

Sense Your Heart

R. Donselaar, J.J. Wubbels, I.B.I. Ayoola, J.J. Siekmans
18th of March, 2011

Page 1

Sense Your Heart | 4

R. Donselaar | J.J. Wubbels, | I.B.I. Ayoola | J.J. Siekmans

18th of March, 2011

Contents

1 | introduction
 4

2 | PPG
 5

2.1 how it works! 5

2.2 testing! 5

3 | idea generation
 7

3.1 orientation! 7

3.2 brainstorm! 7

4 | game prototype
 8

4.1 introduction! 8

4.2 concept! 8

4.3 programming! 8

5 | conclusion
 10

6 | reflections
 11

By Johan Siekmans! 11

By Jordy Wubbels! 11

By Rik van Donselaar! 12

By Idowu Ayoola! 13

8 | sources
 15

9 | appendices
 16

I Reflections! 16

II Arduino data sampler! 16

III RR heartbeat game! 16

IV RR Parser! 16

V RR port! 16

VI Blood cells! 16

VII Music! 16

VIII Players! 16

Page 2

Page 3

1 | introduction

In order to benefit a design with the use of ECG (electrocardiogram),
this module instructs on how to engineer such a device. By using a
PPG system (photoplethysmograph), data from the heart beat can
easily be obtained. Although the device is relatively simple, the design
opportunities that are created are fast and as complex as the
designer's wishes.

This report shows an example of what designers can do with a PPG
that was made during this module. By combining the PPG with an
Arduino programs can be made to let an interaction happen between
the data extracted from the heart and a program.

We would like to thank the following coaches that offered their
support and knowledge during this module:

- prof.dr. S. Bambang Oetomo

- prof.dr.ir. L.M.G. Feijs

- W. Chen

- dr. J. Hu PDEng MEng

- dr.ir. G.R. Langereis

- G.J.A. van den Boomen

Page 4

2 | PPG

2.1 how it works
PPG stands for photoplethysmograph, and makes volumetric
measurements of an organ. This is done by illuminating the skin and
measuring the changes in light absorption. The change in volume
within the organ resulting from heart’s contractions can provide data
on the heartbeats. From this different calculations can be made for
further application purposes as is what we try to explore during this
module.

This PPG delivers two different types of data set, digital and analog.
Analog can be used to better understand the signal coming from the
heart. The digital signal allows a computerized system to easily work
with the gathered data. Both signals can be seen in the next
paragraph.

2.2 testing
The PPG can be tested in three ways to determine whether it works or
not. The first being the LED that is located on the board. This LED
already shows the beats of the user's heart when it works properly.
However this readout is not very accurate and cannot be used for

further calculations. It can also be the case that the Piezometer should
be adjusted as the functionality of the system can differ per person.

Therefore the PPG should be tested with the oscilloscope in order to
get a better idea whether the system works as required. When it does,
a clear pattern can be seen of apparent sinus function that represents
the heartbeats. Although the amplitude can easily differ, this does not
matter considering the signal is going to be used digital later on.

As can be seen we use the sensor of the PPG on the finger, as a clear
feedback is gained when the heartbeat is felt in the finger. This can
then directly be visible relayed and compared to the LED or
oscilloscope.

Page 5

Fig. 2.1 Fig. 2.2

The final confirmation of that the PPG is working is done with the help
of the computer. First the Arduino has to be updated to have the
Arduino sensor program installed on it. Hooking up the PPG to the
Arduino then allows the computer to gather the data from the patient.
Here the different values are calculated by using the heartbeat data.
The following image shows what the result from this program is.

The software shows three calculation in a interface. The green
diagram at the bottom shows the beat to beat interval. The top blue
diagram shows the heart rate variability (HRV). The HRV means the
variability of the interval between the heartbeats. The centre circle plot
is a more aesthetic composition that uses formulas linked to specific

values to make the reading easier. This later option also allows for
more contrast that could be beneficial to a design later in this module.

Below the analog signal is seen in figure 2.3, this time with a greater
amplitude then in figure 2.2. On the right, the digital signal from the
PPG is shown. Note that the digital signal transfers the peaks to an
absolute value. This way the software can easily count the heartbeats
from the patient, as most of the interference is filtered out.

A PPG system cannot indicate as much detail as a ECG does,
however some medical issues can be detected like with kid patients
and more general heart related problems.

Page 6

Fig. 2.4 Fig. 2.5

Fig. 2.3

3 | idea generation

3.1 orientation
A we design using a single modality, being the data coming from the
PPG, the design will be created from a bottom up approach. In order
to plot the possibilities and boundaries for a design that just uses
measurement data, a number of points have been set out. The
measurements are divided into what can actually be measured, and
what we think can be indirectly measured.

Table. 3.1
Measure directly Measure indirectly

Heart rate Stress / relaxation

Beat to beat Breathing

Heart rate variability Arousal

Stamina / condition

Mood

Clinical deviations

Besides these directional points, the brainstorm also stimulated to set
up points of interest. Considering other products made by using a
PPG, a strong sensation of engineering was experienced. The
products seem to be very focussed on function and result, instead of
perhaps fun and even meaninglessness. This seemingly unexplored
terrain could be an interesting take for this design process.

