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ABSTRACT
Researcher has been trying to optimize the method for evaluating presence in virtual
reality (VR) to address variability and uncertainty in quick evaluations using ques-
tionnaires. We recommend using the Technique for Order Performance by Similarity
to Ideal Solution (TOPSIS) model to calculated the iGroup Presence Questionnaire
to measure users’ overall presence in VR prototyping, instead of the weighted sum
approach. The effects of two presence factors (scene density and motion trajectory
technology) on a self-developed VR swimming virtual system were tested using the
TOPSIS model with 20 participants each 12 tasks in a user experiment. The results
were compared using two different weighting methods, fuzzy hierarchical analysis
and uniform weighting methods. TOPSIS had a narrower range of data within the
95% confidence interval and a significantly lower coefficient of variation (CV). This
indicates enhanced precision in evaluating presence and can be used to compare
different technique setting of virtual systems.

KEYWORDS
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1. Introduction

Virtual reality (VR) technologies provide users with immersive and realistic experi-
ences by enabling them to actively interact with the virtual environment(VE). Pres-
ence, defined as the level of similarity that a person experiences between the real and
VEs, is vital for a VR system. In prior VR evaluations, several studies have eval-
uated the effect of presence to measure the quality of the VE and discussion the
relationship between the devices (such as Head-mounted displays, HMD) of VR and
users. In human–computer interaction applications such as driving simulators (Weid-
ner et al., 2017), autonomous driving agents (Grasso et al., 2020), and trainer flight
simulators(Matthews et al., 2020), the user must maintain a high sense of presence
obtain more proximate to the actual situation in the simulation. Identically, a high
level of presence can be established to improve the task performance in VEs (Ariza N.
et al., 2017) for purposes such as physical training (Rose et al., 2000) and rehabil-
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itation/clinical exercises (Farrow et al., 2019; Mazzone et al., 2013). Additionally,
presence is significantly influenced by the emotional variations that can be elicited by
alterations in the VE (Diemer et al., 2015; Shiban et al., 2016).

Although studies have established that VEs are positively correlated with changes
in mood, such as scene density (Felton and Jackson, 2022) and haptic immersion
techniques (Bailenson and Yee, 2008; Sevinc and Berkman, 2020), large-sample user
testing is a challenge for stable presence evaluation due to the dynamic and non-linear
changes in environmental characteristics (Felton and Jackson, 2022). In particular,
small-sample test data can lead to instability and uncertainty in presence evaluation
during the iterative development of VR systems. Therefore, in order to effectively
guide the design of VEs, an objective and quantitative method for presence evaluation
is required.

This study is based on the IPQ developed by Schubert and Friedmann (2001).The
technique order performance by similarity to ideal solution (TOPSIS) method was
utilized to improve the measurement precision of presence, and compared the strengths
and weaknesses of the presence evaluation of various VR design solutions. Based on
the initial exploration conducted using TOPSIS, we assumed that the selection of
the weighting method would influence the evaluation results. Thus, we introduced
fuzzy Analytic Hierarchy Process (AHP) to compare the measurement precision. The
TOPSIS method was applied based on two distinct weighting techniques, and an IPQ
score was derived to investigate its effects on precision improvement. Through this
study, a valid assessment criterion was established for VR designers to optimize their
solutions.

This study is not to develop a new evaluation model based on the IPQ evaluation
method and to deduce a mathematical tool for measuring presence, but rather, to
use existing optimization models to improve the quality of presence evaluation. The
improvement would enable VR designers and experimenters to more precisely compare
the variations among different settings and optimize their applications. In particular,
the weighting factors and decision-making methods were employed to evaluate the
IPQ scores and improve the interpretability in the comparison.

For conducting the experimental case study, we designed an immersive water-free
swimming simulation system, as explained in Section 4. The validity of the pres-
ence evaluation and results of various weighting sum methods were analyzed, and the
TOPSIS calculation results for two weighting methods are discussed in Section 5. The
coefficient of variation of the IPQ data and the factors influencing presence are dis-
cussed and elaborated in Section 6. The concluding remarks on the advantages of the
IPQ-based new framework are summarized in Section 7.

2. Background

2.1. Dimensions of presence

Presence refers to the feeling of ”being there” in a mediated environment, which is
a subjective experience and is limited to a specific medium, such as VR technology.
Lombard et al. (1997) defined it as ”the perceptual illusion of non-mediation,” where
individuals perceive or recognize their existence in a technologically mediated experi-
ence but are unsure how to respond. However, in VEs, there is an increasing tendency
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to use technological means to create more realistic environments, which Lombard et
al. (2015) defined as spatial presence. Slater (2016; 2009; 2018) conceptualized it as
a ”sense of being in a real place” or a ”sensation of being in a real location”. Spatial
presence is a decisive characteristic of VR experiences, and inducing a complete sense
of spatial presence to make the VE indistinguishable from reality is a significant goal of
VR technology (Mazuryk and Gervautz, 1996; Nash et al., 2000; Felton and Jackson,
2022).

In VEs, the factors that determine presence are diverse, just as the real world
provides us with complex sensory stimuli. Felton (2022) proposed an inclusive classi-
fication of the origins of virtual presence, which extensively lists the determinants of
presence. These determinants include two external factors (sensory determinants and
content determinants) and three internal factors (psychological determinants, demo-
graphic determinants, and cultural determinants). External factors primarily encom-
pass sensory variables related to multi-sensory interaction, such as display field-of-view
(visual immersion), display resolution, perception of depth, haptic feedback, auditory
cues, olfactory cues, and head-tracking (Slater et al., 2003; Kaul et al., 2017). Ad-
ditionally, the realism of the VE and narrative elements are considered as internal
variables. The other three internal factors are inter-subjective variable that vary due
to individual differences among participants.

