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Abstract
Electrooculography-based Human-Computer Interaction (EOG-HCI) is an emerging field. Research in this domain 
aims to capture eye movement patterns by measuring the corneal-retinal potential difference. This enables 
translating eye movements into commands, facilitating human-computer interaction through eye movements. This 
paper reviews articles published from 2002 to 2022 in the EOG-HCI domain, aiming to provide a comprehensive 
analysis of the current developments and challenges in this field. It includes a detailed and systematic analysis of 
EOG signal electrode arrangement, hardware design for EOG signal acquisition, commonly used features, and 
algorithms. Representative studies in each section are presented to help readers quickly grasp the common 
technologies in this field. Furthermore, the paper emphasizes the analysis of interaction design within the EOG-HCI 
domain, categorizing different interaction task types and modalities to provide insights into prevalent interaction 
research. The focus of current research in the field is revealed by examining commonly used evaluation metrics. 
Lastly, a user-centered EOG-HCI research model is proposed to visually present the current research status in the 
EOG-HCI field from the perspective of users. Additionally, we highlight the challenges and opportunities in this 
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field.
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INTRODUCTION
The scope of human-computer interaction (HCI) research lies in studying the process of interaction 
between humans and machines, which constitutes a loop[1].In a typical HCI loop, the process is as follows: 
Step 1, the human brain autonomously or non-autonomously generates interaction intentions; Step 2, the 
interaction intentions lead to activities (such as limb movements), and this category of activity-generated 
information is defined as "trigger" in this review study; Step 3, the human-computer interface translates the 
"trigger" into control information and delivers it to the machine; Step 4, the machine reacts to the control 
information; Step 5, the human-computer interface acquires the machine's reaction and converts it into 
"feedback"; Step 6, the human actively or passively receives the "feedback" through sensors; Step 7, the 
human brain processes the feedback information. Through one interaction loop after another, the user 
ultimately achieves their goal of using the interactive system.

With the development of biomedical engineering technology in areas such as biosensing and biofeedback, 
the introduction of biomedical engineering technology into HCI research allows for more flexible and 
context-appropriate selection of triggers and feedback in the design of interaction forms.

The eye, as an important organ of the human body, serves both as a sensor and a trigger. Most of the 
information in the environment is perceived through visual information received by the eyes, and eye 
movements can also reflect some intentions, such as changes in attention. Therefore, using eye movements 
as triggers in the HCI loop has direct, simple, and efficient advantages over using other types of triggers, 
especially for tasks that involve primarily visual information as feedback. Additionally, for users in scenarios 
where limb movements are restricted, such as individuals whose hands and feet are occupied by other tasks 
or patients with physical disabilities, providing an eye-based interaction interface can be a better choice.

There exists a stable potential difference between the cornea and retina of the eye[2]. Mowrer, Ruch, and 
Miller (1935)[3] found that placing electrodes around the eyes allowed measurements of potential difference 
changes caused by eye movements. These studies are considered to have laid the foundation for 
Electrooculography (EOG) research.

EOG signals in non-invasive brain-computer interfaces (BCIs) offer distinct advantages over 
Electroencephalograph (EEG) signals. They have significantly higher voltage levels (exceeding 1 mV vs. 
< 100 μV for EEG), making them easier to capture and analyze. EOG also enables voluntary control, 
enhancing user experience by generating specific signal patterns through eye movements. Moreover, EOG is 
less susceptible to interference, in contrast to EEG, where EOG artifact removal is one of the many 
challenges. As a result, EOG is an attractive modality when it comes to BCIs. In the field of eye tracking, 
EOG offers unique advantages. Firstly, in terms of data acquisition: (1) The data source is a physiological 
electrical signal that reflects the underlying characteristics of the body; (2) It is less affected by lighting 
conditions and not restricted by makeup, contact lenses, or eyelashes; (3) The data collection apparatus is 
simple, small, and flexible in use; (4) It can monitor eye movements even when the eyes are closed; (5) It 
can capture a wide range of eye movements. Moreover, in terms of data, the data format is simple, with low 
storage, transmission, and computational costs, making it suitable for long-term monitoring.
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Based on the EOG-HCI loop, as shown in Figure 1, the human is on the left side of the interactive interface, 
and the machine with computational capabilities is on the right side of the interactive interface. The entire 
interaction loop starts from the human's central nervous system generating interaction intentions and 
controlling eye movements to emit triggers, and ends with the human's central nervous system receiving 
and processing visual and other feedback information. The interactive interface serves as an intermediary 
connecting humans and machines, responsible for information acquisition, information parsing, 
information integration, and information exchange between humans and machines. In eye-tracking-based 
computer interaction, the interactive interface generally includes an EOG information extraction module, a 
signal processing module, an interactive task module, and an interactive form that matches the interactive 
task. The interactive interface plays a central role in the entire interaction loop and is a major research focus 
in the field of EOG-HCI.

This review study conducted a systematic search, review, and summary of EOG-based human-computer 
interaction research conducted between 2002 and 2022. The aim was to showcase the development trends in 
this field, summarize the research methods, identify commonalities in the approaches, and present some 
distinctive research outcomes.

DATA SCREENING PROCESS
Peer-reviewed journal articles and conference papers that met the criteria from four databases, namely 
ACM, PubMed, IEEE Xplore, and Science Direct, are involved. The overall process of the literature research 
strategy is illustrated in Figure 2.

- Inclusion round:

The data set was selected based on the following criteria. Firstly, the titles must include EOG or its related 
synonyms, specifically: "EOG", "electrooculogram", "electro-oculogram", "electrooculography", or "electro-
oculography". Secondly, the titles or abstracts must mention HCI or related terms, such as: "HCI", "human-
computer interaction", "interaction", "interface", "VR", "Virtual Reality", "AR", "Augmented Reality", "MR", or 
"Mixed Reality". Thirdly, the research must be published between 2002 and 2022. Fourthly, the studies must 
be written in English.

- First exclusion round:

During the second round of screening, we excluded review articles that did not align with the research 
objectives and any literature that did not match the intended focus. We specifically focused on human-
computer interaction research with EOG signals as the primary modality and excluded studies that utilized 
other types of signals.

- Second exclusion round:

In the third round of screening, we carefully examined the content of the literature and retained those that 
presented a complete and well-defined interaction loop. We further excluded studies that utilized other 
modalities and studies that did not use EOG signals as the primary modality.

After the third exclusion round, we finally have retained 113 eligible papers, of which 35 are journal articles. 
As one of the objectives of this review study is to quantify the research quality in this field, and conference 
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Figure 1. EOG-HCI loop.