Furthermore only one example presented in the presentations involved
multiple users. This also could be an interesting point for development
as a human's heart rate is commonly unknown to the public. Bringing
the individual heart rate into context could give rise to some
interesting scenarios. The relative slow adaptation time that is inherent
to the heart rate is the difficulty.

3.2 brainstorm
Below the main topics of the brainstorm is shown. Some ideas have
derivatives and are indicated by ('). From this brainstorm the best idea
was selected, namely the game. The game offers the possibility to use
the data from the PPG in a fun and playful way. Furthermore the game
allows multiple users to be brought into the design.

Page 7

Fig. 3.1

4 | game prototype

4.1 introduction
As was stated earlier, the game allows for users to play together, and
has a more fun and playful core then other designs on the market that
use a PPG. The program is written using an Arduino in combination
with Processing. The code that was delivered with this module
allowed us to further expand a game construct around it. The game
concept is relative simple considering the controls are more or less
crude especially when compared to modern game controllers.

4.2 concept
The game starts with the user being hooked up to the PPG. Data
about the player's heart is subtracted, from which the heart rate is
calculated. Elevating the heart rate would make an image of the heart
go up, and lowering the heart rate makes this same image move
downwards. The meaning of the game is to move the heart up and
down and collect as many red blood cells as possible. Because the
red blood cells move towards the heart, the player has to try to move
the heart up and down in order to score points. When a player has
gathered XXX points, the red blood cells start moving faster what
would indicate the next level. The faster moving cells are harder to hit,
and should have an impact on the player's heart rate. This then

creates another difficulty aspect to the game. keeping in control of
your heart rate and breathing is essential to be able to score well in
the game.

When a second players joins the game, they can compete for the red
blood cells. Both their scores will be counted. When one player
gathers more points then the other, and get to the next level, it
becomes even harder for the lesser player to overtake the winner. This
friction will create a dynamic situation that in it's turn would make it
even harder for both players to regulate their heart rate.

If a players fails to receive a significant number of cells, this player will
loose the game. Loosing is caused by the counter that also registers
missed blood cells, that will be subtracted from the players total
points.

4.3 programming
All the programs delivered to the students during this module are
designed to work with just one user. As the game concept becomes
richer with at least two players, all the programming had to be

Page 8

Fig. 4.1 Fig. 4.2

adapted to support two PPG's. By adjusting the Arduino’s sensor
program, and changing the RRport file in order to process the two
different sets of data, it became possible to accept two players in the
game. By making the Arduino send a key from which PPG it gets its
signal, the computer understands that there are two sets of
information coming in. Firstly, in the Arduino codes an additional
hardware interrupt was attached to the sketch on digital port 3. An
handshake protocol was used to reliably communicate with the game
program in processing. Arduino sends in an ID number appended with
the RR sample. On serial event in processing, the processing file sorts
the data and push the relevant values into the allocated buffers.

The data from the heart, by using a PPG, is not easily transcribed to fit
the rather fast control that is needed for a game. The heart rate needs
time to recover from an activity, and is therefore less reactive then for
example a regular game controller. We had to take this into account
when we programmed the navigation. By limiting the heart's data to
control just the up and down movement, a manageable and fun
navigation is established.

Thoughts on making the blood cells move faster or slower depending
on the heart rate we're dismissed as the speed has greater value
coupled to the levels.

In the delivered program multiple calculations are done with the data
retrieved from the PPG. We tried the three calculations that were
offered to control the game. However we found that the heart rate is
the most usable value to use for control. Nevertheless we did have to
adapt the handling of it a bit. As when the heart rate is used directly,
the control is not so smooth and confusing. The user cannot directly
understand what effect his heart rate has on the movement of the
heart figure in the game. Therefore we made it dependent on one
average value. When the heart rate goes up relative to the preset
average, the players moves up and when the heart rate goes down
relative to the preset average, the player goes down, both in a smooth
motion. This smooth motion is set by using a set value of movement
that relates to whether the value is above the preset average or below.

Lack of time left the possibility to explore using patterns linked to
decreases / increases of the heart beat data untested. Using patterns

was used with the "spiral program" that is showed in figure XXX. This
could have an advantage to create a more usable control of the game
using the heart rate.

As the game runs now, it can continue onwards for as long as the
system is powered. Therefore we had to make a Game Over screen in
order to set an end to the game. The game over image appears when
the players fails to gain enough red blood cells. The player with the
most red blood cells wins.

Few other tryouts were attempted to directly map a convenient
maximum and minimum Heart-rate, or heart-rate-variability, or RR
intervals to the movement of the player icon were not successful
because they rapidly changed. This also explains why the final control
method was adopted.

Page 9

5 | conclusion

Using the PPG requires a designer to be thoughtful of the limited
control one has over the heart rate. The innate slow reaction time of
changing the heart rate can make it difficult to us it as a direct
stimulus for example a game. Therefore this game has been designed
to compress the data from the heart into a more black and white
processing system.

When the players moves the onscreen player he or she has to control
their heart rate and breathing. A combination of both can be used to
move up and down, and so collect the red blood cells.

When both players are more or less equally in skill, the game will let
the blood cells move faster thus making it even harder to compete.

Testing with the different data manipulations that were offered, and
created by ourselves showed that control cannot be gained by using
sensor input directly.