2.2. Presence measures and evaluation

Measuring virtual presence is complex, to quantify presence, researchers have at-
tempted to identify the measurable subjective and objective criteria (Feng et al., 2020).
Riva (2003) have reviewed subjective measures, behavioral metrics, and physiological
identification of measuring presence in VEs. There is consensus in existing studies
that objective stimuli in a VR environment can generate physiological and behavioral
responses that are strongly correlated with presence (Hale and Stanney, 2014). Insko
(2001) tracked the reflex movements to assess participants’ reactions toward unex-
pected events, because the reaction-evoking behaviors are associated with stressors
indicating the level of presence. Biological measures such as skin conductance, heart
rate, eye tracking, and electromyography (EMG), were investigated as presence indi-
cators. Although the correlation between the objective variables and sense of presence
has been established, the application of objective measures is highly affected by the
signal noise induced by the movements of participants (Clemente et al., 2014). In addi-
tion, the objective measurement method poses several limitations related to precision,
sensor performance (Qiu et al., 2022; Zheng and Li, 2022), and the possibility of errors
caused by the interference with the signal.

Currently, subjective measures still primarily rely on questionnaires and interviews,
such as the Slater–Usoh–Steed (SUS) (Slater et al., 1994), presence questionnaire (PQ)
(Witmer and Kline, 1998) and other researchers summarized some relevant standard-
ized questionnaires (Qiu et al., 2020, 2023) . In addition, Schloerb and Stanney em-
ployed matching comparisons (Schloerb, 1995) and cross-modal matching to assess
the users’ subjective perceptions of presence (Stanney et al., 1998). Among the well-
known questionnaires, the SUS contains six questions (7-point Likert scale) regarding
the participants’ perceptions of presence and limitations in a VE. The SUS measures
the extent to which participants conceptualize a given VE (Slater and Wilbur, 1997).
Moreover, PQ is an assessment tool that validates four impact factors on presence
using a structural equation approach, including control, sensory, distraction, and real-
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ism factors. The tool evaluates the sum of presence perceptions using a 7-point Likert
scale (Witmer and Kline, 1998). Schubert and Friedmann developed the iGroup pres-
ence questionnaire (IPQ) based on the embodied cognition framework (Lako, 1987),
and prior research has been conducted on the PQ and SUS. The presence evaluation
scale contains three separate multidimensional components of the 14 items (Schubert
et al., 2001). The three independent variables were considered in the IPQ: subjec-
tive experience in a virtual space, subjective experience of technology and interaction
possibilities, and subjective experience of authenticity.

Based on the results reported by Souza (2021), it is evident that the IPQ method
was employed in 31 presence measurement tests of VEs to obtain suitable test results.
In contrast to other assessment methods such as PQ and SUS, the IPQ applies four-
dimensional visualization technology, as illustrated by the Presence Profile. Recent
studies have also pointed out that IPQ is an effective tool for presence evaluation in
VEs (Strojny et al., 2022). In particular, they used items including Involvement (INV),
Experimental Realism (REAL), and Spatial Presence (SP) to form 3D coordinates, and
subsequently, combined them with the range of variations in the Sense of Being There
(G1) to elicit the level of the perceived presence of the VEs. For comparative analysis,
other researchers have utilized a unified weight calculation method based on an expert
system perspective and aimed to compare the VE solutions, analyze the defects in
VE design (Zhang et al., 2019; Akdere et al., 2021), and improve the performance
of VR systems (Chang et al., 2022). Although IPQ can be conveniently implemented,
which yields inaccurate results owing to variations in the subjective perceptions across
individuals because of psychological, social, and environmental differences (Casner and
Gore, 2010). Therefore, the method is a needed to ensure relatively small sample sizes
with satisfactory precision of presence measurements (Hennink and Kaiser, 2022).

2.3. Fuzzy analytic hierarchy process and TOPSIS

The method we develop is different from the unified weight calculation method of
expert systems. Based on Hart weighting method (Hart, 2006), we try to compare the
different factors of IPQ in paired comparison. This method determines which factors
in the VE are more important to the sense of presence, so as to adapt to different VEs
development. However, in practice, if participants subjectively judge which factors in
IPQ are more important than another, this method introduces uncertainty and can
become inaccurate. Instead we introduce the semantic scale (Yu, 2002a) and the fuzzy
method of pairwise comparison (Deng, 1999), and use the fuzzy analytic hierarchy
process proposed by Chang to determine the weight coefficients of different factors in
IPQ. Here we briefly describe the basic concept behind the fuzzy analytic hierarchy
process. More theoretical details can be found in the literature (Chang, 1996).

For instance, complex issues like sense of presence (goal layer) can be classified into
several levels of criteria, and the indicator on level one can be decomposed into multiple
levels with different indicators. This can be further decomposed into Presence in VR
(Fig 1). Although the number of criteria for assessment is continuously expanding, the
refinement of these criteria exponentially reduces their total number for comparison
owing to the hierarchical structure(Harris et al., 2020).

To improve the precision and quality of presence measurements, related studies sug-
gested the Technique for Order Performance by Similarity to Ideal Solution (TOPSIS)
as a practical approach for considering the uncertainty inherent in evaluation (Zhou
and Chan, 2017; Yoon and Hwang, 1995). Notably, the TOPSIS model assists decision
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Figure 1. General hierarchical structure of Presence in VR; this structure can include related criteria from

multiple groups or sources.

makers in analyzing and comparing the relative performance of multiple scenes, and
thus, it has been widely applied in several complex domains, including project risk as-
sessment in finance, patient safety assessment in health management, manufacturing
system design, business management, and energy (Behzadian et al., 2012).

In summary, the aim of our study is to test the effect of different VEs on user immer-
sion in the context of a small sample size, based on the definition of spatial presence,
considering visual immersion variables and haptic feedback variables among external
determinants, using the TOPSIS method as a new way to calculating overall presence
in VR applications, introducing FAHP and weighted sum methods, and comparing the
precision of presence measures.

3. Methods for computing the presence score

In this study, we will focus on discussing our method based on the IPQ table. Firstly,
based on the existing IPQ table, a analytic hierarchy process (AHP) process was
employed to improve the measurement quality of the VR presence to analyze and
compare the degree of effect of the extra weight factors. Subsequently, the fuzzy AHP
employed additional factor weights for each criterion to distinguish the significance
level of various environmental variables, evaluate the overall presence, and modify the
deficiencies in subjective evaluation methods. In Fig.2, we illustrate an overview of the
presence evaluation in TOPSIS based on varying weighting methods.The framework
can be divided into three steps. In the first step, we involved experts and evaluators in
VR tasks to obtain IPQ data. Subsequently, we analyzed the data to obtain a Presence
Profile. Thereafter, it applied uniform weighting coefficients to calculate the overall
IPQ values. In step two, the weighting coefficients were determined through pairwise
comparisons in accordance with fuzzy analytic hierarchy process recommendations. In
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the third step, the TOPSIS model computed the relative closeness coefficients based
on the weights obtained in the first and second steps.

