasIdentification .

218 appendix

:inXSDDateTime
a owl:DatatypeProperty ;
rdfs:domain :Event ;
rdfs:range xsd:dateTime .

:indirectlyConnectedTo
a owl:ObjectProperty ;
rdfs:subPropertyOf :connectedTo .

:isAcceptedMediaTypeOf
a owl:ObjectProperty ;
owl:inverseOf :acceptsMediaType .

:isFunctionalityOfSink
a owl:ObjectProperty ;
owl:inverseOf :functionalitySink .

:isFunctionalityOfSource
a owl:ObjectProperty ;
owl:inverseOf :functionalitySource .

:isInteractionPrimitiveOf
a owl:ObjectProperty ;
owl:inverseOf :hasInteractionPrimitive .

:launchesEvent
a owl:ObjectProperty ;
owl:inverseOf :generatedBy .

:mediaOriginator
a owl:ObjectProperty .

:mediaPathOf
a owl:ObjectProperty ;
owl:inverseOf :hasMediaPath .

:mediaSourceSO
a owl:ObjectProperty .

:ofIDType
a owl:ObjectProperty ;
rdfs:domain :Identification ;
rdfs:range :IDType .

:tempConnectedTo
a owl:ObjectProperty .

:transmitsMediaType
a owl:ObjectProperty .

_:A0
sp:varName "source"^^xsd:string .

_:A1
sp:varName "sink"^^xsd:string .

_:A10
sp:varName "lastEvent"^^xsd:string .

_:A11
sp:varName "last"^^xsd:string .

_:A2
sp:varName "source"^^xsd:string .

_:A3
sp:varName "sink"^^xsd:string .

_:A4
sp:varName "functionality"^^xsd:string .

_:A5

appendix 219

sp:varName "sink"^^xsd:string .
_:A6

sp:varName "lastEvent"^^xsd:string .
_:A7

sp:varName "id"^^xsd:string .
_:A8

sp:varName "tag"^^xsd:string .
_:A9

sp:varName "datetime"^^xsd:string .

B I B L I O G R A P H Y

[1] W3C Web Events Working Group Charter. URL http:
//www.w3.org/2010/webevents/charter/.

[2] OWL Web Ontology Language Use Cases and Require-
ments, 2004. URL http://www.w3.org/TR/webont-req/.

[3] Dean Allemang and Jim Hendler. Semantic Web for the
Working Ontologist: Effective Modeling in RDFS and OWL.
Morgan Kauffman, 2nd edition, 2011. ISBN 978-0-12-
385965-5.

[4] Timo Arnall. A graphic language for touch-based interac-
tions. In Proceedings of the Mobile Interaction with the Real
World workshop (MIRW 2006), 2006.

[5] Rafael Ballagas, Meredith Ringel, Maureen Stone, and Jan
Borchers. iStuff: A Physical User Interface Toolkit for
Ubiquitous Computing Environments. In Proceedings of
the ACM CHI 2003 Conference on Human Factors in Comput-
ing Systems, pages 537–544, Ft. Lauderdale, Florida, USA,
2003.

[6] Rafael Ballagas, A. Szybalski, and A. Fox. Patch panel: en-
abling control-flow interoperability in ubicomp environ-
ments. Second IEEE Annual Conference on Pervasive Com-
puting and Communications, 2004. Proceedings of the, pages
241–252, 2004.

[7] Rafael Ballagas, Jan Borchers, Michael Rohs, and Jen-
nifer G Sheridan. The smart phone : A ubiquitous input
device. IEEE Pervasive Computing, 5(1):70–77, 2006.

[8] Jie Bao, Elisa F. Kendall, Deborah L. McGuinness, and
Peter F. Patel-Schneider. OWL 2 Web Ontology Language:
Quick Reference Guide, 2009. URL http://www.w3.org/
TR/owl2-quick-reference/.

[9] Sara Bartolini, Bojan Milosevic, Alfredo D’Elia, Elisabetta
Farella, Luca Benini, and Tullio Salmon Cinotti. Recon-
figurable natural interaction in smart environments: ap-
proach and prototype implementation. Personal and Ubiq-
uitous Computing, September 2011. ISSN 1617-4909.