Figure 2. Overall Data Screening Process.

papers are challenging to assess in terms of research quality, the following summary and analysis will focus 
solely on the scope of journal research.
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In order to clarify the trend of the amount of research input and the quality of research output in the 
research field, we demonstrate the number of publications per 5-year period and the average impact factor 
per publication per 5-year period (AIFP5) from 2002 to 2022. Shown in Figure 3.

The AIFP5 is calculated as follows:

Where N indicates the number of researches published in this five-year period, and IF indicates the impact 
factor score of the journal in the year of each research published.

As can be seen from Figure 3, EOG-HCI is a vibrant and promising research field.

Table 1 presents information from all the surveyed literature regarding five aspects: Device, electrode 
arrangement, preprocessing method, feature, and algorithm. Since many studies employ various approaches 
in some aspects, such as performing preliminary experiments before choosing the best algorithm, we have 
listed only the most representative information for each article in Table 1.

The rest of the paper is organized as follows. In Section 3, we summarize the EOG signal acquisition 
techniques used in EOG-HCI research, including electrode arrangement and acquisition hardware system 
design. Section 4 provides an overview of EOG signal preprocessing, feature extraction, and classification 
algorithms. In Section 5, we review commonly used evaluation metrics in the research field. Section 6 
focuses on summarizing and analyzing interaction design within the research field. Finally, in Section 7, we 
discuss and conclude based on the research literature covered in this review.

ACQUISITION OF EOG FOR HCI
Electrode arrangement
In the field of EOG-based human-computer interaction, the arrangement and configuration of electrodes 
are greatly influenced by the research objectives. Based on the motivations of various studies, the electrode 
configurations in EOG-HCI research can be broadly categorized into three types: standard arrangement, 
task-oriented arrangement, and wearable-oriented arrangement. We have conducted a statistical analysis of 
the advantages, disadvantages, and the number of literature using each type of electrode configuration. The 
results are presented in Table 2.

Figure 4 shows the EOG standard electrode arrangement, with a and b representing horizontal EOG 
electrodes which produce the horizontal EOG signal (HEOG) and c and d representing vertical EOG 
electrodes which produce the horizontal EOG signal (VEOG).

In task-oriented electrode arrangement, Li et al. used only the EOG signal related to blinking to perform 
commands on a graphical user interface (GUI)[5,18-20,32]. For this task, they measured only the vertical EOG 
signal using a single electrode. Kim et al. designed an interaction task where users answered questions by 
using left-right horizontal eye movements[37]. Therefore, the interaction system involved a pair of electrodes 
placed approximately 2.5 cm outside the corner of each eye.
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Table 1. Table of Methodologies in EOG-HCI Journal Papers from 2002 to 2022

Device Electrode arrangement Preprocessing method Feature Algorithm

Reference Custom-
designed 
devices

Commercial 
devices Standard Task-

Oriented 
Wearable- 
Oriented

Bandpass 
filters

Wavelet 
transform Others Original 

signal

First-order 
differential 
signal

Others Threshold 
detection

Waveform 
matching

Neural 
network

Traditional 
machine 
learning

Others

[4] √ √ not mentioned √ √ √

[5] √ √ √ √ √

[6] √ √ √ √ √

[7] √ √ √ √ √ √

[8] √ √ √ √ √

[9] √ √ √ √ √

[10] √ √ √ √ √

[11] √ √ √ √ √

[12] √ √ √ √ √

[13] √ √ √ √ √

[14] √ √ not mentioned √ √

[15] √ √ √ √ √

[16] √ √ √ √ √

[17] √ √ √ √ √ √

[18] √ √ √ √ √

[19] √ √ not mentioned √ √

[20] √ √ √ √ √ √

[21] √ √ √ √ √

[22] √ √ √ √ √ √

[23] √ √ √ √ √

[24] √ √ √ √ √

[25] √ √ √

[26] √ √ √ √ √

[27] √ √ √ √ √

[28] √ √ √ √ √ √ √

[29] √ √ √ √ √ √

[30] √ √ √ √ √

[31] √ √ not mentioned √ √

[32] √ √ √ √ √ √
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[33] √ √ √ √ √ √

[34] √ √ √ √ √ √

[35] √ √ √ √ √ √

[36] √ √ √ √ √ √

[37] √ √ √ √ √

[38] √ √ not mentioned √ √

In wearable-oriented electrode arrangement, Ryu et al. adopted a glasses-based electrode positioning scheme that adapts to the structure of the glasses 
frame[13]. Heo et al. designed a wearable EOG system in the form of a headband, placing four electrodes on the forehead with vertical channel electrodes 
arranged vertically and horizontal channel electrodes arranged horizontally, reducing the number of electrodes by sharing a common positive electrode[32].

Acquisition hardware devices
EOG signals are non-periodic, with a frequency range typically between 0 to 50 Hz[30,35,39-41]. According to the Nyquist criterion, the sampling frequency must be 
at least twice the maximum frequency component of the signal to avoid aliasing. Moreover, EOG signals are susceptible to interference from muscle activity 
and movement noise, necessitating amplification and filtering. For interactive hardware devices, user safety and comfort are also important considerations.

In general, EOG acquisition hardware can be categorized into custom-designed devices and commercial devices. In this review, 19 studies opted to develop 
custom-designed devices tailored and optimized to meet specific research requirements and experimental scenarios. In contrast, other studies utilized 
commercial devices such as NuAmps(Compumedics Neuroscan, Inc., Abbotsford, Australia), NeuroSky MindWave Mobile Headset (NeuroSky, San Jose, CA, 
USA), Neuroscan (Neuroscan Ltd., TX, USA), Enobio-32 EEG system (Neuroelectrics, Barcelona, Spain), BIOPAC MP150 (BIOPAC Systems, Goleta, CA, 
USA), EOG Mindo devices(Mindo, National Chiao Tung University Brain Research Center, Taiwan, China), gUSBamp amplifier (g.tec Medical Engineering 
GmbH, Austria) and the ActiveTwo biopotential recording system(Biosemi, Amsterdam, Netherlands). Self-designed EOG acquisition hardware involves 
systems carefully designed by researchers to align with their research goals. Many researchers integrated circuits into wearable devices to achieve greater 
comfort and portability. For instance, Perez Reynoso et al. designed an analog processing stage supplemented with a digital filtering module[4]. The designed 
acquisition system was embedded in portable glasses with a PCB board, ensuring user safety and comfort. Milanizadeh et al. employed the ADS1299 
biopotential amplifier to record EOG signals, utilizing upgraded safety glasses as the electrode support for easy fixation on users' faces[23]. Ianez et al. integrated 
all electronic and mechanical components into a pair of EOG glasses, aiming for an aesthetically appealing design[27]. Barea et al. used a commercially available 
model (Vuzix Wrap 230, Vuzix, Rochester, NY, USA) of glasses with head-mounted displays capable of fixing dry electrodes for EOG signal acquisition and 
serving as a medium for projecting user interfaces[28]. Heo et al. designed a wearable EOG system based on a headband, placing Ag/AgCl electrodes inside the 
headband[32]. Lin et al. proposed a wearable HCI-based system that can detect ten types of eye movements[34]. The system integrates the EOG signal acquisition 
device and the foam type acquisition dry electrodes into the glasses.
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Table 2. Types of Electrode Arrangements in EOG-HCI Research