Figure 2. IPQ measurement method and schematic process the TOPSIS method use different weighting
approaches.

3.1. Weighted sum method in IPQ

The calculation of the overall presence of IPQ has two steps. First, the participants of
VE must perform a pairwise comparison of the criteria provided in the IPQ accord-
ing to the conducted and experienced task. For instance, if the user perceives that
Involvement is more important than Experienced realism, then the score (score on
their relative importance) of Involvement is incremented by one, whereas that of Ex-
perienced realism remained unchanged. Second, after six comparisons, the weighting
coefficients for the four criteria were obtained by normalization. These comparisons
were applied to determine the weighting coefficients of each criterion. Thereafter, the
overall presence score was computed as the sum of the scores for each criterion weighted
by their respective weighting coefficients.

IPQwsm = WG1 ∗G1 + WSP ∗ SP + WINV ∗ INV + WREAL ∗REAL (1)

where, WG1, WSP , WINV , and WREAL are denote corresponding weight coefficients
for each criterion. In the overall evaluation, IPQmean can be regarded as a special
case, indicating that WG1, WSP , WINV , and WREAL are equal to 25%

3.2. Analytic hierarchy process and fuzzy set

Herein, the AHP method was applied to extract various criteria at multiple levels in
terms of IPQ. In practice, the process of comparison and decision making is associ-
ated with the strong vagueness of human thinking. Generally, evaluators partially or
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completely associate pairwise comparison values with an uncertainty degree instead
of precise ratings, and such an uncertainty degree is represented by an appropriate
semantic scale Yu (2002b). To this end, triangular fuzzy numbers are utilized for a
pairwise comparison scale of the AHP.

3.2.1. Fuzzy numbers and a fuzzy synthetic extent analysis

Triangular fuzzy numbers (TFNs) were applied to transform the pairwise comparison
table data into TFNs data. Thus, the membership function is defined by the following
equation:

µM (x) =


x−l
m−l x ∈ [l,m]
x−u
m−u x ∈ [m,u]

0 otherwise

(2)

where µM (x): R −→[0,1] and l, m, and u denote the lower, modal, and upper values
of the TFN, respectively.

According to the triangular fuzzy comparison matrix Ã=(aij)n×n, the extent anal-
ysis sums up each row of this matrix, normalizes the sums with respect to the ith, and
ultimately, calculates the amount of overlap.

Si =

n∑
j=1

aij ⊗
[∑n

i=1

∑n
j=1 aij

]−1
(3)

where aij=(lij,mij,uij) denote the triangular fuzzy number. According to the rules
of operation, Si defines a triangular fuzzy number. There are two triangular fuzzy
numbers: S1=(l1,m1,u1) and S2=(l2,m2,u2). Upon comparing the degree of possibility,
both S2 and S1 can be defined as follows:

V (S2 ≥ S1) =


1 m2 ≥ m1

0 l1 ≥ u2
l1−u2

(m2−u2)−(m1−l1)
otherwise

(4)

Furthermore, to comparatively evaluate whether a convex fuzzy number S is more
significant than k convex fuzzy numbers, Si, i=1,2,...k can be defined as follows
minV (S ≥ Si).

3.2.2. Procedures to fuzzy AHP method

Step 1:Presence analysis and hierarchical structure formulation. As outlined in Section
2.2, the Analytic Hierarchy Process (AHP) methodology developed by Saaty provides a
standard for conducting hierarchical structure formulation. We can consider the study
of presence in VR as a specific case of AHP, and structure it accordingly. Specifically,
the goal layer is the problem of presence itself, while the indicator layer consists of
factors that influence perceived presence, which can be further decomposed into more
specific sub-indicators. In this study, we initially explored presence by identifying four
influencing factors as indicators at the criteria layer. Through pairwise comparisons
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by experts and evaluators of different criterias in the criteria layer, we determined
which criterias were more important. The corresponding hierarchical structure of IPQ
is illustrated in Fig 3. However, due to the uncertainty of importance, we used a fuzzy
linguistic scale to adjust the weightings.

Figure 3. Specific case of hierarchical structure to measure presence with IPQ criteria.

Table 1. Linguistic rating scales and corresponding fuzzy
numbers.

Linguistic scales Score TFNs

Both equally important 1 (1,1,1)
Weakly more important 2 (1,1,3/2)
Somewhat important 3 (3/2,2,5/2)
Remarkably more important 4 (5/2,3,7/2)
Very remarkably more important 5 (7/2,4,9/2)
Extremely more important 6 (9/2,5,11/2)
Absolute important 7 (11/2,6,13/2)

Step 2: Fuzzy comparison using fuzzy linguistic scale. After completing the VR
task and the IPQ table, the experts and evaluators will also be invited to participate
in pairwise comparisons table. In a previous study, the fuzzy linguistic scale (Saaty,
1988) was applied to transform uncertain and fuzzy information into a quantifiable
form for subjective evaluation. As shown in Table 1, the linguistic scale of importance
corresponds to fuzzy numbers. To understand the relative importance of criterion Ki

(i=1,2,...,m) compared to Kj (j=1,2,...,m, i̸=j) for presence measurement in a VE,
a fuzzy comparison matrix was constructed based on the comparison table (Table 2),
denoted as:

K̃ =


1 k12 k13 k14
k21 1 k23 k24
k31 k32 1 k34
k41 k42 k43 1

 (5)
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Table 2. Fuzzy comparison table to be

filled with the linguistic expressions

G1a SPb INVc REALd

G1 BIe

SP BI
INV BI
REAL BI

aSense of being there
bSpatial presence
cInvolvement
dExperienced realism
eBoth equally important

where, kij = 1/kji, and

{
kij = (lij ,mij , uij)
1
kji

=
(

1
uij

, 1
mij

, 1
lij

)
(6)

The P evaluators yielded distinct fuzzy comparison matrices to form the final eval-

uation matrix K̃P , and all evaluations were aggregated. The average of all the fuzzy
comparison matrices can be expressed as,

kij =

 1

P

P∑
p=1

l
(
kpij

)
,
1

P

P∑
p=1

m
(
kpij

)
,
1

P

P∑
p=1

u
(
kpij

) (7)

where l, m and u represent the functions used for evaluating the lower, modal, and
upper values of the TFN.