221

222 bibliography

[10] Len Bass, Ross Faneuf, Reed Little, Niels Mayer, Bob Pel-
legrino, Scott Reed, Robert Seacord, and Sylvia Sheppard.
A metamodel for the runtime architecture of an interac-
tive system. SIGCHI Bulletin, 24(1):32–37, 1992.

[11] Victoria Bellotti, Maribeth Back, W. Keith Edwards, Re-
becca E. Grinter, Austin Henderson, and Cristina Lopes.
Making sense of sensing systems: five questions for de-
signers and researchers. In Proceedings of the SIGCHI con-
ference on Human factors in computing systems, number 1,
pages 415–422, 2002.

[12] Tim Berners-Lee, James Hendler, and Ora Lassila. The
Semantic Web. Scientific American, 284(5):34–43, 2001.

[13] Sachin Bhardwaj, Tanir Özcelebi, Richard Verhoeven, and
Johan Lukkien. Delay Performance in a Semantic Interop-
erability Architecture. 2011 IEEE/IPSJ International Sympo-
sium on Applications and the Internet, pages 280–285, July
2011.

[14] Alan Blackwell and Thomas Green. A Cognitive Dimen-
sions Questionnaire, 2007. URL https://www.cl.cam.ac.
uk/~afb21/CognitiveDimensions/CDquestionnaire.pdf.

[15] Alan F. Blackwell and Rob Hague. AutoHAN: an architec-
ture for programming the home. Proceedings of the IEEE
Symposia on Human-Centric Computing Languages and Envi-
ronments, pages 150–157, 2001.

[16] Bert Bongers and G. C van Der Veer. Towards a Multi-
modal Interaction Space: categorisation and applications.
Personal and Ubiquitous Computing, 11(8):609–619, Febru-
ary 2007. ISSN 1617-4909.

[17] George E.P. Box and Norman R. Draper. Empirical Model-
Building and Response Surfaces. 1987. ISBN 0-471-81033-9.

[18] M. E. Bratman. Intention, Plans, and Practical Reason. Har-
vard University Press, Cambridge, MA, 1987.

[19] M. E Bratman, D. J Israel, and M. E Pollack. Plans and
resource-bounded practical reasoning. Computational In-
telligence, 4(3):349–355, 1988.

[20] Bill Buxton. Natural User Interface: What’s in a name?,
2010. URL http://www.designbyfire.nl/2010/program#
bill.

bibliography 223

[21] Muffy Calder, Phil Gray, and Chris Unsworth. Tightly
coupled verification of pervasive systems. In Proceedings
of the Third International Workshop on Formal Methods for
Interactive Systems (FMIS 2009), volume 22, 2009.

[22] Stuart K. Card, Jock D. Mackinlay, and George G. Robert-
son. A morphological analysis of the design space of
input devices. ACM Transactions on Information Systems
(TOIS), 9(2):99, 1991. ISSN 1046-8188.

[23] Matthew Chalmers and Ian MacColl. Seamful and
Seamless Design in Ubiquitous Computing. Computer,
(Equator-03-005), 2003.

[24] Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi.
SOUPA: standard ontology for ubiquitous and perva-
sive applications. In Proceedings of Mobile and Ubiquitous
Systems: Networking and Services (MOBIQUITOUS 2004),
pages 258–267, 2004.

[25] Steven Clarke. Measuring API Usability. Dr Dobbs Journal,
10(1), April 2004. ISSN 1361-4533.

[26] Joelle Coutaz, James L. Crowley, Simon Dobson, and
David Garlan. Context is key. Communications of the ACM,
48(3):49–53, 2005.

[27] Mathieu D’Aquin and Aldo Gangemi. Is there beauty in
ontologies ? Applied Ontology, 6(3/2011):165–175, 2011.

[28] Maurice M. de Ruiter. Advances in Computer Graphics III.
Springer-Verlag, 1988. ISBN 0-387-18788-X.

[29] Anind K Dey. Context-aware computing. In John Krumm,
editor, Ubiquitous Computing Fundamentals, pages 321–352.
CRC Press, 2010. ISBN 978-1-4200-9360-5.