Electrode layout 
types Rationale for adoption Advantages Disadvantages

Standard Electrode 
Arrangement [4,6,8,9,11,12,14
-16,21-28,30,31,34-36,38]

The most commonly used electrode arrangement in the EOG 
field, validated through extensive research, ensures consistency 
and comparability across different studies, facilitating data 
sharing and result comparison among researchers

Signal Reliability and 
Stability

High number of required 
electrodes

Task-Oriented Electrode 
Arrangement[5,7,10,17-20,29
,33,37]

Research adopting this type of electrode arrangement focuses on 
exploring interaction tasks and interaction modalities. It allows 
for the design of the minimum number and configuration of 
electrodes based on the task type

High specificity, low 
signal processing 
difficulty

Poor scalability, requires 
higher rationality in 
interaction task design

Wearable-Oriented 
Electrode 
Arrangement[13,32]

The application of this type of research aims to implement 
research outcomes in practical settings, with a strong emphasis 
on user comfort. Therefore, compromises need to be made in 
signal quality to achieve higher levels of comfort

User friendly High 
generality

High cost for processing 
signal

Figure 3. The number of publications and AIFP5 per 5-year period.

Figure 4. Standard Electrode Arrangement for EOG.

To assess hardware performance, Usakli et al. used Common-Mode Rejection Ratio (CMRR) during testing 
to measure the circuit's suppression capability of common-mode signals[38]. CMRR is a parameter used to 
evaluate the ability of a circuit or signal processing system to suppress common-mode signals. The 
calculation of CMRR is typically represented in decibels (dB) and is defined as follows:
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Where Vc represents the amplitude of the differential mode signal, and Vcm represents the amplitude of the 
common-mode signal. A higher value of CMRR indicates a stronger noise suppression capability of the 
system against common-mode signals.

In eye movement signal acquisition devices, a high CMRR helps reduce interference from power line 
frequencies and motion artifacts, preserving signal accuracy and stability, thus providing more reliable input 
for subsequent signal processing and interactive tasks.

Another commonly used hardware evaluation metric is the Signal-to-Noise Ratio (SNR), which is used to 
measure the relative strength or clarity between the measured signal and the noise in the system. It reflects 
the accuracy and reliability of the signal obtained by the EOG acquisition system. The calculation of SNR is 
typically represented in decibels (dB) and is defined as follows:

Where Psignal and Pnoise are the power of the signal and noise, respectively. Signal and noise power are 
calculated as the square of the amplitudes in the frequency domain after performing Fourier transform. 
According to Pleshkov et al., based on the research by Lopez et al.[42], the effective frequency range of EOG 
signals is within [0, 30] Hz, while the bandwidth occupied by noise signals falls within [30, 122.5][43]. In 
addition to improving hardware design and implementing appropriate filters, Milanizadeh et al. proposed 
that the SNR can be improved by subtracting the signals of electrode pairs (up/down and left/right) from 
each other in a standard electrode arrangement[23].

Self-designed devices typically consist of front-end amplifiers, hardware filters, second-stage amplifiers, 
analog-to-digital converters, and microprocessors, complemented by Bluetooth and battery modules. The 
system configuration and signal quality requirements determine the different settings for amplifier gain, 
filter cutoff frequencies, and sampling frequency.

In the context of interactive design, factors such as user comfort, safety, and device cost are crucial 
considerations for researchers. Some studies have used dry or semi-dry electrodes[26] to improve comfort. 
Furthermore, wet electrodes, due to the use of conductive gel, initially provide signal quality superior to that 
obtained by dry electrodes within a short time. However, wet electrodes also face the issue of signal quality 
degradation as the conductive gel gradually dries out. In contrast, dry electrodes, which do not require the 
use of conductive gel, yield more suitable for long-term signal acquisition scenarios. Additionally, wearable 
designs consider human ergonomics[44], offering users greater freedom, comfort, and safety. System safety is 
also a priority, adhering to International Electrotechnical Commission standards[45] and incorporating 
current-limiting measures and protective components to ensure user and device safety.

EYE MOVEMENT INFORMATION PROCESSING AND CLASSIFICATION BASED ON EOG 
SIGNAL
In the field of EOG-HCI research, the recognition and classification of EOG signals are of great significance. 
It follows the steps of bio-signal processing, which include preprocessing of raw data, feature engineering, 
and algorithms.



Page 10 of Tao et al. Conn Health Telemed 2023;2:2000010 https://dx.doi.org/10.20517/chatmed.2023.0526

Preprocessing
Before achieving an efficient and reliable EOG-HCI system, preprocessing steps are crucial. The main goals 
of preprocessing are to remove noise and baseline drift from the EOG signals, enabling more accurate and 
efficient feature extraction and interaction command recognition.

The EOG signal bandwidth is 0-50 Hz. Within this frequency range, EOG signals are often affected by 
various forms of interference, such as 50/60Hz power line noise and muscle activity[46]. Additionally, 
baseline drift is another significant factor that affects the quality of EOG signals. Baseline drift, unrelated to 
eye movements, can cause large amplitude offsets in the signals, leading to the loss of characteristic features 
or waveforms associated with normal eye movements[47].

During the hardware acquisition stage, hardware-based filtering is commonly employed for signal 
preprocessing. However, further preprocessing on the computer is still necessary to reduce noise and 
eliminate baseline drift, preparing the signals for subsequent signal processing tasks[48].