Step 3: Weighting vector determination. Using the extent analysis method formu-
lated in Eq. 3 and 4, we can describe each criterion using a TFN. In principle, the
comparison of fuzzy numbers must be used to determine the weighting vector of the
criteria, where w′ (Ki) = minV (Si ≥ Sj) for j = 1 , 2 , ...M , i ̸= j ,

w′
r =

[
w′ (K1) , w

′ (K2) , . . . , w
′ (KM )

]T
(8)

where Ki , i = 1, 2, ...,M reflect the criteria, and the final normalized weighting
vector can be expressed as,

W =

[
w′ (K1)∑M
i=1 w

′ (Ki)
,

w′ (K2)∑M
i=1 w

′ (Ki)
, . . .

w′ (KM )∑M
i=1 w

′ (Ki)

]T

= [w (K1) , w (K2) , . . . , w (KM )]T

(9)

3.3. TOPSIS method

The TOPSIS method utilizes a distance scale to measure differences among samples. To
utilize this scale, it is necessary to normalize the index attributes in the same manner.
Typically, this step is required in almost all evaluation methods to homogenize the raw
data. For the IPQ evaluation of each VR system (object), the original data matrix was
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homogenized using the cosine distance measure, followed by the computation of the
relative closeness coefficient.

3.3.1. Normalized matrix

Let n denote the number of objects to be evaluated; each object contains m attributes.
Therefore, the original data matrix can be derived as,

O =


o1,1 o1,2 · · · o1,m
o2,1 o2,1 · · · o2,m

...
...

. . .
...

on,1 on,2 · · · on,m

 (10)

To perform dimensionless calculations, we should construct a weighted canonical
matrix in which the attributes are normalized vectors; i.e., each column element is
segmented by the norm of the current column vector (according to the cosine distance
measure):

hij =
oij√∑n
i=1 o

2
ij

(11)

Accordingly, the normalized nondimensional matrix yields into,

H =


h1,1 h1,2 · · · h1,m
h2,1 h2,2 · · · h2,m

...
...

. . .
...

hn,1 hn,2 · · · hn,m

 (12)

3.3.2. Identification of optimal and worst solutions

There are two idealized goals, namely, the positive ideal goal or optimal goal, and the
negative ideal solution or the worst goal. The positive optimal solution H+ contains
the maximum value of each column element in H:

H+ =


max (h1,1, h2,1, · · · , hn,1)
max (h1,2, h2,2, · · · , hn,2)

...
max (h1,m, h2,m, · · · , hn,m)

 (13)

The worst solution can be expressed based on Eq. 14:
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H− =


min (h1,1, h2,1, · · · , hn,1)
min (h1,2, h2,2, · · · , hn,2)

...
min (h1,m, h2,m, · · · , hn,m)

 (14)

3.3.3. Calculation of separation distance

In principle, the separation distance is utilized to measure the distance between the
current sample and the optimal/worst solution, which can be defined as follows:

d+i =

√√√√ m∑
j=1

wj

(
H+

j − hi,j

)2
(15)

d−i =

√√√√ m∑
j=1

wj

(
H−

j − hi,j

)2
(16)

where wj denotes the weight of the jth attribute (importance), and it can be derived
from the fuzzy AHP method, as expressed in Eq.9.

As the separation distance is a factor of two independent values (d+i and d−i ), a uni-
fied measurement can be obtained in a single dimension through the relative closeness
coefficient (Xi) of each entry, defined as,

Xi =
d−i

d+i + d−i
, Xi ∈ [0, 1] (17)

If Xi → 1, d+i is small and d−i is large, implying that the measured object approaches
the most optimal performance. The performance of each object can be defined by the
values of X, ranking from large Xi to small Xi or in reverse order.

Applying this principle to the specific case based presence study, a larger X value
suggests higher presence. In addition to the observation of the performance of each
individual object, X can be grouped according to the factors tested in the experi-
ment. Moreover, the variations in X can be compared among groups (e.g., the sense
of presence created by varying physical feedback designs).

4. Case study

Herein, a case study was conducted to evaluate the effectiveness of the proposed
method in improving the precision of the presence evaluation. A VR-based swim-
ming simulator was developed to provide a vivid water-surface environment. In par-
ticular, two factors were predefined for designing the VR simulation: (a) immersive
physical feedback (Jahn et al., 2020; Sevinc and Berkman, 2020); (b) scene density
(Parsons et al., 2009). Thereafter, we conducted experiments based on the proposed
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modified-IPQ method to examine the influence of these two factors on the assessment
of presence.

4.1. Experimental setup of the swimming simulator

The developed virtual swimming simulator (Li et al., 2022) features two motion track
technologies (MTT) to compare the impact of immersive feedback technology (Bailen-
son and Yee, 2008) on user presence. We have designed a swimming simulation VR
application with different scene densities for comparative analysis. Users can receive
real-time feedback on their swimming posture through the HTC VIVE headset (dis-
play resolution: 2160 × 1200 px; refresh rate: 90hz). Additionally, the Head-mounted
displays includes a breathing simulation device to adjust breathing speed. Further-
more, a metal protective frame with elastic force hardness was constructed to support
the body in swimming postures and fluctuate the body by simulating floating and
waves.

4.1.1. Tracker and Kinect motion

We explored the impact of immersive feedback technology and made different attempts
in the virtual swimming simulator. Two motion tracking technologies were used: HTC
Vive’s Tracker and Kinect camera. In MTT Scheme A (MTT A), the Tracker (FOV
is 240°) was worn on the participants’ wrists and ankles to enable real-time tracking
of their body movements. In contrast, MTT Scheme B (MTT B) used Kinect (depth
resolution of 512 × 424 and 30 fps) to capture the swimming movements of the partic-
ipants. More importantly, a posture recognition and matching module was developed,
using a 10-point positioning method to facilitate real-time synchronization of human
movements and virtual character movements in the HMD, including the simulation
rendering of standard actions.