[30] Alan Dix. Upside down As and algorithms - computa-
tional formalisms and theory. In John Carroll, editor, HCI
Models, Theories and Frameworks: Toward a Multidisciplinary
Science, pages 381–429. Morgan Kauffman, San Francisco,
USA, 2003.

[31] Alan Dix, Janet Finlay, Gregory D. Abowd, and Russell
Beale. Human-Computer Interaction. Pearson Education
Limited, 3rd edition, 2004.

224 bibliography

[32] Alan Dix, Masitah Ghazali, Steve Gill, Joanna Hare, and
Devina Ramduny-Ellis. Physigrams: modelling devices
for natural interaction. Formal Aspects of Computing, 21(6):
613–641, December 2008. ISSN 0934-5043.

[33] Leigh Dodds and Ian Davis. Linked Data Patterns. 2011.
URL http://patterns.dataincubator.org.

[34] Paul Dourish. Where the Action Is. MIT Press, September
2004. ISBN 0262541785, 9780262541787.

[35] Nick Drummond. The Manchester OWL Syn-
tax, 2009. URL http://www.co-ode.org/resources/
reference/manchester_syntax/.

[36] Emmanuel Dubois and Philip Gray. A design-oriented
information-flow refinement of the ASUR interaction
model. Engineering Interactive Systems, 4940/2008:465–
482, 2008.

[37] W. Keith Edwards and Rebecca E Grinter. At home with
ubiquitous computing: Seven challenges. Ubicomp 2001:
Ubiquitous Computing, pages 256–272, 2001.

[38] Matti Etelapera, Jussi Kiljander, and Kari Keinanen. Fea-
sibility Evaluation of M3 Smart Space Broker Implemen-
tations. 2011 IEEE/IPSJ International Symposium on Appli-
cations and the Internet, pages 292–296, July 2011.

[39] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui,
and Anne-Marie Kermarrec. The many faces of publish/-
subscribe. ACM Computing Surveys, 35(2):114–131, June
2003. ISSN 03600300.

[40] Loe M.G. Feijs and R.C. Van Ommering. Relation parti-
tion algebra - mathematical aspects of uses and part-of
relations. Science of Computer Programming, 33, 1999.

[41] Dieter Fensel. Triple-space computing: Semantic Web Ser-
vices based on persistent publication of information. In
Intelligence in Communication Systems, Lecture Notes in
Computer Science, pages 43–53. Springer, 2004.

[42] James D. Foley, Victor L. Wallace, and Peggy Chan. The
human factors of computer graphics interaction tech-
niques. IEEE Computer Graphics and Applications, 4(11):
13–48, 1984.

bibliography 225

[43] James D. Foley, Andries van Dam, Steven K. Feiner, and
John F. Hughes. Computer graphics: principles and prac-
tice. Addison-Wesley Publishing Company, Inc., 2nd edi-
tio edition, 1996. ISBN 0201848406.

[44] Joep J.W. Frens and Kees C.J. Overbeeke. Setting the
Stage for the Design of Highly Interactive Systems. In
Proceedings of the International Association of Societies of De-
sign Research (IASDR’09), pages 1–10, Seoul, Korea, 2009.

[45] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Publishing Company,
Inc., 1994. ISBN 0-201-63361-2.

[46] Aldo Gangemi and Peter Mika. Understanding the Se-
mantic Web through Descriptions and Situations. In
Proceedings of ODBASE03 Conference, pages 689—-706.
Springer, 2003.

[47] Aldo Gangemi and Valentina Presutti. Content Ontology
Design Patterns as Practical Building Blocks for Web On-
tologies. In Conceptual Modeling - ER 2008, Lecture Notes
in Computer Science, pages 128–141. Springer Berlin /
Heidelberg, 2008.

[48] Michael Georgeff, Barney Pell, Martha Pollack, Milind
Tambe, and Michael Wooldridge. The Belief-Desire-
Intention Model of Agency. In Intelligent Agents V: Agents,
theories, architectures and languages, Lecture Notes in Com-
puter Science, pages 1–10. Springer, 1999.