To address noise and baseline issues in EOG signals, the most direct approach is to use bandpass filters for 
signal filtering. In the literature review, A total of 14 studies directly applied bandpass filters to the signals, 
with lower cutoff frequencies ranging from 0.1 to 0.5 Hz and upper cutoff frequencies ranging from 10 to 
62.5 Hz. After passing through the bandpass filter, the signals were regarded as the signal with noise and 
baseline removed. To further ensure the removal of 50/60Hz power line noise, additional 50/60 Hz notch 
filters were used on top of the bandpass filters in studies[12,15]. Additionally, moving average filters and 
median filters were commonly used for further signal smoothing[16,20,24,27,34].

Given the non-stationary nature of EOG signals, wavelet transform has also become a preferred choice for 
many researchers. López et al. used thresholding to select appropriate thresholds for wavelet transform 
coefficients to remove or attenuate low-weight spectral components[35]. They tested different mother 
wavelets and thresholding rules and found that using bior5.5 (biorthogonal) wavelet with the maximum-
minimum thresholding method yielded the best signal-to-noise ratio. Choudhari et al. used the least squares 
method to fit and remove baseline effects, followed by denoising the signals using the db-10 mother wavelet 
and a fourth-order Butterworth filter with a frequency range of 1 to 10 Hz[7]. In[30], Perez-Reynoso et al. 
proposed a digital notch filter using Fast Fourier Transform(FFT) to eliminate unknown noise frequencies, 
achieving an undisturbed noise-free EOG signal by analyzing the EOG spectrum in real-time and selecting 
cutoff frequencies.

Ryu et al. introduced a novel method for removing baseline drift and noise from differential EOG signals, 
termed the Differential of the Sine-Based Fitting Curve (DOSbFC) method[13]. This method involved 
calculating the DOSbFC signal by computing the voltage values in increments of 1° of eye gaze direction 
and the time required to stop eye movement after eye movement completion, using a formula to select and 
average the most similar potentials within a sliding window. Lee et al. used a linear function to fit and 
remove baseline drift and combined the amplitude-increasing waveform components in the horizontal and 
vertical channels with the EOG's maximum amplitude threshold to eliminate muscle artifacts[24].

In addition to noise and baseline, blink signals are also considered artifacts in some interactive tasks and 
need to be removed during preprocessing. Chang et al. detected blinks based on a blink threshold and 
removed corresponding values[36]. They also calculated a mean value for baseline every 100 ms, using linear 
interpolation with adjacent signals to fill in the missing data due to blink removal and performed linear 
regression to eliminate low-frequency drift.
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Effective and rational preprocessing methods will significantly improve the performance and user 
experience of eye-movement-based interaction systems, promoting their widespread application in practical 
scenarios.

Features and algorithms
In HCI research, algorithms serve the interaction tasks, which often require real-time performance. Before 
applying algorithms, feature extraction is usually conducted, involving the extraction and selection of 
appropriate features, to enhance the performance and effectiveness of the algorithms. The quality of feature 
extraction often determines the final performance of the algorithms.

We have ranked the top four algorithms used in the 35 articles and conducted statistics on the features 
employed in the literature using these algorithms. The results are presented in Table 3.

In the field of EOG signal analysis, feature extraction is a critical step, and common methods can be 
categorized into two types: features extracted from preprocessed clean signals and features in the form of 
first-order differentials. The original EOG signals typically exhibit distinct temporal patterns, directly 
reflecting waveform variations, which make them perform excellently in fast real-time processing. However, 
some researchers believe that certain features are not easily distinguishable in the original signal but become 
more prominent in the first-order differential forms of the original signal. Therefore, they opt to apply first-
order differentiation to enhance feature discrimination.

Regarding feature extraction methods, researchers have proposed various innovative algorithms. For 
instance, Lv et al. introduced a spatial domain feature extraction method based on the Independent 
Component Analysis (ICA) algorithm[8]. They used ICA separation matrix to construct a set of ICA spatial 
filters, mapping the experimental signals to different eye movement direction spaces through linear 
projection to extract spatial domain features. Fang et al. focused on continuous eye-writing recognition 
tasks and obtained extended EOG features suitable for different sampling rates through preprocessing, 
downsampling, and feature concatenation, used for subsequent neural network classification[31].

Commonly used algorithms for eye movement signal classification include thresholding, waveform 
matching, neural networks, and traditional machine learning classifiers. The choice of algorithm largely 
depends on the research objectives and data characteristics. In this regard, neural networks have shown 
excellent performance in the field of biosignal processing, especially deep neural networks. However, 
traditional machine learning retains a distinct advantage in terms of interpretability that neural networks 
cannot replace. To illustrate the impact of research objectives and data characteristics on algorithm 
selection, we have separately summarized neural networks and traditional machine learning classifiers.

The thresholding method is the simplest classification approach, where a series of corresponding thresholds 
are set for eye movement signal classification using different feature combinations. It is worth noting that 
the thresholding method requires prior calibration of thresholds using collected eye movement signals to 
improve the accuracy when applied in formal usage. In research[21,35], thresholds were set based on empirical 
rules, which may influence the accuracy for different subjects or within the same subject.

Waveform matching is primarily applied in interactive tasks involving eye-writing recognition of numbers, 
letters, etc.. Among them, the dynamic threshold detection method proposed by Ding et al. segments the 
eye movement signal into stroke segments and then uses the Dynamic Time Warping (DTW) algorithm to 
calculate similarity for handwriting eye movement signal classification[9]. Kim et al. proposed a method that 
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Table 3. Feature and algorithm

Features Threshold 
detection

Waveform 
matching

Neural 
network

Traditional machine 
learning

Amplitude 9, 10, 13, 14, 15, 20, 21, 23, 
28, 33

24, 34, 36

Gradient 21, 22, 29 24, 37 31

Average EOG 
amplitude

9

delta-delta 31

Original signal(s)

Wavelet 
coefficient

36

duration 5, 6, 7, 17, 18, 19, 20, 27, 
29, 32, 33, 34

17

Energy 5, 6, 17 11

Amplitude 6, 7, 16, 18, 19, 22, 26, 27, 
29, 33, 34

17

First-order differential forms of 
the original signal(s)

waveform pattern 6

Others 4 4, 28, 30, 8

uses the gradient value of the subject's horizontal EOG signal waveform to determine the smooth eye 
movement direction[37]. And by comparing the waveform gradient with the waveform gradient of the sound 
source surrounding the subject, it is a method to judge whether the subject pays attention to one of the 
multiple sound sources.

The Support Vector Machine (SVM) is the most commonly used classifier in machine learning. In addition 
to SVM, López et al. used AdaBoost for classification, which combines weak learners to form a strong 
classifier through linear combination[11].