4.1.2. Respiration simulator

The HMD was equipped with a respiration simulator to regulate the respiratory rate.
Additionally, a card slot structure was designed to attach the respiratory rate bags
to the HTC VIVE VR headset. The bags was connected to the air pump through a
Y-type tee-joint, and communication control was carried out through Arduino and
WiFi. The breathing rate was synchronized with the task movements rate (Fig.4).

4.1.3. Elastic force harness and support device

To simulate the resistance generated by the arm action during swimming, we designed
a wearable elastic force hardness device. The user was equipped with the harness
that was attached to Point A in the support device to effectively simulate the re-
sistance during the stroke. According to a swimming resistance study by Bixler and
Riewald(Bixler and Riewald, 2002), the resistance faced by a standard-weight individ-
ual during swimming in water was approximately 24–40 N. Specifically, each harness
was designed to surround the body in a direction without impacting mobility (Fig.5).

4.1.4. User interface for HMD

We designed a user interface for our virtual swimming simulation program, which
includes a standard swimming pose example window, a real-time action feedback win-
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Figure 4. Respiration Simulator Details

Figure 5. (a) Elastic force harness for limbs adheres to skin and includes a shoulder guard (1) and a soft pad

for waist (1), whereas wrist guard (2) and ankle of limbs (3) are connected to back pad (1) via corresponding
elastic force harness. (b) Support Device Diagram. Point A is the fixed point of the elastic force harness

and bracket to ensure that the left and right hands are subjected to the same tension at the limit position.

In addition, the device also includes Kinect (4), active noise-cancelling headphones (5) and locator for VR
glasses(6).

dow, and a first-person perspective window (Fig.6). In the left window, users can learn
the standard swimming poses and movements. In the right window, users can compare
their real-time actions with the standard ones. Whenever the user’s action exceeds the
standard range, the program will display the incorrect action in red, reminding the user
to correct it (Fig.6b). Additionally, we generated three different scenes with varying
levels of detail by changing the textures and details of the water and environment in
the VE, namely low (few objects), middle, and high (several objects). According to the
definition provided in Section 2, we used this setup to differentiate users’ sense of pres-
ence at different levels(Fig.7). For hearing, we used active noise-cancelling headphones
to presentation audio signal. The sound density can be classified into three levels: low
(minimal details), middle, and high (several details), and the density could be distin-
guished by the filtration of the sound samples (Cohen-Hadria et al., 2019)(Fig.8c).
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Figure 6. For the user interface with middle density details, we have the following components: (a) correct
swimming style. The left column represents an example window of the standard swimming pose. The right

column represents an example window of the real-time action feedback window, and Third-person perspective

window. (b) Wrong swimming style.

Figure 7. Scene with low(a), middle(b), and high(c) densities respectively.

Figure 8. Experiment procedure: (a) each participant is provided an instruction manual of using the Swim-
ming Simulator in various MTTs. (b) six components of freestyle stroke practice. (c) Visual scene and sound
samples classified into three levels low (low details), middle, and high (high details). (d) participants were

invited to fill out the IPQ questionnaire. (e) participants were invited to complete an individual pairwise com-

parison matrix.
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Table 3. Experimental conditions

Experiment munber 1 2 3 4 5 6

Immersion
feedback type

Tracker Tracker Tracker
Kinect and

force feedback
Kinect and

force feedback
Kinect and

force feedback

Scene Low Middle High Low Middle High

HMD HTC VIVE

4.2. Participants

Twenty healthy participants were recruited to voluntarily participate in the experi-
ment, including three professional swimming athletes and 17 non-athletes. The male-
to-female ratio was 1:1 with average age of 25 years (SD = 1.82). Participants were
requested to respond to a pre-exposure questionnaire for determining their familiarity
with VR technology and acquiring the necessary health and background information.
These participants were chosen because of their experience in the use of VR equip-
ment. Moreover, the ethical considerations were upheld with written consent from the
participants.

4.3. Experiment procedure

The experimental procedure is shown in Fig.8 and consists of five steps. Firstly, the
participants responded to the pre-exposure questionnaire and were asked about their
experience with VR. Subsequently, with the assistance of the experimenter, partici-
pants put on the equipment and were immersed in the VE. Secondly, participants prac-
ticed the stroke movements according to the predetermined stroke practice procedures.
Specifically, users had to practice six components of freestyle and breath movements
based on the standard movements in the left window (Fig. 8b). In the right window,
if the movement was evaluated as incorrect or significantly deviated, the step would
be restarted until the standard was achieved. Finally, when participants accurately
completed all movements, they were asked to exit the virtual swimming simulator and
fill out an IPQ questionnaire based on their experience and impressions (Fig. 8d). In
addition, participants were invited to use the language expressions listed in Table 1 to
complete a separate paired comparison matrix (Fig. 8e). To balance the experimental
conditions, reduce random errors, and minimize mixing effects, the experimental con-
ditions were set as shown in Table 3. Specifically, the researchers randomly tested six
different conditions, each of which was repeated twice by a user on different days (for a
total of six days). Each user performed a total of 12 tests (6×2). The procedure of this
was that 1) the same swim test movement flow (same task) would effectively balance
the cybersickness effect between participants (Fig. 7b)(Sevinc and Berkman, 2020). 2)
The test was spread evenly over the 6 days in order to avoid multiple measurements
that would not allow subjects to effectively differentiate between scene densities.