[49] M.P. Georgeff and A.S. Rao. A profile of the Australian
Artificial Intelligence Institute [World Impact]. IEEE Ex-
pert, 11(6):89, 1996. ISSN 0885-9000.

[50] J.J. Gibson. The Theory of Affordances. In Robert Shaw
and John Bransford, editors, Perceiving, Acting and Know-
ing: Toward an Ecological Psychology, pages 67—-82. LEA,
Hillsdale, 1977.

[51] T.R.G. Green and M. Petre. Usability Analysis of Visual
Programming Environments : a ’cognitive dimensions’
framework. Applied Psychology, (January):1–51, 1996.

[52] Adam Greenfield. Everyware: The dawning age of ubiquitous
computing. New Riders, 2006.

226 bibliography

[53] Tao Gu, Xiao Hang Wang, Hung Keng Pung, and
Da Qing Zhang. An Ontology-based Context Model in
Intelligent Environments. In Proceedings of Communication
Networks and Distributed Systems Modeling and Simulation
Conference, pages 270—-275, 2004.

[54] John Hebeler, Matthew Fisher, Ryan Blace, and Andrew
Perez-Lopez. Semantic web programming. Wiley Publish-
ing, 2009. ISBN 047041801X.

[55] Martin Hepp. Ontologies: State of the Art, Business Po-
tential, and Grand Challenges. In Martin Hepp, Pieter
De Leenheer, Aldo De Moor, and York Sure, editors,
Ontology Management: Semantic Web, Semantic Web Ser-
vices, and Business Applications, pages 3–22. 2007. ISBN
9780387698991.

[56] Rinke Hoekstra. Ontology Representation: design patterns
and ontologies that make sense. PhD thesis, University of
Amsterdam, 2009.

[57] Rinke Hoekstra. Representing Social Reality in OWL
2. In OWLED 2010, 7th International Workshop, San Fran-
cisco, California, USA, 2010. URL http://www.webont.
org/owled/2010/papers/owled2010_submission_29.pdf.

[58] Rinke Hoekstra and Joost Breuker. Polishing diamonds
in OWL 2. Knowledge Engineering: Practice and Patterns,
5268/2008:64–73, 2008.

[59] Jukka Honkola, Hannu Laine, Ronald Brown, and Olli
Tyrkko. Smart-M3 Information Sharing Platform. In Com-
puters and Communications (ISCC), 2010 IEEE Symposium
on, pages 1041–1046, Riccione, Italy, 2010.

[60] Interaction Design Foundation. Interaction Design Quote.
URL http://www.interaction-design.org/quote/.

[61] Thomas C. Jepsen. Just What Is an Ontology, Anyway?
IEEE IT Professional, 11(5):22–27, 2009. ISSN 1520-9202.

[62] Michael Jeronimo and Jack Weast. UPnP Design by Exam-
ple. Intel Press, 2009.

[63] B. Johanson and A. Fox. The Event Heap: a coordina-
tion infrastructure for interactive workspaces. Proceedings
Fourth IEEE Workshop on Mobile Computing Systems and Ap-
plications, pages 83–93, 2002.

bibliography 227

[64] Matt Jones and Gary Marsden. Mobile Interaction Design.
John Wiley and Sons, 2006.

[65] Satya Komatineni, Dave MacLean, and Sayed Hashimi.
Pro Android 3. Apress, 2011. ISBN 1430232226.

[66] Mike Kuniavsky. Smart Things: Ubiquitous Computing User
Experience Design. Morgan Kauffman, 2010. ISBN 978-0-
12-374899-7.

[67] Matthijs Kwak, Gerrit Niezen, Bram J.J. van der Vlist, Jun
Hu, and Loe M.G. Feijs. Tangible Interfaces to Digital
Connections, Centralized versus Decentralized. In Trans-
actions on Edutainment V, Lecture Notes in Computer Science.
2011.

[68] Craig Larman and Victor R. Basili. Iterative and Incre-
mental Development: A brief history. IEEE Computer, 36

(6):47–56, 2003.

[69] Choonhwa Lee, Sumi Helal, and Wonjun Lee. Universal
interaction with smart spaces. IEEE Pervasive Computing,
5(1):16–21, 2006.