Page 10

6 | reflections

By Johan Siekmans

Considering we had to design from a single modality, being the PPG,
this module has parallels with the “sensual dynamics” module. It also
worked on my train of thought in a similar way, as it can be difficult to
find proper design solutions that fit just a single modality.

Therefore we looked at the strengths of this modality and tested with
it. By simply doing, and testing the usability of such a design
approach becomes more apparent. This is what is very valuable to me
to know, because I used to have trouble conceptualizing from a single
modality. But now I have a way of approaching this.

The practical bit of the module, where the PPG sensors were soldered
should not have faced me with difficulty, considering I have
experience in this. Nevertheless I made the mistake of trying to work
to fast. By soldering the PPG for a second time, in a whole, I got a
proper working one. This shows me that I should slow down at times.
The lifestyle of a designer can be in a fast mode continuously, but
apparently gearing down has its benefits at times.

Although the medical side of this module, and the practical experience
with the ECG was not new to me. It was interesting to look at them in
a designer’s point of view. Before I specialized in the medical field of
Mechanical Engineering, and therefore have my share of experience.
However I rarely looked at these kinds of data sets in such a way.
Therefore, for me, the game was even more fun considering it moves
so far away from an engineering mindset.

Although we had a working game, I am still of the opinion that
combining modalities that work great together is what can be
described as the designers greatest asset. Therefore with a full project
this concept should have been improved and expanded. Nevertheless
it was fun to see how a game can be created that is fun and
innovative just by controlling it with two options, up and down.

By Jordy Wubbels

At the beginning of this module I didn’t really know what to expect. My
overall intention was to get familiar with the design possibilities
offered by heart measurement sensors. I was unaware of how this
would be done and what the possibilities were. Even though my
general interest is not in healthcare design, I was interested in finding
out about the possibilities for new interaction opportunities.

During the first part of the module we spent a day building a working
PPG-sensor. Though I understand that this sensor was needed for the
module, spending a full day on making this sensor
wasn’t very valuable. It might be considerd supplying people with a
(highly accurate) working sensor if the costs involved would allow for
this (one per team). There would be a big advantage in having an extra
day for exploration, tests, prototyping and more.

Nevertheless once we had the sensor up and running it was
interesting to learn about the possibilities of heart monitoring. There
seems to be something magical about being able to see your own
heart rate. Unfortunately it soon turned out that the sensors were very
sensitive for picking up noise, for example caused by movement. As
we found out later they couldn’t be used for precise and reliable
measurements in combination with the Arduino.

During the exploration with the sophisticated heart monitoring system
I learned that even this high end equipment was very sensitive to
small changes, like movement. This taught me that systems which rely
on heart measurements for input and require precise control at the
same time aren’t very suitable for applications that involve movement,
or other noise introducing factors. It was nice to get a little bit familiar
with the possibilities of professional heart measurement equipment. I
can see this equipment being used for user testing where peoples hart
can give valuable information, for example on excitement. Though my
interests are more with the smaller, low cost, sensors that we build
ourselves since I’m more interested in design and interaction
implementation rather than precise and health related monitoring.

Page 11

Choosing to create a game for this module, provided the opportunity
to explore the limits and possibilities of the sensor in situations that dó
in fact introduce movement and noise. Being especially interesting for
interactive design, as this hardly ever involves people in a static
situation.

I learned from this that these sensors can actually be used in more
dynamic situations, as long as they don’t require very precise control,
or involve continuous movements without more steady intervals. As a
rough input or maybe combined with other signals the sensors are
certainly useable in more dynamic situations, for precise monitoring
related to health, not so much. There might be opportunities for extra
filtering through software, which could make the sensor/Arduino
combination more precise and reliable.

Overall I found it interesting to become aware of the possibilities of
using heart monitoring in design. However, for me the learning
opportunities during this module were limited as it consisted largely of
programming our application. This was a good refreshment of my
programming skills, but I didn’t really learn anything new here and I
felt that more people experienced the same. I therefore mainly see this
module as an awareness-raiser and a step-up for possible future uses
of heart measurements in my designs.

For future editions of this module it might be interesting for
participants to learn more about software filtering and to go more in
depth on how the Arduino program works and for example how to
connect multiple sensors to one Arduino. This would introduce more
new knowledge and skills to participants. Maybe by using the sensors
that were created this module, (one from each group) time could be
saved on the first day, which could then later be used for the above
mentioned exploration in software. This is of course just a suggestion
and might not be suitable in the timeframe of one week.

By Rik van Donselaar

My identity as a designer identifies healthcare related project. I believe
that design should come form a specific need or desire which is
closely related to the end user. Ideally, users who are really requiring
help. My areas broadly varies from healthcare themes to developing
countries. At the moment I am conducting a research project on
measuring oxygen saturation for neonates in the healthcare theme as
well. I have chosen the module because I found it very interesting to
investigate the same principle in another context. The technology
used for measuring ECG is also used for measuring SpO2. In that
sense I could translate acquired knowledge to my own project later.