4.4. Weighting coefficients and statistical approach

In the final step of the experimental procedure, participants and two additional pro-
fessors were invited to form a personal paired comparison matrix to derive the fuzzy
comparison matrix. These evaluators were selected due to their experience in VR and
were able to judge which factors were more important through firsthand experience.
The detailed rating process was reported in Gumus (Gumus, 2009). We calculated the
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fuzzy weights according to the normalised weightings of the aggregated responses were
derived from the fuzzy synthetic extent analysis, as described in Section 2.2. Subse-
quently, using these available weighting coefficients, the relative closeness coefficient X
of the IPQ (IPQx) was extracted using the two sets of weights following the TOPSIS
model through Eq.17. Similarly, according to various weighting coefficients (IPQwsm

see Section 2.1), the IPQ score was evaluated using the weighted sum method. Fur-
thermore, statistical analysis was performed to compare the differences methods in
overall presence. However, as supplementary support, we considered the coefficient of
variation (CV) in addition to the mean (M) and standard deviation (SD). CV is de-
fined as the ratio of SD to M and represents a statistical measure of the dispersion of
the data(Kesteven, 1946; Lovie, 2005). A higher CV corresponds to a higher dispersion
and less reliable measurements. A flowchart of the validation process is illustrated in
Fig.9.

Figure 9. Flowchart of validation process for two factors

5. Results

First, the fuzzy weights were computed according to pair-wise comparisons for input in
the IPQwsm and IPQx models. Second, the normalized and dimensionless evaluation
data were input into the IPQwsm and IPQx models to evaluate the final score data.
The two-way analysis of variance (ANOVA) of the IPQ score data was performed.
Third, the coefficient of variation (CV) was computed based on the SD and M of the
score data. Ultimately, a mixed-effect model analysis of the CV was performed.

5.1. Weighting coefficients

According to Eqs. 6, 8, 9, and 10, the pairwise comparison data were calculated as
fuzzy weights. The SP and REAL factors were regarded as the fundamental factors
influencing the sense of presence, with weight coefficients of 36.4 and 33.5%, respec-
tively, which were much higher than those of the other two factors. Potentially, this
occurred because the participants experienced scenes of varying densities during the
experiment, which improved their understanding of SP and REAL, and subsequently,
this resulted in the improvement of fuzzy weights for both terms. In comparison, the
weight coefficient of G1 was less than the uniform weight (17.6%), whereas the weight
of INV was relatively less (12.5%). In our opinion, the low INV resulted because the
participants were not exposed to additional modes of interaction during the exper-
iment. In particular, the participants were able to only assess the precision of the
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Table 4. Results of data normality test

Data p-valuea

IPQwsm Fuzzing weighting 0.062
Uniform weighting 0.054

IPQx Fuzzing weighting 0.078
Uniform weighting 0.063

aKolmogorov–Smirnov test

Figure 10. Effects of presence factors on IPQwsm evaluation

actions based on the task window. Accordingly, the pair-wise comparison table did
not indicate that the participants considered the significance of INV factors as more
important, which is consistent with the findings reported by Schubert(Schubert et al.,
2001).

5.2. Results of weighting sum method and relative closeness coefficient

Additionally, the normality of the data was verified (Table 4), and the two-way re-
peated measures ANOVA was performed to determine the influence of two indepen-
dent variables (MTT and scene) on the evaluation of presence, considering both the
IPQwsm and IPQx methods, as depicted in (Fig.10 and 11) and Table 5. As illustrated
in the figures, we initially considered the mean (M) and standard deviation (SD) ob-
tained for each MTT and the scene type with two distinct weighting approaches and
two evaluation methods. We determined that the fuzzing weighting generally yields
a smaller standard deviation than uniform weighting, regardless of the IPQwsm or
IPQx data.

Based on the IPQwsm evaluation (Fig.10), the level of scene density significantly
influenced only the presence in case of measurement using the fuzzy AHP (F2,38 =
4.25, p = 0.03, η2p = 0.3) and uniform weight approaches (F2,38 = 2.58, p = 0.04,

η2p = 0.2). In contrast, the VR MTT did not pose any significant effect, regardless

of the weighting approach (fuzzy weighting: F2,19 = 3.28, p = 0.6, η2p = 0.1; uniform

weighting: F2,19 = 2.10, p = 0.18, η2p = 0.1). However, the outcomes revealed an
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Figure 11. Effects of presence factors on IPQx evaluation

Table 5. Effect of factors on presence from various determination methods

Fuzzy weight Uniform weight

IPQwsm

Factors MTT scene MTT: scene MTT scene MTT: scene
Sum sq 4.11 15.72 0.83 3.57 12.85 1.54
Df 1 2 2 1 2 2
MS 4.11 7.86 0.42 3.57 6.43 0.77
F 3.28 4.25 1.02 2.10 2.58 2.37
P-value 0.60 0.03* 0.05* 0.18 0.04* 0.08
η2p 0.1 0.3 < 0.1 0.1 0.2 < 0.1

IPQx

Factors MTT scene MTT: scene MTT scene MTT: scene
Sum sq 0.0004 0.08 0.0032 0.0008 0.05 0.0054
Df 1 2 2 1 2 2
MS 0.0004 0.04 0.0016 0.0004 0.03 0.0027
F 0.22 3.65 1.41 0.52 4.82 2.01
P-value 0.04* 0.009** 0.02* 0.82 0.03* 1.08
η2p < 0.01 0.04 < 0.1 0.01 0.03 < 0.01

Note: Significance level: .05 (*), .01 (**), Sum sq: Sum square, Df: degree of
freedom, MS: mean squared.
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interaction effect between the MTT and scene density (F2,38 = 1.02, p = 0.05, η2p < 0.1)
in fuzzy AHP. More importantly, uniform weighting did not exhibit a predominant
effect with no observation of additional interactions. In the IPQx evaluation (Fig.11),
the level of scene density revealed a significant effect for both weighting approaches
(fuzzy weighting: F2,38 = 3.65, p = 0.009, η2p = 0.4; uniform weighting: F2,38 = 4.82,

p = 0.03, η2p = 0.3). In particular, the outcomes revealed a significant variation in

the level of VR MTT (F1,19 = 0.22, p = 0.04, η2p < 0.1) and an interaction effect

between the MTT and scene density (F2,38 = 1.41, p = 0.02, η2p < 0.1). Furthermore,

the between-factor MTT and interaction (F1,19 = 0.52, p = 0.82, η2p = 0.1) did not
reveal any observable effect.