[70] V Luukkala and I Niemelä. Enhancing a Smart Space
with Answer Set Programming. Semantic Web Rules,
LNCS 6403:89–103, 2010.

[71] Wendy E Mackay and Anne-Laure Fayard. HCI , Natu-
ral Science and Design : A Framework for Triangulation
Across Disciplines. In Proceedings of the 2nd conference on
Designing interactive systems: processes, practices, methods,
and techniques (DIS’97), pages 223–234, 1997.

[72] Jock Mackinlay, Stuart Card, and George Robertson. A
Semantic Analysis of the Design Space of Input De-
vices. Human-Computer Interaction, 5(2):145–190, June
1990. ISSN 0737-0024.

[73] Irene Mavrommati, Achilles Kameas, and Panos
Markopoulos. An editing tool that manages device
associations in an in-home environment. Personal and
Ubiquitous Computing, 8(3-4):255–263, June 2004. ISSN
1617-4909.

228 bibliography

[74] David Merrill, Jeevan Kalanithi, and Pattie Maes. Sifta-
bles: towards sensor network user interfaces. In Pro-
ceedings of the 1st international conference on Tangible and
embedded interaction (TEI’07), pages 75–78, Baton Rouge,
Louisiana, 2007. ACM. ISBN 978-1-59593-619-6.

[75] Robert B. Miller. Response time in man-computer conver-
sational transactions. In Proceedings of the Fall Joint Com-
puter Conference, page 267. ACM Press, 1968.

[76] Mark W. Newman, Jana Z. Sedivy, Christine M.
Neuwirth, W. Keith Edwards, Jason I. Hong, Shahram
Izadi, Karen Marcelo, and Trevor F. Smith. Designing for
serendipity: supporting end-user configuration of ubiq-
uitous computing environments. Proceedings of the con-
ference on Designing interactive systems processes, practices,
methods, and techniques - DIS ’02, pages 147—-156, 2002.

[77] Hung Q. Ngo, Anjum Shehzad, Kim Anh Pham, Maria
Riaz, Saad Liaquat, and Sung Young Lee. Developing
Context-Aware Ubiquitous Computing Systems with a
Unified Middleware Framework. In Proceedings of Embed-
ded and Ubiquitous Computing (EUC 2004), pages 239–247,
2004.

[78] J Nielsen. A virtual protocol model for computer-human
interaction. International Journal of Man-Machine Studies,
24(3):301–312, March 1986. ISSN 00207373.

[79] E. Niemela and T. Vaskivuo. Agile middleware of perva-
sive computing environments. In Proceedings of the 2nd
IEEE Anual Conference on Pervasive Computing and Com-
munication Workshops (PERCOMW’04), pages 192–197, Or-
lando, FL, USA, March 2004.

[80] Gerrit Niezen, Bram J.J. van der Vlist, Jun Hu, and
Loe M.G. Feijs. From events to goals: supporting seman-
tic interaction in smart environments. In Proceedings of the
IEEE Symposium on Computers and Communications (ISCC),
pages 1029–1034, Riccione, Italy, 2010.

[81] Gerrit Niezen, Bram J.J. van der Vlist, Jun Hu, and
Loe M.G. Feijs. Using semantic transformers to enable
interoperability between media devices in a ubiquitous
computing environment. In Grid and Pervasive Computing

bibliography 229

Workshops, Lecture Notes in Computer Science, volume 7096,
pages 44–53. Springer Berlin / Heidelberg, 2011.

[82] Gerrit Niezen, Bram J.J. van der Vlist, Sachin Bhardwaj,
and Tanir Ozcelebi. Performance Evaluation of a Seman-
tic Smart Space Deployment. In 4th International Workshop
on Sensor Networks and Ambient Intelligence (SeNAmI 2012),
Lugano, Switzerland, March 2012.

[83] Joshua Noble. Programming Interactivity. O’Reilly, 2009.

[84] Donald A. Norman. The Design of Everyday Things. MIT
Press, 1998. ISBN 0-262-64037-6.

[85] Donald A. Norman. The Invisible Computer. MIT Press,
1999.