Moreover, classification methods based on neural networks have been gaining popularity. Perez Reynoso et 
al. used an optimized genetic algorithm to obtain a multilayer neural network model for modeling and 
reduced the cost of pretraining users by dynamically calibrating thresholds[4]. Barea et al. employed the 
Extreme Learning Machine (ELM) algorithm to train a Radial Basis Function (RBF) network to determine if 
a valid saccade occurs, an algorithm that is simple, has small training errors, and rapidly responds to users' 
eye movements[28].

In addition to the above-mentioned four types of algorithms, Barbara et al. proposed a novel dual-channel 
input linear regression model that considers features extracted from horizontal and vertical EOG signal 
components, mapping eye potential displacements to gaze angle displacements[12]. Barea et al. based their 
EOG system model (BiDimensional Dipole Model EOG, BiDiM-EOG) on physiological and morphological 
data of EOG to separate saccades and slow eye movements and determine fixations[25].

Feature extraction and algorithm design play a pivotal role in EOG-based human-computer interaction 
tasks. The selection of appropriate features and algorithms is critical for building efficient and reliable eye 
movement human-computer interaction systems. Researchers need to customize feature selection and 
algorithm design based on the specific task requirements and interaction effectiveness to provide high-
quality user experience and interaction efficiency. For example, for simple four-directional physical control 
tasks, the thresholding method may be more suitable as it can quickly distinguish eye movement signals 
from non-eye movement signals, generating simple control commands. For complex virtual keyboard 
designs or alphanumeric writing tasks, waveform matching may be more applicable, as it can combine 
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waveforms of EOG signals generated by a series of eye movements to expand the number of executable 
commands.

From Table 3, it can be observed that the majority of research in the EOG-HCI field still relies on 
algorithms related to thresholds. Most of these studies were conducted in controlled laboratory 
environments, and a significant portion of them employed calibration techniques during data collection to 
ensure data quality. This helps to reduce individual differences and minimize signal variations over time, 
thereby lowering the robustness requirements for recognition technology. Furthermore, the time-domain 
information of EOG signals is easily interpretable by human researchers. This allows for the development of 
algorithms that combine threshold features with human prior knowledge to tailor recognition algorithms 
for specific eye movement classification tasks with different requirements. The high flexibility of threshold 
detection methods makes them widely applicable in various EOG-HCI research scenarios.

However, threshold detection methods are sensitive to parameter changes, leading to poor robustness. 
Furthermore, the features derived from thresholds are often designed based on human observations, 
resulting in low-dimensional, concrete features that cannot capture some high-dimensional, abstract 
features of different eye movements that are difficult for humans to understand. Hence, threshold detection 
methods often encounter issues related to suboptimal precision and robustness. In fact, nearly every study 
utilizing threshold detection methods necessitates the implementation of calibration techniques during data 
acquisition. In summary, while threshold detection methods offer simplicity and versatility, they tend to 
lack the desired level of robustness.

Additionally, four studies utilized neural network technology to construct eye movement classification 
models. Study[4] used a multilayer neural network (MNN) to model the EOG signal as a mathematical 
function and optimize genetic algorithms for automatic signal calibration to obtain the threshold of each 
subject’s EOG signal. Barea et al.[28] employed an Extreme Learning Machine (ELM) algorithm to train a 
radial basis function (RBF) network with an internal structure comprising 20 neural neurons to determine 
whether the user had performed a valid eye jump. Pérez-Reynoso  et al.[30] used a multilayer perceptron 
(MLP) to establish a neural network with four hidden nodes for eye movement classification. Fang et al.[31] 
employed deep learning techniques (DL) to construct a Deep Neural Network-Hidden Markov Model 
(DNN-HMM). This network model comprises four hidden layers, with 132 units in the input layer, 200 
units in the first hidden layer, 100 units in the second hidden layer, and the number of units in the output 
layer equal to the number of HMM states. The ultimate output of the network represents the probability 
distribution of eye movement classifications.

It can be observed that DL techniques have not received sufficient attention in the EOG-HCI field. On one 
hand, based on the studies surveyed in this review, researchers in this field have placed more emphasis on 
application and have not explored EOG recognition algorithms extensively. On the other hand, there is 
currently no openly available EOG dataset tailored for HCI, making it challenging to train high-
performance DL networks based solely on the samples collected from various studies. Chang et al.[49] used a 
database of ten Arabic digit EOG eye-writing tasks collected in their previous work[35], consisting of 540 eye-
written digit samples for training their model.

In summary, current research is more inclined to explore the feasibility of using EOG for HCI, and 
threshold-based methods, due to their high generality, have become a popular recognition technology for 
exploring EOG-HCI feasibility. However, once the feasibility of EOG-HCI is established, higher demands 
will be placed on recognition technology in terms of robustness, classification precision, the number of 
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classes, etc. At that point, recognition technology developed based on deep learning, for example, will be 
developed to meet these requirements.

EVALUATION METRICS IN EOG-HCI RESEARCH
In the 35 literature papers, a total of 21 experimental evaluation metrics were identified and summarized, as 
shown in Table 4. The summary of these evaluation metrics helps to understand the current research focus 
of researchers in the EOG-HCI field.

Based on the metrics in the literature, we categorized them into three types: system performance-related 
(SPR) metrics, interaction efficiency-related (IEF) metrics, and user-related (UR) metrics. SPR metrics focus 
on evaluating the usability of the EOG-HCI system, with accuracy (ACC) being the most commonly used 
evaluation metric. IEF metrics are used to assess the efficiency of the system's use, with information transfer 
rate (ITR) and task completion time being the most commonly used metrics. This indicates that many 
studies not only ensure the availability of the proposed interaction system but also emphasize its usability. 
Finally, some studies emphasize the usability of the proposed system from the perspective of users and 
introduce UR metrics in the research validation process, such as user proficiency[19], game scores[11], user 
experience[25,33], etc.

Overall, system performance-related metrics were used 36 times, interaction efficiency-related metrics were 
used 36 times, and user-related metrics were used 18 times. Researchers are more concerned about system 
engineering performance and usage efficiency, while a smaller number of studies also emphasize the user 
perspective.

INTERACTION DESIGN
Classification of research results in EOG-HCI
For clarity, we define four concepts within the scope of this review:

1. Interaction Application: A program or system with interactive functionality and a complete interactive 
loop, designed to meet user needs.