Thereafter, post-hoc analyses were performed to understand the variations between
multiple levels of scene density. As the data were subjected to multiple pairwise com-
parisons, we used Tukey’s test, and the results are listed in the table 6. Regarding
significance (p-value), we considered the mean differences with 95%-confidence inter-
vals. With the IPQwsm evaluation including two weighting approaches, the statistical
significance was observed only between the low and high densities (fuzzy weighting:
p = 0.03, 95%CI : -1.44 to -0.12, η2p = 0.03; uniform weighting: p = 0.04, 95%CI :

-1.89 to -0.05, η2p = 0.03). In contrast, the IPQx evaluation reported further significant
effects. The statistical significance was detected between the low and middle densities
(fuzzy weighting: p = 0.04, 95%CI : -0.06 to -0.009, η2p = 0.01; uniform weighting:

p = 0.05, 95%CI :-0.05 to -0.004, η2p = 0.02), as well as between the low and high
densities with both the weighting methods (fuzzy weighting: p = 0.005, 95%CI : -0.07
to -0.03, η2p = 0.04; uniform weighting: p = 0.009, 95%CI : -0.06 to -0.01, η2p = 0.04).
Note that the confidence intervals from the IPQx are much narrower than those from
the IPQwsm.

5.3. Analyzing coefficient of variation

As listed in Table 6, the range of the confidence intervals was wider than that with the
TOPSIS method if the presence was measured using the weighted sum method, imply-
ing that the TOPSIS provided more precise estimates than the weighted sum method.
As supplementary support, we considered the coefficient of variation in addition to
the mean (M) and standard deviation (SD) obtained for each MTT and scene type
with the two distinct weighting approaches and two evaluation methods (Table 7). An
additional mixed-effects model was employed to analyze the coefficient of variation,
where the random effects included the MTT and scene density, and the fixed effects in-
cluded the evaluation methods (IPQwsm and IPQx) and weighting approaches (fuzzy
weighting and uniform weighting). The results of the statistical analyses are presented
in Table 8.

Furthermore, we observed a significant deviation between the evaluation methods
in terms of the CV, and the weighting approach significantly influenced CV (F1,30 =
0.93, p < 0.01, 95%CI : -0.08 to -0.04, η2p = 0.62). The range of the confidence
intervals revealed that IPQx produced significantly smaller CVs compared to IPQwsm,
with 95%-confidence intervals ranging from –0.06 to –0.04. Comprehensively, as an
exploratory study, we did not detect a difference at the given significance level between
fuzzy weighting and uniform weighting, F1,30 = 0.35, p > 0.05, η2p = 0.99. Therefore,
the evaluation from TOPSIS illustrated a significantly lower dispersion of the data
compared to the weighted sum method, which confirmed our expectation that the
TOPSIS enhanced the precision of the subjective evaluation.
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Table 6. Post-hoc analysis for scene type considering various determination

methods, “Lower” and “Upper” represent the boundaries of 95%-confidence
interval (CI).

Fuzzy weight Uniform weight

IPQwsm

Scene type low low middle low low middle
Scene type middle high high middle high high
Mean difference -0.47 -0.85 -0.31 -0.53 -0.81 -0.28
Lower -1.25 -1.44 -0.97 -1.47 -1.89 -0.83
Upper 0.23 -0.12 0.36 0.02 -0.05 0.05
P-value 0.11 0.03* 0.34 0.07 0.04* 0.30
η2p 0.02 0.03 < 0.01 0.01 0.03 < 0.01

IPQx

Scene type low low middle low low middle
Scene type middle high high middle high high
Mean difference -0.01 -0.04 -0.01 -0.03 -0.04 -0.02
Lower -0.06 -0.07 -0.04 -0.05 -0.06 -0.05
Upper -0.009 -0.03 0.02 -0.004 -0.01 0.01
P-value 0.04* 0.005** 0.39 0.05* 0.009** 0.31
η2p 0.01 0.04 < 0.01 0.02 0.04 < 0.01

Note: Significance level: .05 (*), .01 (**).

Table 7. Descriptive statistics the CV with the different approaches

Fuzzy weighting Uniform weighting

CV CV
IPQwsm MTT Tracker 0.45 0.41

Kinect and force feedback 0.34 0.39
Scene type low 0.45 0.42

middle 0.45 0.39
high 0.34 0.40

IPQx MTT Tracker 0.31 0.30
Kinect and force feedback 0.29 0.31

Scene type low 0.34 0.38
middle 0.35 0.35
high 0.32 0.36

Table 8. CV for the different evaluation methods and weighting approaches

Mixed-effects model

Factors IPQwsm v.s. IPQx Fuzzy weighting v.s. Uniform weighting
Sum Sq 0.0018 0.0008
Df 1 1
MS 0.0018 0.0008
F 0.93 0.35
P-value 0.00** 0.06
η2p 0.62 0.99

95% CI
Mean Difference -0.08 -0.01
Lower -0.06 -0.04
Upper -0.04 0.012

Note: Significance level: .05 (*), .01 (**), Sum sq: Sum square, Df: degree of freedom,
MS: mean squared.
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6. Discussion

Based on the stated results, IPQx can be deemed as a more precise presence quantifi-
cation method than the weighted-sum approach in our case study. We exploratively
discuss the effectiveness of IPQx on regional presence strength under multiple virtual
feedback types and scene densities. We studied the IPQ evaluation performance based
on the TOPSIS method considering two perspectives, namely, and verify the precision
of the two weight evaluation methods by comparing the CVs.

Overall, we detected no evidence to substantiate that different VR MTTs could pro-
duce significantly multiple levels of presence, and neither IPQx nor IPQwsm exhibited
such an effect. Thus, our findings are consistent with those reported in previous stud-
ies(Dey et al., 2020; Freitas, 2018), confirming that the IPQx is useful for evaluating
the level of presence. As listed in the table 5, we can finding that the mechanism of
the IPQx and IPQwsm methods were consistent.