[86] N. Noy and A. Rector. Defining n-ary relations on
the semantic web, 2006. URL http://www.w3.org/TR/
swbp-n-aryRelations.

[87] Martin J O’Connor and Amar K Das. A Lightweight
Model for Representing and Reasoning with Temporal
Information in Biomedical Ontologies. In International
Conference on Health Informatics (HEALTHINF), Valencia,
Spain, 2010.

[88] Ian Oliver and Jukka Honkola. Personal semantic web
through a space based computing environment. In Mid-
dleware for the Semantic Web, Second IEEE International Con-
ference on Semantic Computing, Santa Clara, CA, USA, Au-
gust 2008. URL http://arxiv.org/pdf/0808.1455.

[89] Dan R. Olsen, S. Travis Nielsen, and David Parslow. Join
and capture: a model for nomadic interaction. In Proceed-
ings of the The 14th Annual ACM Symposium on User In-
terface Software and Technology (UIST’01), volume 3, pages
131–140, 2001.

[90] Tim O’Reilly and John Battelle. Web Squared: Web 2.0
Five Years On. Technical report, O’Reilly, 2009.

[91] Jeffrey S. Pierce and Heather Mahaney. Opportunistic An-
nexing for Handheld Devices : Opportunities and Chal-
lenges. Technical report, Proceedings of HCIC, 2003.

230 bibliography

[92] Erika Shehan Poole, Marshini Chetty, Rebecca E Grinter,
and W Keith Edwards. More Than Meets the Eye : Trans-
forming the User Experience of Home Network Manage-
ment. In Proceedings of the 7th ACM Conference on De-
signing Interactive Systems (DIS’08), pages 455–464, Cape
Town, South Africa, 2008. ACM.

[93] Davy Preuveneers and Yolande Berbers. Encoding seman-
tic awareness in resource-constrained devices. IEEE Intel-
ligent Systems, 23(2):26–33, 2008.

[94] Anand Ranganathan, Jalal Al-Muhtadi, and Roy H.
Campbell. Reasoning about Uncertain Contexts in Perva-
sive Computing Environments. IEEE Pervasive Computing,
3(2):62–70, 2004. ISSN 1536-1268.

[95] Stefan Rapp. Spotlight Navigation : a pioneering user
interface for mobile projection. In Proceedings of Ubiprojec-
tion, Helsinki, Finland, 2010.

[96] Jun Rekimoto, Yuji Ayatsuka, Michimune Kohno, and
Hauro Oba. Proximal interactions: A direct manipula-
tion technique for wireless networking. In Proceedings of
INTERACT2003, pages 511—-518, 2003.

[97] Charles Rich. Building Task-Based User Interfaces with
ANSI/CEA-2018. IEEE Computer, 42(8):20–27, 2009. ISSN
0018-9162.

[98] Martin P. Robillard. What Makes APIs Hard to Learn?
Answers from Developers. IEEE Software, 26(6):27–34,
November 2009. ISSN 0740-7459.

[99] Ben Rubin. 5 Steps to Phasing Sleep, 2009. URL http:
//blog.myzeo.com/5-steps-to-phasing-sleep/.

[100] Marta Sabou. Smart objects : Challenges for Semantic
Web research. Semantic Web, 1(1-2):127–130, 2010.

[101] Ansgar Scherp, Carsten Saathoff, Thomas Franz, and Stef-
fen Staab. Designing core ontologies. Applied Ontology, 6:
177–221, 2011.

[102] Toby Segaran and Jeff Hammerbacher. Beautiful Data:
The Stories Behind Elegant Data Solutions. O’Reilly, 2009.

bibliography 231

[103] Toby Segaran, Colin Evans, and Jamie Taylor. Program-
ming the Semantic Web. O’Reilly, 2009. ISBN 978-0-596-
15381-6.

[104] Juan Sequeda. SPARQL 101, 2012. URL http:
//www.cambridgesemantics.com/semantic-university/
sparql-101.

[105] Orit Shaer, Nancy Leland, Eduardo H. Calvillo-Gamez,
and RobertJ.K. Jacob. The TAC paradigm: specifying tan-
gible user interfaces. Personal and Ubiquitous Computing, 8

(5):359–369, July 2004. ISSN 1617-4909.