2. Interaction Task: Tasks that need to be accomplished by users via interaction to fulfill their requirements.

3. Control Command: The command translated by the interaction interface based on the user's operational 
intent, used to complete the interaction task.

4. Interaction Modality: The mapping between trigger (specifically referring to eye movement in this review 
study) emitted by users’ interaction intention and control commands. In the field of EOG-HCI 
(Electrooculography-based Human-Computer Interaction), the interaction application represents the final 
presentation form of research. Users achieve their goals of using the interaction application by completing 
interaction tasks, where the type of interaction task determines the interaction modality. The interaction 
modality significantly influences the engineering solutions for EOG signal acquisition, processing, and 
algorithm design. Figure 5 classifies all interaction applications over the 21 years based on their interaction 
tasks, dividing them into eye movement control and eye movement information input categories, and 
further subdividing them according to the interaction modality. As some literature describes multiple types 
of interaction applications, this review only selects more typical or distinctive applications for statistical 
analysis. This summarization provides a more comprehensive understanding of the entire EOG-HCI 
domain.
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Table 4. List of Evaluation Metrics Used in EOG-HCI Research

Types Evaluation metrics Number of applications

Accuracy 22[5-9,13,17-21,22,24,27,31-38]

Recall 4[21,24,27,36]

Precision 3[14,29,36]

F1 score 3[21,24,36]

False positive rate 2[5,20]

System performance-related 

Error rate* 2[26,27]

Input speed* 3[31,32,35]

Response time* 5[5,17,19,20,29]

Information transfer rate* 9[6,7,10,13,17,20,33,35,37]

Total time* 11[4,8,12,15-18,20,23,26,30]

Average time per command 2[8,27]

Interaction efficiency-related 

Total number of operations 5[15,18,19,28,33]

Number of interaction failures 2[32,33]

Number of successful interactions 2[11,28]

False operation rate* 3[18-20]

Number of interaction errors 4[11,27,32,33]

User control level* 4[4,11,19,25]

User-related

User experience* 3[15,25,33]

*Error Rate: the proportion of all test samples that are mismarked; its formula is as follows: ErrorRate= (FP+FN)/(TP+TN+FP+FN); Input Speed: 
the number of characters entered per minute in writing system; Response time (RT): the time used to generate a command; Information transfer 
rate (ITR): bits of information transferred per minute; Total time: The total time cost to complete a task, for example, typing a text in a keyboard 
interaction, steering a wheelchair to complete a route; False operation rate: the number of false output commands per minute when the subject 
has no intention of selecting any buttons; User Control Level: reflecting in the learning cost of users and the improvement of interaction efficiency 
with the increase of the number of uses; User Experience: including the use of scales to reflect user satisfaction and compare the comfort of 
different GUI guidance strategies

Figure 5. Classification of EOG-HCI Publications (2002-2022).

Control-type interaction applications
Control-type interaction applications in eye movement control allow users to control virtual or real-world 
objects to achieve specific goals. In such interaction tasks, the interaction itself can be the goal, and the 
results brought about by the user's actions are usually deterministic. Users can quickly obtain various forms 
of visual and sensory feedback.
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Based on different interaction modalities, control-type interaction applications can be divided into three 
categories:

Direct control of virtual buttons or functions:
In this form of interaction, users control virtual software, desktop, or mobile applications through a GUI 
interface without involving real objects. For example, Lv et al. developed an electronic book reading 
controller using a MATLAB/JAVA joint platform, where users can achieve six basic control commands, 
such as page flipping, pause/resume reading, and opening/closing the book, through six predefined eye 
movement patterns[8]. Similarly, Ryu et al. designed desktop and mobile applications that utilize different 
eye movement patterns to act as an auxiliary controller for Windows applications and perform seven 
functions for multimedia control on mobile devices[13]. These applications provide users with a convenient 
way to control virtual software and applications rapidly through eye movements.

GUI-manipulated real or VR objects:
In this form of interaction, users typically select control commands for a target object in a GUI which serves 
as a control panel, before sending the control commands to the object for execution. For instance, Li et al. 
designed a GUI interface that included wheelchair switch converter buttons[5]. Users activate the EOG 
switch by blinking synchronously with the flashing, thereby sending control commands to navigate the 
powered wheelchair.

Direct control of real objects:
In this form of interaction, researchers usually directly send user-generated eye movement commands to a 
controller, which implements high-level control and generates specific operation commands for interactive 
objects, primarily wheelchairs and robotic arms. In Barea et al.'s research[25], recorded eye gaze information 
is processed by an onboard computer to formulate the wheelchair's control strategy and generate linear and 
angular velocity commands. These commands are then transformed into angular velocities for each wheel 
based on the wheelchair's kinematic model and sent to the low-level control module, achieving two closed-
loop velocity controls. Consequently, users can navigate the wheelchair's movement and steering through 
eye movement commands, enabling autonomous navigation.

On the other hand, Ubeda et al.'s research[26] focused on designing a robotic arm application. This 
application converts users’ eye gaze information into control commands for the robotic arm's end effector, 
replacing human arms to operate various tools. This interaction modality allows users to perform complex 
robotic arm operations through simple eye movement commands, improving their self-care abilities and 
work efficiency.

Information input-type interaction applications
Information input-type interaction applications differ from control-type applications as they focus on using 
eye movement information as an input method, with more open-ended interaction purposes. According to 
the interaction modality, they can be divided into three categories: virtual keyboard form, eye-writing form, 
and question-and-answer system. These applications convert eye movement information into other signal 
forms and cannot complete interaction tasks independently. Compared to control-type interaction 
applications, they are more oriented towards using the interaction behavior as a means, with open-ended 
goals.

Virtual keyboard form:
In this form of eye movement interaction, virtual keyboards with different character layouts are used, 
allowing users to select characters they need through eye movements to complete input. To simplify the 
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number of eye movements required for character selection, researchers explore different stimulation modes. 
One mode involves selecting a button by blinking users’ eyes in synchrony with the flash of the button[17]. 
Another mode is the row/column paradigm activation mode[29], where characters are arranged in rows and 
columns. Users efficiently determine the character's position by selecting the row and column through eye 
blinking. This method streamlines the user's selection process, making eye movement commands more 
efficient.