Regardless of the evaluation method, no significant difference was observed between
the middle and higher density of the scenes. Previous studies revealed that the par-
ticipants’ presence in a VE varies according to the attraction in the visual stimulus
task(Slater and Wilbur, 1997; Voinescu et al., 2020). In our experiments, we created
the intensity of visual stimuli by setting varying scene densities to ensure distinct per-
ception among the users. From the IPQx results, when tasks were performed in lower
density scenes, the visual stimuli decreased with the degree of task adaptation owing
to the relatively low density of visual scenes, thereby resulting in a significantly lower
sense of presence than middle-saturation scenes. Weech et al. (2019) argued that the
two factors, presence and cybersickness, were negatively related, and that the main
reason for this result was that participants typically rated the two feelings subjec-
tively in terms of sensory integration when self-reporting them. This is consistent with
our findings. We suggest that the participants’ task flow was identical and that the
low-density scenes likely induced cybersickness in the subjects, laterally reducing the
presence of the low-density scenes among the participants. The visual stimulus rich-
ness of the scenes satisfied their exploratory and cognitive demands for the current
swimming task, explaining the absence of any significant difference between moderate
and high-saturation scenes, regardless of the evaluation method used. However, this
does not indicate that a higher density of the scene reveals a stronger presence. This
conclusion is consistent with that of a study by Lee (2004), which argues that it is
reasonable to assume that realistic resolution is ineffective for presence in VEs be-
cause the low acuity of our peripheral vision makes us tolerant of low-resolution visual
scenes.

Regarding the scene type, the experimental results obtained the weighted sum
method revealed that the statistical significance could be detected only between the
low and high densities, implying inadequate precision of this method for discriminat-
ing presence at smaller scales. In contrast, more significant effects were detected using
the TOPSIS method, because differences were detected between the low and middle
densities. Therefore, the TOPSIS approach can more precisely detect the marginal
variations in presence, because of the CV of the IPQx was significantly smaller and
indicated a lower dispersion of the data. Thus, an improved quality of discrimination
among data could be achieved using the TOPSIS approach.

Regarding the weighting approaches, we did not detect a significant deviation in
the measurement between the fuzzy hierarchy method and the unified weight method,
because the application of both IPQwsm and IPQx yielded similar significant results.
However, the CV of the fuzzy hierarchy method differed significantly from that of the
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uniform weight method. Thus, the measurement results of the fuzzy AHP were effec-
tive with reference to the unified weighting method. In particular, the fuzzy weighting
method can be used as an alternative for the unified weighting method to determine
the weighting coefficients of each criterion in the total presence evaluation. This fur-
ther substantiates that the importance (weight) of each criterion is a necessary step
in measuring and calculating the overall presence rating. Moreover, the smaller CV
signified a higher precision of the presence measured using the TOPSIS approach,
which is particularly important for those wishing to compare and manage the pres-
ence difference at smaller scales.Nevertheless, a considerable limitation pertains to the
consideration of only two factors for determining the effectiveness of the proposed ap-
proach. Thus, future research will consider additional factors with more use cases to
test the generality of this approach.

7. Conclusion

Given the rapid advancement of VR technology, the construction of presence is of
paramount importance. In this study, we have employed the TOPSIS method to op-
timize the measurement of presence in the VR domain environment. Building upon
the IPQ measurement method, we have tested a new presence calculation method that
aims to improve the quantitative metrics for presence and reduce the coefficient of data
variation. The model has been examined using two weighting methods: fuzzy weighting
and uniform weighting. By incorporating the fuzzy analytic hierarchy process (FAHP)
with a universal hierarchical analysis structure into the new calculation framework,
it becomes possible to enable small-scale, rapid measurement of presence, even with
limited sample sizes. We applied this method to test a VR swimming simulator that
is currently under development. We investigated two factors in simulation tasks based
on VR: the VR MTT type and scene density. The purpose was to validate the per-
formance of the method. It is noteworthy that when using the TOPSIS evaluation
to quantify the level of presence constructed by different VR immersion technologies,
represented as IPQx, there was a decrease in the coefficient of variation (CV) of the
evaluation scores compared to the weighted method. This suggests that the new cal-
culation framework can effectively reduce the subjective uncertainty in measuring the
presence of VR and enhance measurement accuracy. Moreover, based on the detailed
experimental procedures described in this paper, this method can further benefit the
measurement of presence in other domains.

Although the current results indicate the effectiveness of the new calculation frame-
work, we acknowledge that our evaluation data were obtained from low-fidelity exper-
imental scenarios and only involved 20 participants in the analysis of presence sample
variation. Additionally, we did not extensively discuss the differences in presence eval-
uation between males and females. In future research, a more comprehensive validation
of the model’s performance will be conducted, considering larger sample sizes. Fur-
thermore, it is important to note that this method only considered two influencing
factors in VR design, which represents a significant limitation. In future studies, we
will consider more factors and use cases to validate the generality of this method.
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8. Appendices

Appendix A. iGroup Presence Questionnaire

The current version of the IPQ includes three subscales and one additional general
item, which emerged from principal component analyses and can be regarded as fairly
independent factors. The three subscales are:

• Spatial Presence - the degree to which one feels physically present in the VE.
• Involvement - measuring the attention devoted to the VE and the level of involve-

ment experienced.
• Experienced Realism - measuring the subjective experience of realism in the VE

Additionally, there is one general item that does not belong to any subscale.
See details in : http://www.igroup.org/pq/ipq/index.php

Appendix B. Fuzzy comparison questionnaire

B.1. Questionnaire design

Questionnaire (see Fig. 7 step: Perform pair-wise comparison):
• Name:
• The iGroup Presence Questionnaire (IPQ) is a widely used, subjective, multidi-

mensional assessment tool that rates perceived effectiveness or other aspects of per-
formance for tasks, systems, or teams. More specifically, it measures Spatial presence
(SP), Experienced realism (REAL), Involvement (INV), and Sense of being there (G1).

• To determine the importance of different influencing factors, please fill in the
following table based on what you believe was more important during the task you
just performed?

• Language expressions: Both equally important (BI), Weakly more important (WI),
Somewhat important (SI), Remarkably more important (RI), Very remarkably more
important (VI), Extremely more important (EI), and Absolute important (AI).

B.2. Example of a filled questionnaire

See Table B1.
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Table B1. One filled questionnaire

from the experiment (G1: Sense of be-
ing there; SP: Spatial presence; INV:

Involvement; REAL: Experienced real-
ism); the cells with ”-” are automati-

cally filled during the data analysis as

they have a reciprocal relationship with
the item from the other side of the di-

agonal.

G1 SP INV REAL

G1 BI - - AI
SP SI BI SI -
INV RI EI BI -
REAL - RI RI BI
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