[106] CE Shannon. A Mathematical Theory of Communication.
Bell System Technical Journal, 27:379–423, 623–423, 1948.

[107] Ryan Shaw, Raphael Troncy, and Lynda Hardman. LODE
: Linking Open Descriptions of Events. In The Semantic
Web, Lecture Notes in Computer Science, pages 153–167.
Springer Berlin / Heidelberg, 2009.

[108] Sarah Slobin. The 7 1/2 steps to successful info-
graphics, 2010. URL http://visitmix.com/Articles/
seven-and-a-half-steps-to-successful-infographics.

[109] Harold Thimbleby. Press on: Principles of interaction pro-
gramming. MIT Press, 2007. ISBN 978-0-262-20170-4.

[110] Manas Tungare, Pardha S Pyla, Miten Sampat, and
Manuel A Perez-Quinones. Syncables : A Framework to
Support Seamless Data Migration Across Multiple Plat-
forms. In IEEE International Conference on Portable Informa-
tion Devices (IEEE Portable), 2007.

[111] Ubiquity Staff. The new computing. Ubiquity, September
2002.

[112] B. Ullmer and H. Ishii. Emerging frameworks for tangible
user interfaces. IBM Systems Journal, 39(3):915, 2000. ISSN
0018-8670.

[113] UPnP Forum. UPnP Remote UI Client and Server V 1.0, .
URL http://www.upnp.org/specs/rui/remoteui/.

[114] UPnP Forum. UPnP Standards: Device Control Protocols,
. URL http://upnp.org/sdcps-and-certification/
standards/sdcps/.

232 bibliography

[115] G. C van Der Veer and Mari Carmen Puerta Melguizo.
Mental Models. In The Human-Computer Inteaction Hand-
book: Fundamentals, Evolving Technologies, and Emerging Ap-
plications, pages 52–80. 2003.

[116] Bram J.J. van der Vlist. Designing Semantic Connections:
Explorations, Theory and a Framework for Design. PhD thesis,
Eindhoven University of Technology, 2012.

[117] Bram J.J. van der Vlist, Gerrit Niezen, Jun Hu, and
Loe M.G. Feijs. Semantic Connections: Exploring and Ma-
nipulating Connections in Smart Spaces. In Proceedings
of the IEEE Symposium on Computers and Communications
(ISCC), pages 1–4, Riccione, Italy, June 2010.

[118] Bram J.J. van der Vlist, Gerrit Niezen, Jun Hu, and
Loe M.G. Feijs. Design Semantics of Connections in a
Smart Home Environment. In Design and Semantics of
Form and Movement (DeSForM2010), pages 48–56, Lucerne,
Switzerland, 2010.

[119] Bram J.J. van der Vlist, Gerrit Niezen, Jun Hu, and
Loe M.G. Feijs. Interaction Primitives: Describing Interac-
tion Capabilities of Smart Objects in Ubiquitous Comput-
ing Environments. In IEEE AFRICON 2011, Livingstone,
Zambia, 2011.

[120] Bram J.J. van der Vlist, Gerrit Niezen, Stefan Rapp, Jun
Hu, and Loe M.G. Feijs. Controlling Smart Home Envi-
ronments with Semantic Connections: a Tangible and an
AR Approach. In 7th International Workshop on the Design
& Semantics of Form & Movement (DeSForM), Wellington,
New Zealand, April 2012.

[121] Claudia Villalonga, Martin Strohbach, Niels Snoeck,
M. Sutterer, M. Belaunde, E. Kovacs, A. Zhdanova,
L. Goix, and O. Droegehorn. Mobile ontology: Towards a
standardized semantic model for the mobile domain. In
Service-Oriented Computing-ICSOC 2007 Workshops, pages
248–257. Springer, 2009.

[122] Mark Weiser. The Computer for the 21st Century. Scien-
tific American, 265(3):94–104, 1991.