In the module I learned how to build an analog Photoplethysmograph
(PPG) sensor that measures changes in volume. More specific, the
builded sensor consisted of an amplifier, a low and high pass filter. I
experienced that a PPG signal is weak and sensitive to motion
artifacts. Therefore filters were used to reduce signal noise.
For building the sensor all resources and equipment were available, in
term of that building the sensor was not really challenging because I
have already a lot soldering skills achieved from previous projects.
However, at the end it turned out that my sensor did not work. I had to
start debugging. Because of this debugging process I managed to
specifically figure out how the schematic precisely worked. At the end
it was just one simple mistake in the wiring but eventually I knew how
the sensor and filters work. As a point for improvement it might be
interesting to provide fully assembled sensors. In a one week module,
time is limited, very limited. And building a sensor for a full day is a lot.
So if there is an opportunity to provide a fully assembled sensor per
group, groups will have one day more to work on concepts and
explorations.

In our idea generation we strive to combine the possibilities of the
sensor with fun aspects. In this creative phase I gained a clear
understanding of what you can indirectly measure with PPG, for
example heart rate variability or beat-to-beat rate(RR), which can be
used as an inspiration for other projects.

In our concept I aimed to design something valuable for other people
and not just to create a certain experience. The game should create a

Page 12

better understanding of your heart beat and what influences your
heart beat. It is about learning to control and regulate your own heart.
As with most prototypes the most valuable experience is in details.
The game itself worked but there was too little time to really fine tune
the sensor part to demonstrate the full experience of the game.

The gained knowledge in this module was very valuable for me. I
gained a clear understanding of PPG sensors and theoretically
background of ECG and how it is measured. Through developing the
game concept I experimented what can be indirectly measured with
PPG. In my current project I want to use the gained knowledge as
well. Instead of measuring heart beat I want to measure SpO2 which
is a bit more difficult. Measuring SpO2 requires an IR LED, Red Led
and a photodiode.

By Idowu Ayoola

The reason for participating in the Sense Your Heart module was
to gain knowledge in physiological sensing like the heart beat.
Along the curse of this study, I leant certain techniques and
theories for building electrical circuitries and I understood the
way the human body works and how the heart is influenced.
Finally, I experimented in calculating indicators like heart-rate-
variability and observed its behavior especially in a game
context.

As I understand, the heart does not function linearly however, it
is continually regulated by the nervous systems like the
Sympathetic or Parasympathetic and it could be influenced by
breathing. This is one of the reason why it was experientially
impossible to directly map heart measurements to controls within
a game application. In as much as we can observe emotional
indications by sensing the heart, it is not a robust way of
detecting actual emotions of humans due to the frequent rise and
fall signals.

The principle of Photoplethysmography (PPG) works by change
in volume of the blood. When the heart beats, the circulation of
blood aggregates forcing a change in volume. A red or infra red
light source is placed opposite to a photo transistor and the
change in light transmission is monitored as the volume of blood
changes. A similar sensor can be built by placing the
components side by side to measure the reflection of light. I
learnt to build such a system to work with an “Arduino” as a
sampling hardware. These samples are then sent to
“Processing” for advanced processing or application.

I built a PPG sensor system with low and high pass filters to
eliminate noise from signal. LM234, an integrated circuit was

Page 13

used to amplify the signal into a readable range of 0 - 5 volts for
optimal analog to digital conversion in Arduino. Eventually Iʼve
spend more time in debugging the electronics than the time in
coupling the component together. I learnt few tricks to be more
effective next time; I would build the circuit from left to right to
enable me to debug each section built and not to wait and hope
it works after all components are coupled.

Page 14

8 | sources

1. Game example used for inspiration for the program; http://
www.local-guru.net/blog/2009/06/19/processing-tutoria

2. All the provided programs delivered with this module. (see
appendices)

Page 15

9 | appendices

I Reflections
II Arduino data sampler
III RR heartbeat game
IV RR Parser
V RR port
VI Blood cells
VII Music
VIII Players

Page 16

Arduino data sampler

// This program can either sample an analog signal on "Analog-
Input_Pin, or act as an interval

// timer on pin "Digital-Input_Pin". The selection is made directly after
reset. If the reply on

// the prompt ">" is "I", then the interval mode is selected, otherwise
the A/D mode.

// In both cases the program is interrupt driven:

// - Interval mode: A hardware interrupt is generated on a low-to-high
transition on digital

// input pin "Digital-Input_Pin". The interrupt service routine
"Send_Interval()" sends the

// elapsed time with respect to the previous transition as a
hexadecimal string over the

// serial bus. This is done with a 4us resolution.

// - A/D mode: A timer interrupt is generated every 2ms (=500Hz).
The interrupt service

// routine samples pin "Analog_Input_Pin" and sends the value
over the serial bus as a byte.

//

// Geert Langereis, february
2010

// Edited 17th, March 2011.

// After the initial prompt of '>', the responses from processing are
depending of the requested data in:

// 'D' initialize arduino for digital sampling from external interrupt 0 and
1.

// 'A' initialize ardino for analoge sampling with a set ISR

// 'I' initialize arduino as in 'D' and 'A'.

// Arduino sends comma seperated values (CSV) through the serial
bus to processing.

// For digital sampling, element sent are in the order of PIN_TYPE,
PIN_ID, VALUE.