Eye-writing form:
In information input-type eye movement interaction applications, the eye-writing form aims to use 
different eye movement patterns to write symbols, such as characters. Researchers combine different eye 
movement types into different eye movement patterns, with each pattern corresponding to a stroke. By 
calculating the similarity between the user's input eye movement pattern and predefined templates, the 
system outputs the character the user has written. For example, Ding et al. designed a stroke-based Chinese 
eye-writing system that maps five basic strokes to predefined eye movement patterns, enabling continuous 
writing of Chinese characters[9]. Similarly, Lee et al. predefined 12 eye movement templates for outputting 
26 lowercase letters and 3 control commands[24]. These systems determine the most similar character as the 
output result by comparing the differences between the input eye movement trajectory and the character 
templates. This eye-writing form of interaction system provides a novel and efficient way of inputting 
information.

Question-and-answer system:
Kim et al. developed a novel EOG-based Augmentative and Alternative Communication (AAC) system 
aimed at helping users engage in binary yes/no communication[37]. The interaction system plays two rotating 
sound stimuli to the user and asks them to focus on the specified sound source. During this process, 
horizontal EOG is recorded in response to the involuntary auditory ocular reflex, which answers the 
designed questions. This system provides a means for users with communication barriers to engage in 
simple communication through eye movements, bringing convenience and improvement to their lives.

Summary
We classified the interaction applications into six subcategories within two main categories based on the 
categories presented in the previous section and proposed two metrics to compare the related research of 
the two interaction application types:

● Degree of Interaction Freedom (DOF): Reflecting the availability of the application, i.e., the number of 
available predefined commands. This metric is based on the number of available commands.

● Interaction Efficiency (EEF): Reflecting the usability of the application in terms of how quickly users can 
complete commands. This metric is based on the maximum number of eye movements required to 
complete a command.

There is a correlation between DOF (Degree of Freedom) and EEF (Efficiency). In essence, as DOF 
increases for the same application, the efficiency of interaction tends to decrease. This correlation is referred 
to as the Interaction Benefit score, represented by C. The formula for calculating C is as follows:
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Using log2DOF instead of DOF in the calculation helps mitigate the sensitivity of C to changes in DOF, 
considering that increasing DOF is relatively easier. All the information is summarized in Table 5.

Research on control-type interaction applications primarily focuses on user-directed interaction tasks and 
designs corresponding interaction modalities based on the purpose of using the interaction application. 
This type of interaction modality covers a wide range of application scenarios, including appliance control 
in home IoT settings[14,29], machine control[23,25], navigation[4,5,26], web browsing[16], e-book reading[21], eye-
tracking games[22], and various other aspects. The number of research papers in this category is nearly twice 
as much as that of information input-type interaction applications.

Among the existing control-type interaction applications, 17 out of 23 papers used Graphical User Interface 
(GUI) as an intermediate medium. GUIs offer high extendibility, allowing the functionality of control-type 
applications to be easily expanded by adding more interfaces, placing new functions in separate sub-
interfaces, or adopting layouts similar to P300 speller to integrate multiple functions on the same interface, 
thus enhancing the freedom and extensibility of the interaction interface. Therefore, in theory, there is no 
upper limit to the number of functions in control-type interaction applications.

However, it is essential to consider user experience. As the number of functions increases, users' cognitive 
load may also increase, leading to higher error rates and reduced operational efficiency. This aspect is 
particularly critical for the target users of EOG-HCI, as a significant portion of them may have mobility 
impairments, such as Amyotrophic lateral sclerosis (ALS) patients. Therefore, research on control-type 
interaction applications needs to pay special attention to a reasonable analysis of interaction tasks to ensure 
that users can easily understand and operate the interaction interface.

Information input-type applications have more explicit interaction task purposes, namely, user 
communication with the outside world. However, since human communication purposes are challenging to 
predict, information input-type applications require higher freedom to meet users' varied needs. From 
Table 5, it can be observed that among the 35 EOG-HCI literature samples, the top five interaction 
applications designed in literature[6,12,16,35,38] have the highest DOF. Among them, applications in literature[16] 
is a comprehensive human-computer interaction application that includes both pages browsing through eye 
movements and information input through a virtual keyboard. Although categorized as a control-type 
application, it overall encompasses the functionalities of an information input-type application. The 
interactive applications mentioned in all these five studies have a virtual keyboard, which indicates a high 
requirement of freedom for information input type applications.

In research of information input-type applications, ensuring efficiency while maintaining degrees of 
freedom is essential. Therefore, investigations into information input-type interaction applications may 
encounter some challenges, but they have the potential to make significant contributions to the field.

It is worth noting that the evaluation of interaction design should be conducted within a unified context. 
This review covers a wide variety of application types, and each interaction design is tailored to different 
users and scenarios. Therefore, the evaluation metric C proposed in Table 5 can only serve as a reference 
point. Performance assessment needs to be carried out specifically for the selected user groups and within 
the context of each specific application type.

USER-CENTERED EOG-HCI
Looking back at history, it is not difficult to observe that the development of most application-oriented 
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Table 5. Interactions Tasks and Interaction Performance

Interaction applications Interaction performance
Control-type Information input-type DOF EEF