[123] Stephan A.G. Wensveen. A Tangibility Approach to Affective
Interaction. PhD thesis, Delft University of Technology,
2005.

bibliography 233

[124] Stephan A.G. Wensveen, J P Djajadiningrat, and Kees C.J.
Overbeeke. Interaction Frogger : A Design Framework
to Couple Action and Function through Feedback and
Feedforward. In Proceedings of the 5th Conference on De-
signing Interactive Systems (DIS’04), pages 177–184, Cam-
bridge, MA, 2004. ACM. ISBN 1581137877.

[125] Terry Winograd. Bringing design to software. Addison-
Wesley Publishing Company, Inc., 1996.

[126] Terry Winograd, Daniel M. Russell, and Norbert A. Stre-
itz. Building disappearing computers. Communications of
the ACM, 48(3):42–48, 2005.

[127] Alex Woodie. Jeff Jonas Explores the Nature of Data in
COMMON Keynote, 2009. URL http://www.itjungle.
com/tfh/tfh051809-story03.html.

[128] Juan Ye, Simon Dobson, Lorcan Coyle, and Paddy Nixon.
Ontology-Based Models in Pervasive Computing Sys-
tems. The Knowledge Engineering Review, 22(04):315–347,
2007.

[129] Y. Yesha, F. Perich, T. Finin, and A. Joshi. On data manage-
ment in pervasive computing environments. IEEE Trans-
actions on Knowledge and Data Engineering, 16(5):621–634,
2004. ISSN 1041-4347.

[130] Gottfried Zimmermann and Gregg Vanderheiden. The
Universal Control Hub : An Open Platform for Remote
User Interfaces in the Digital Home. In Proceedings of the
12th international conference on Human-computer interaction:
interaction platforms and techniques (HCI’07), pages 1040–
1049, 2007.

A C K N O W L E D G M E N T S

The work presented in this thesis would not have been possi-
ble without the help of my supervisors, co-workers, colleagues,
and friends.

First, I would like to thank my first supervisor Prof. Loe Feijs,
my second supervisor Prof. Panos Markopoulos, and my co-
supervisor Dr. Jun Hu. I would also like to thank the members
of my reading committee: Prof. Harold Thimbleby, Dr. Stefan
Wensveen and Prof. Johan Lukkien. Thank you for all your help,
suggestions and guidance.

Bram van der Vlist — who was my teammate on this adven-
ture — without you this would definitely not have been possi-
ble.

I would like to thank Aly Syed, Riccardo Trevisan, Sriram
Srinivasan, Hans van Amstel, Stefan Rapp, Sachin Bhardwaj
and Tanir Ozcelebi for their valuable contributions to the smart
home pilot.

While working on the software tools and ontologies described
in this thesis, Holger Knublauch and Scott Henninger from
TopQuadrant were always ready to provide me with assistance.

I will always remember my PhD colleagues who I shared an
office with at the university: Alex Juarez, Sibrecht Bouwstra, Ro-
man Gorbunov, Jan Gillesen, Misha Croes and Marija Nakevska.
You guys made my three years at TU Eindhoven very enjoyable
and a lot of fun. Also a sincere thank you to Ellen Konijnenberg
for helping me with all the organisational issues.

I would like to thank my parents and my brother: Ma, Pa en
Riaan - baie dankie vir julle ondersteuning and dat julle in my glo.
This thesis is dedicated to my fiancée — Margriet van de Goor,
ik hou van je!

235

C U R R I C U L U M V I TA E

Gerrit Niezen was born in Pretoria, South Africa, on 29 Septem-
ber 1982. He received BEng Computer Engineering and MEng
Computer Engineering (with distinction) degrees from the Uni-
versity of Pretoria in South Africa. After spending a brief period
in industry, he returned to the University of Pretoria as a lec-
turer, teaching undergraduate classes in software engineering
and network security, as well as a postgraduate class in wireless
sensor networks. Gerrit’s research interests include interaction
design, semantic web technologies, wireless sensor networks,
ubiquitous computing and gesture recognition.

He joined the Designed Intelligence research group at TU
Eindhoven in July 2009. His research involved determining how
user interaction in a smart space can be better supported by on-
tology modelling. His research is part of a larger EU project to
improve interoperability between devices in a smart environ-
ment. This technological design is the results from the work in
the years 2009 to 2012.

237