// For Analoge sampling, element sent are in the order of PIN_TYPE,
VALUE1, VALUE2.

const int Baudrate = 19200;
const int Analog_Input_Pin = 0; //Analog pin for internal ISR ;
const int Analog_Input_Pin2 = 1;
const int Digital_Input_Pin1 = 2; // Digital pin for external interupt 1;
const int Digital_Input_Pin2 = 3; // Digital pin for external interupt 2;

void setup()
{
 Serial.begin(Baudrate); // For sending data to the computer
over USB

 Serial.print(">");

 while (Serial.available()==0);

 byte response = Serial.read();

 if (response == 'D' || response == 'I')
 {

 pinMode(Digital_Input_Pin1, INPUT); // Set pin direction
 pinMode(Digital_Input_Pin2, INPUT);

Page 17

 attachInterrupt(0,Send_Interval1, RISING); // Attach to interupt to
pin 2
 attachInterrupt(1,Send_Interval2, RISING); // Attach to interrupt to
pin 3

 }

 if (response == 'A' || response == 'I')
 {

 // The following settings are for a Duemillanove with a 16Mhz
ATMega328

 cli(); // disable interrupts while messing with their
settings

 TCCR1A = 0x00; // clear default timer settings, this kills the
millis() function

 TCCR1B = 0x00; // timer in normal mode

 TCCR1B |= (1 << WGM12); // Configure timer 1 for CTC mode

 TCCR1B |= (0 << CS12); // Set timer prescaling by setting 3 bits

 TCCR1B |= (1 << CS11); // 001=1; 010=8, 100=256, 101=1024

 TCCR1B |= (1 << CS10);

 TIMSK1 |= (1 << OCIE1A); // Enable CTC interrupt with OCF1A flag
in TIFR1

 OCR1A = 124; // Turn interrupts back on

 sei(); // Enable interrupts

 }

}

void loop() {

 // nothing to do, its all in the interrupt handlers!

}

unsigned long LastTime, NewTime, j;
unsigned long LastTime2, NewTime2;

void Send_Interval1()

{

 NewTime = micros(); // Resolution 4us, only one overrun (=error
in 70 minutes)

 Serial.print("D"); // Encode PinType to differenciate between
digital and analogue sampling.
 Serial.print(",");
 Serial.print(0); // ID for interrupt 0
 Serial.print(",");
 Serial.println(NewTime-LastTime, HEX); // Encode value in HEX
figure.

 LastTime = NewTime; // update lastTime

}
void Send_Interval2()

{

 NewTime2 = micros(); // Resolution 4us, only one overrun (=error
in 70 minutes)

 Serial.print("D"); // Encode PinType to differenciate between
digital and analogue sampling.
 Serial.print(",");
 Serial.print(1); // ID for interrupt 1
 Serial.print(",");

Page 18

 Serial.println(NewTime2-LastTime2, HEX); // Encode value in HEX
figure.

 LastTime2 = NewTime2; // update lastTime

}

ISR(TIMER1_COMPA_vect) // when timer counts down it fires this
interrupt for A/D-mode

{

 int val = analogRead(Analog_Input_Pin); // Sample analog Pin
 int val2 = analogRead(Analog_Input_Pin2);

 Serial.print("A"); // Encode PinType to differenciate between
digital and analogue sampling.
 Serial.print(",");
 Serial.print((val >> 2)); // Push value1
 Serial.print(",");
 Serial.println((val2 >> 2)); // push value2

}

Page 19

RR heart beat game

import processing.serial.*;
import ddf.minim.*;

RRport myport;
RRparser myparser;
boolean settedup = false;

AudioPlayer player;
Minim minim;

Music music;
Player1 player1;
Player1 player2;

Bloodcells bloodcells;

PImage bg;
PImage go;
PImage player1wins;
PImage player2wins;
PFont fontA;

int beamx = 1050;

void setup() {
 size(1024,800);
 bloodcells = new Bloodcells();

 // Load external images //

 PImage simg = loadImage("player2.png");
 player1 = new Player1(100, height/2, 3, simg);

 PImage simg2 = loadImage("player1.png");
 player2 = new Player1(100, height/2, 3, simg2);

 bg = loadImage("background.png");
 go = loadImage("gameover.png");

 player1wins = loadImage("player1wins.png");
 player2wins = loadImage("player2wins.png");

 // Load external font //
 fontA = loadFont("KozGoPro-ExtraLight-48.vlw");
 textFont(fontA, 32);

 // Load sound using Minim library //
 minim = new Minim(this);
 player = minim.loadFile("BD.mp3", 2048);
 music = new Music();

 frameRate(25);
 smooth();
 noStroke();

 //INITIATE STUFF FOR ARDUINO
 myport = new RRport(this);
 myparser = new RRparser();

 settedup=true; //flag setup completed
}

void draw() {
 background(bg);

 int newY1;
 int newY2;

 if (RR[0] > pRR[0] + 20) player1.down();
 else if (RR[0] < pRR[0] - 20) player1.up();

 if (RR[1] > pRR[1] + 20) player2.down();
 else if (RR[1] < pRR[1] - 20) player2.up();

 player1.draw(); // draw player1
 player2.draw(); // draw player2
 bloodcells.draw(); // draw bloodcells

Page 20

 fill(136,12,85);
 text("HR " + HR[0], 900, 50);
 fill(0,120,252);
 text("HR " + HR[1], 900, 110);
}

// void for manually control players //

void keyPressed() {
 if (keyCode == UP) {
 player1.up();
 }
 else if (keyCode == DOWN) {
 player1.down();
 }
 if (keyPressed == true) {
 if (key == 'w') {
 player1.up();
 }
 else if (key == 's') {
 player1.down();
 }
 }
}

int [] RRavg = {
 1200, 1200
};
int [] RRstd = {
 50, 50
};
int [] HR = {
 60, 60
};
int [] RR = {
 0, 0
};

int [] pRR = {
 0, 0
};

void serialEvent(Serial p) {
 if (settedup) {
 //print("!");
 //zat allemaal eerst in draw
 myport.step();
 myparser.step();
 //if (time/10 > 120) stop();
 for (int id = 0; id < 2; id++) {
 if (myparser.event(id)) {
 pRR[id] = RR[id];
 RR[id] = myparser.val[id];
 print(" RR"+id+"=");
 print(RR[id]);
 //output.println(RR);
 RRavg[id] = int((23 * RRavg[id] + 1*RR[id])/24);
 //
 print(" AVG"+id+"=");
 print(RRavg[id]);
 RRstd[id] = int((15.0 * RRstd[id] + abs(RR[id] - RRavg[id])) / 16.0);
 //
 print(" STD"+id+"=");
 print(RRstd[id]);//niet met kwadraat ivm outlyers
 //
 print(" HR"+id+"=");
 print(HR[id]);
 HR[id] = int(60000 / (((60000 / HR[id]) + RR[id])*0.5));
 //
 print(" Beats=");
 //
 println();
 //
 }
 println();
 }
 }
}

Page 21

public void stop() {
 println("THANK YOU, GOODBYE");

 super.stop();
 exit(); // Stops the program
}

Page 22

RR Parser

class RRparser {
 public int [] val = new int [myport.numberOfSensors];
 private int avg = 1000;
 private int tmp=0;
 private boolean []flag = new boolean[myport.numberOfSensors];

 RRparser() {
 for (int i = 0; i < myport.numberOfSensors; i++) {
 val[i] = 0;
 flag[i] = false;
 }
 }

 boolean event(int id) {
 if (flag[id]) {
 flag[id] = false;
 return true;
 }
 else return false;
 }

 void step() {
 int b;
 //print('.');
 for (int id = 0; id < myport.numberOfSensors; id++)
 {
 while (myport.bufcnt[id]>0) {
 b=myport.getbuf(id);
 //print(char(b));
 //if (b==13) println("CR");//TZT WEGECOOMENTEREN
 //if (b==10) println("LF");//TZT ERUITCOMMENT
 if ((tmp>0)&&(b==10||b==13)) {
 flag[id] = true;
 val[id] = tmp/1000;//ms ipv us
 if (val[id]>600 && val[id] < 1600) avg = 9*(avg/10) + val[id]/10; //
fake feedback

 if (val[id] < 0.5*avg) {
 print(" adjusting sensor ");
 println(id);
 //output.println(0);
 flag[id] = false;
 }
 if (val[id] > 1.5*avg) {
 print(" ADJUSTING SENSOR ");
 println(id);
 //output.println(00);
 flag[id] = false;
 }
 }
 if ((b==10||b==13)) tmp=0;
 if (b!=10&&b!=13) tmp=16*tmp + hex2int(b); //msb first
 }
 }
 }

 private int hex2int(int c) {
 if (c=='0') return 0;
 if (c=='1') return 1;
 if (c=='2') return 2;
 if (c=='3') return 3;
 if (c=='4') return 4;
 if (c=='5') return 5;
 if (c=='6') return 6;
 if (c=='7') return 7;
 if (c=='8') return 8;
 if (c=='9') return 9;
 if (c=='A') return 10;
 if (c=='B') return 11;
 if (c=='C') return 12;
 if (c=='D') return 13;
 if (c=='E') return 14;
 if (c=='F') return 15;
 println("!@#$%"); //TZT ERUIT
 return -1;
 }
}// RRparser

Page 23

RR Port

class RRport
{
 private Serial myPort;
 final int numberOfSensors = 2;
 public int[][] buffer;
 public int[] bufcnt;

 private int linefeed = 10;

 RRport(PApplet parent) {
 String portName = Serial.list()[0];
 //com7, arduino, lower usb right (loe's laptop)
 //of bovenste, front, loe's pc hg3.53
 println(Serial.list());
 myPort = new Serial(parent, portName, 19200);
 myPort.bufferUntil(this.linefeed); //buffer until linefeed --> Linefeed
in ASCII is 10

 while (myPort.available()==0) {
 }
 if (myPort.read()=='>') {
 myPort.write('D');
 println(">I");
 }
 else println("ARDUINO NON > PROMPT ERROR");

 buffer = new int[numberOfSensors][100];
 bufcnt = new int[numberOfSensors];
 for (int p = 0; p < numberOfSensors; p++) {
 bufcnt[p] = 0;
 }
 }

 void putbuf(int id, int c) {
 if(bufcnt[id] >= 100-1) println("OVERFLOW buffer ERROR");
 buffer[id][bufcnt[id]++] = c;
 }

 int getbuf(int id) {
 if (bufcnt[id] <= 0) println("UNDERFLOW buffer ERROR");

 int v = buffer[id][0];

 //works like FIFO, shift rest again
 int i = 0;
 while (i < bufcnt[id]-1) {
 buffer[id][i] = buffer[id][i+1];
 i++;
 } //alternative: cyclic buffer, not now

 bufcnt[id]--;
 return v;
 //return 0;
 }

 void step()
 {
 //first value is an ID
 //second value is the number of millis
 String [] inByte;

 // read the serial buffer:
 String myString = this.myPort.readStringUntil(linefeed);

 // if you got any bytes other than the linefeed:
 if (myString != null) {

 myString = trim(myString);

 // split the string at the commas
 // and convert the sections into integers:

 inByte = split(myString, ',');

 // print out the values you got:

Page 24

 // for (int sensorNum = 0; sensorNum < numberOfSensors;
sensorNum++) {
 // print("Value " + sensorNum + ": " + inByte[sensorNum] +
"\t");
 // }

 // add a linefeed after all the sensor values are printed:
 // println();

 //DO SOMETHING WITH THE VALUE
 String type = inByte[0];

 if (type.equals("D")) {
 int id = int (inByte[1]);
 String val = inByte[2];

 for (int l=0; l < val.length(); l++) {
 if (id >= 0 && id < numberOfSensors) putbuf(id, val.charAt(l));
 else println("Bad ID");
 }

 putbuf(id, 13); // push CR to buffer to mark end of data;
 }

 else if(type.equals("A")) {
 int s1 = int (inByte[1]);
 int s2 = int (inByte[2]);
 print("s1 " + s1 + " : s2 " + s2 + "\t");
 }
 }
 }
} // RRport

Page 25

public class Bloodcells {

 int random_y;

 int movespeed = 2; //determines the speed with which cells move
from right to left, substracting movespeed from their x-position with
every move.
 int speedscore = 0; // keeps track of the speedscore, every time a
blood cell has passed by, speedscore is raised by 1
 int speedscoreincreaselevel = 3; // this value determines after how
many passings of bloodcells the movespeed is increased, in this case
after speedscore has reached 3.

 int viewscore = 11; // represents the displayed score for player 1,
now starting at 11 but any desired starting value could be set.
 int viewscore2 = 11; // represents the displayed score for player 2

 // the opacity settings below are used to create a 'blinking' visual of
the score when a player gets to score 10 or lower to warn them of an
approaching 'game over' scenario.
 int opacity = 255;
 int opacity2 = 255;
 boolean opacitydecrease = true;
 boolean opacitydecrease2 = true;

 boolean fieldfree = true; // this boolean is set to true once a bloodcell
has passed from right to left, allowing a new bloodcell to appear.
 boolean hit; // set to true if either player 1 or player 2 catches the
bloodcell

 public Bloodcells() {
 }

 void draw() {
 drawscore();
 playfield();
 compare();
 }

 void playfield() {

 // check whether the previous bloodcell is out of the screen, if so
spawn a new one at a random Y-location.
 if(fieldfree == true) {

 float rnumber = random(100,750);
 random_y = int(rnumber);

 fieldfree = false;
 }

 bloodcell();
 moverightleft();
 }

 // creation/insert image of bloodcell and positioning
 void bloodcell() {

 PImage cell;
 cell = loadImage("cell.png");
 image(cell,cell_x-15,random_y-10,65,65);
 }

 // move bloodcell right to left //
 void moverightleft() {

 cell_x = cell_x - movespeed;

 if(cell_x <= 0) // if the bloodcell passes both players (x coordinate
<= 0), -1 score 1 and 2, cell_x is set to starting position (the width of
the screen)
 {
 cell_x = width;
 fieldfree = true;
 hit = false;
 score();
 score2();
 }
 }

Page 26

 // calculates 'collision' between bloodcell and player1/player2
 void compare() {

 // collision player1
 if ((cell_x - player1.x < player1.playerwidth) &&
 (cell_x - player1.x > - 30) &&
 (random_y - player1.y < player1.playerheight) &&
 (random_y - player1.y > -55)) {

 cell_x = width;
 hit = true;
 music.play(); // triggers playing of heartbeat sound (or any other
sound depending on the coupled sound-file, see 'music')
 fieldfree = true;
 score();
 }

 // collision player 2
 if ((cell_x - player2.x < player2.playerwidth) &&
 (cell_x - player2.x > - 30) &&
 (random_y - player2.y < player2.playerheight) &&
 (random_y - player2.y > -55)) {

 cell_x = width;
 hit = true;
 music.play();
 fieldfree = true;
 score2();
 }
 }

 // here the score is increased and/or decreased depending on hit
true/false
 // 'score' targets player 1 and 'score2' targets player 2
 void score() {
 if (hit == true) {
 if (viewscore < 100) {
 viewscore++;
 speedscore++;

 viewscore2--; // when player 1 hits the bloodcell this means
player 2 has missed it and so 1 is substracted from player 2's score.
 }
 }
 if (hit == false) {
 viewscore = viewscore - 1;
 if(viewscore <= 0) {
 gameover(); // a score below 0 triggers the game-over screen
 }
 }

 // increase speed after interval speedscoreincreaselevel, standard
value is 3 so speed increases after 3 hits
 if (speedscore == speedscoreincreaselevel) {
 movespeed = movespeed + 1;
 speedscore = 0;
 }
 }

 // see explanation above for 'void score'
 void score2() {
 if (hit == true) {
 if (viewscore2 < 100) {
 viewscore2++;
 speedscore++;
 viewscore--;
 }
 }

 if (hit == false) {
 viewscore2--;
 if(viewscore2 <= 0) {
 gameover();
 }
 }

 if (speedscore == speedscoreincreaselevel) {
 movespeed = movespeed + 2;
 speedscore = 0;
 }

Page 27

 }

 // draws the score to be vissible for the players
 void drawscore() {

 textSize(25);
 // mechanism for pulsating score signal if the score gets below 10
 if(viewscore <= 10)
 {
 if(opacity > 75 && opacitydecrease == true) {
 opacity = opacity - 10;
 }
 else {
 opacitydecrease = false;
 opacity = opacity + 10;
 if(opacity > 254) {
 opacitydecrease = true;
 }
 }

 fill(136,12,85,opacity);
 text("PLAYER ONE " + viewscore + "%",25,50);
 rect(25,55,viewscore*5,25);
 }
 else {
 fill(136,12,85);
 text("PLAYER ONE " + viewscore + "%",25,50);
 rect(25,55,viewscore*5,25);
 }

 textSize(25);
 // mechanism for pulsating score2 signal if the score2 gets below
10
 if(viewscore2 <= 10)
 {
 if(opacity2 > 75 && opacitydecrease2 == true) {
 opacity2 = opacity2 - 10;
 }
 else {

 opacitydecrease2 = false;
 opacity2 = opacity2 + 10;
 if(opacity2 > 254) {
 opacitydecrease2 = true;
 }
 }

 fill(0,120,252,opacity2);
 text("PLAYER TWO " + viewscore2 + "%",25,110);
 fill(119,184,opacity2);
 rect(25,115,viewscore2*5,25);
 }
 else {
 fill(0,120,252);
 text("PLAYER TWO " + viewscore2 + "%",25,110);
 fill(119,184,255);
 rect(25,115,viewscore2*5,25);
 }
 }

 void gameover() {
 // triggered when one of the players goes below '0' and loads the
correct screen

 if(viewscore<=0) {
 background(player2wins);
 noLoop();
 }
 else if(viewscore2<=0) {
 background(player1wins);
 noLoop();
 }
 }
}

Page 28

Music

public class Music {

 public Music() {
 }
 void play()
 {
 player.play();
 player.rewind();
 }
}

Page 29

Players

public class Player1 {
 PImage img;
 int speed;
 int x;
 int y;
int playerwidth = 82; //x
int playerheight =125; //y

 public Player1(int x, int y, int speed, PImage img) {
 this.speed = speed;
 this.x = x;
 this.y = y;
 this.img = img;
 }

 void draw() {
 fill(255,255,0,0);
 rect (x,y,playerwidth,playerheight);

 pushMatrix();
 translate (x+15, y+25);
 image(img, -img.width/2, -img.height/2,100,150);
 popMatrix();
 }

 void up() {
 y -= speed;
 if (y <= 0) y = 0;
 }

 void down() {
 y += speed;
 if (y>=480) y = 480;
 }

 public void up(int yPos) {
 y = yPos;
 }
 public int getObjH() {
 return img.height;
 }
}

Page 30

References
Alers, S. and J. Hu (2009). AdMoVeo: A

Robotic Platform for Teaching
Creative Programming to

Designers. Learning by Playing.
Game-based Education System
Design and Development. M.

Chang, R. Kuo, Kinshuk, G.-D.
Chen and M. Hirose. Banff,
Canada, Springer Berlin /

Heidelberg. 5670/2009: 410-421.
Hu, J. and S. Alers (2009). AdMoVeo: An

Educational Robotic Platform

For Learning Behavior
Programming. DeSForM 2009:
Design and Semantics of Form

and Movement. Taipei, Taiwan:
218-219.

Hu, J. and S. Alers (2010). AdMoVeo:

Created For Teaching Creative
Programming. Workshop
Proceedings of the 18th

International Conference on
Computers in Education (ICCE
2010). T. HIRASHIMA, A. F.

MOHD AYUB, L.-F. KWOKet al.
Putrajaya, Malaysia, Universiti
Putra Malaysia: 361-365.

Hu, J. and S. Offermans (2009). Beyond
L\$: Values across the Virtual
and the Real. International

Conference On Advanced
Infocomm Technology Xi'an,
China. conf07a361: 1-4.

Liu, H., J. Hu, et al. (2010). iHeartrate: A
Heart Rate Controlled In-Flight
Music Recommendation System.

Measuring Behavior. A. J. Spink,
F. G. E. Krips, L. W. S. Loijens,
L. P. J. J. Noldus and P. H.

Zimmerman. Eindhoven, The
Netherlands: 265-268.

van de Mortel, D. and J. Hu (2007).

ApartGame: a MultiUser
Tabletop Game Platform for
Intensive Public Use. Tangible

Play Workshop, Intelligent User
Interfaces Conference. Honolulu,
Hawaii, USA: 49-52.

van der Vlist, B., R. van de Westelaken, et
al. (2008). Teaching Machine
Learning to Design Students.

Technologies for E-Learning and
Digital Entertainment. Z. Pan, X.
Zhang, A. E. Rhalibi, W. Woo

and Y. Li. Nanjing, China,
Springer Berlin / Heidelberg.
5093/2008: 206-217.

Xu, W., K. Kreijns, et al. (2006). Designing
Social Navigation for a Virtual
Community of Practice.

Technologies for E-Learning and
Digital Entertainment, Springer
Berlin / Heidelberg. 3942/2006:

27-38.