Reference
Direct 
control of 
virtual 
buttons or 
functions

GUI-
manipulated 
real or VR 
objects

Direct 
control 
of real 
objects

Virtual 
keyboard 

Eye-
writing 

Question-
and-answer 
system

Number of 
available 
commands

Maximum 
number of eye 
movements 
required to 
complete a 
command

C 
score

[12] √ 80 2 3.16 

[35] √ 73 5 1.24 

[38] √ 54 17 0.34 

[16] √ 50 15 0.38 

[6] √ 42 5 1.08 

[17] √ 40 6 0.89 

[18] √ 32 6 0.83 

[33] √ 23 2 2.26 

[13] √ 18 2 2.08 

[19] √ 14 2 3.58 

[4] √ 12 1 1.90 

[24] √ 12 5 0.72 

[31] √ 12 3 1.19 

[34] √ 10 4 0.83 

[22] √ 9 2 1.58 

[29] √ 9 2 1.58 

[36] √ 9 4 0.79 

[20] √ 8 3 1.00 

[28] √ 8 4 0.75 

[30] √ 8 2 1.50 

[9] √ 7 4 0.70 

[10] √ 7 2 1.40 

[32] √ 7 1 2.81 

[8] √ 6 4 0.65 

[15] √ 6 1 2.58 

[11] √ 5 3 0.77 

[27] √ 5 4 0.58 

[7] √ 4 3 0.67 

[14] √ 4 1 2.00 

[23] √ 4 1 2.00 

[25] √ 4 1 2.00 

[26] √ 4 1 2.00 

[21] √ 3 2 0.79 

[5] √ 2 2 0.50 

[37] √ 2 1 1.00 

technologies requires a collaborative effort between function-oriented research and user-oriented research 
directions. For instance, during the 1920s and 1930s, pioneers dedicated to radio technology research 
focused on aspects such as receiver sensitivity, transmitter power, and channel separation. Meanwhile, 
another line of development ensured that users would enjoy radio broadcasts through features like easy-to-
use dials and switches, appealing equipment design, engaging programs, and reliable broadcast schedules.
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EOG-HCI research is an interdisciplinary field that blends the expertise of biomedical engineering and 
interaction design. Interaction design focuses on understanding the relationship between humans and 
machines, while biomedical engineering aims to implement this relationship as defined by interaction 
design. In this integrated cross-disciplinary research domain, researchers need to recognize the significance 
of biomedical engineering as the foundation and also possess the top-down research perspective required by 
HCI studies. Clarifying the interplay between these two aspects helps us comprehend how collaboration 
should be approached in user-centered EOG-HCI research. To this end, we propose a 5-level model for 
EOG-HCI research, as illustrated in Figure 6. Additionally, leveraging the insights from the model and the 
information provided in Table 4 and Table 5, we shed light on the current research landscape from a user-
centered standpoint.

In this model, different levels of research focus on different aspects of users, with higher-level research 
emphasizing more on users, resulting in a better user experience.

1. The first level focuses on the usefulness of research results, ensuring that research is carried out based on 
the real needs of target users.

2. The second level focuses on the availability of research results, achieving effective implementation of 
functionalities by utilizing research outcomes from the field of biomedical engineering, including hardware 
development and algorithm research, to bridge the gap between user needs and implementation.

3. The third level focuses on the usability of research results, providing low cognitive load and efficient 
interaction methods to help users accomplish their tasks effectively.

4. The fourth level focuses on the intelligence of research results, understanding user interaction intentions, 
predicting user behavior outcomes, and providing innovative capabilities and additional information. As 
defined by Fengliu and Yong Shi in the Liufeng-Shiyong architecture[50], one of the characteristics of an 
intelligent system is the ability to generate demands based on external data, information, and knowledge 
and utilize the acquired knowledge to achieve innovation, including association, creation, guessing, and 
discovering patterns. The application of this ability leads to the formation of new self-acquired knowledge.

5. The fifth level focuses on the enjoyment and amusement of research results, creating a pleasant overall 
experience through interactive design and adding emotional value. This level of research primarily relies on 
interactive design methods, taking changes in user emotions towards the interactive interface with the 
attributes of the previous levels as the research entry point, to add emotional value to primary functional 
interactions.

In EOG-HCI research, the five levels should be followed progressively without reversal. A research 
framework must examine each level, ensuring the fulfillment of the preceding ones. The foundation is set at 
the usefulness level, which all research must satisfy. The availability level requires functional 
implementation, relying on relevant technologies from biomedical engineering. The usability and 
intelligence levels demand research from both user and interaction interface perspectives, utilizing 
techniques from interaction design and biomedical engineering. The enjoyment and amusement interactive 
user experience level emphasizes design's role in adding emotional value to the interaction behavior.
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Figure 6. 5-level model for EOG-HCI research.

In Figure 6, we use scatter plots to represent C score and W score. C score reflects the benefits users gain 
from interaction applications, measured by the ratio between functionalities and efforts. W score represents 
the research's emphasis on user experience, quantifying the importance given to user experience in the 
literature. The W score is calculated as follows:

Where Wn is the W score of the nth research, and MSPR, MIER, MUR are the quantities of SPR, IER, and UR 
category evaluation metrics used in the research. Based on the correlation between the three categories of 
evaluation metrics and user experience, we propose three weight coefficients: αSPR = 0.2, αIEF = 0.3,  αUR = 0.5.

While the evaluation criteria for W score and C score may not directly correspond across different levels of 
the model, the meanings of both indicators align with the model's trend. Specifically, at the base level, they 
reflect a more function-oriented research perspective, whereas at the top level, they reflect a more user-
oriented research perspective. Combining these two indicators with the model allows us to visualize insights 
in the domain.

FUTURE RESEARCH AND TRENDS
As an interdisciplinary field, approaches of EOG-HCI research can be broadly categorized into two main 
approaches: (1) Exploration of the feasibility of EOG-HCI: Researchers taking this approach primarily focus 
on exploring the feasibility of applying EOG technology in HCI. Their emphasis is on identifying suitable 
HCI tasks/applications for EOG-based eye movement classification technology; (2) Task-driven EOG 
classification technology development: In this approach, researchers begin with specific HCI tasks and then 
develop EOG-based eye movement classification technology tailored to these designed HCI tasks. The 
emphasis here is on meeting the requirements of specific HCI tasks.

In general, the exploration of feasibility offers the baseline for the entire EOG-HCI research, while EOG eye 
movement classification technology development sets the upper limit. A complete EOG-HCI research is a 
spiral upward iterative process. It should begin by using established EOG recognition technologies, such as 
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threshold detection methods, to design reasonable HCI tasks. Subsequently, as insights from HCI task 
designs emerge, new demands are placed on EOG classification technology, leading to technical 
breakthroughs. Eventually, suitable EOG recognition algorithms are developed for these well-suited HCI 
tasks, completing a cycle of EOG-HCI research iteration.

Threshold detection methods, as an easily usable and highly versatile EOG eye movement classification 
technology, are friendly for research aimed at exploring the feasibility of EOG-HCI. In fact, studies using 
threshold detection methods for eye movement classification are far more abundant than other EOG-based 
technologies. This fact indirectly indicates that the majority of research in this field is currently focused on 
identifying suitable HCI tasks/applications for eye movement classification technology based on EOG 
signals.

DL is an excellent technical approach that has not been extensively utilized in EOG-HCI. One possible 
reason is the limited availability of open EOG datasets tailored for HCI. Relying solely on data collected in 
controlled laboratory environments makes it challenging to train high-performance EOG eye movement 
classification models using DL technology. Additionally, current research in the field appears to be 
primarily focused on exploring the feasibility of EOG-HCI. In other fields, such as EEG, the interesting idea 
is to combine computational vision and BCI[51]. The extra BCI (EEG) signals are shown to improve the 
performance of a trained recognizer. The same combination could be considered the other way around: it 
would be a good idea that an EOG-based BCI system not only looks at the eye movements, but also at the 
image as seen by the user.

In contrast to the high versatility, ease of use, but lower accuracy and robustness of threshold-based 
methods, DL methods often yield highly accurate and robust classification models but with relatively lower 
versatility and higher development costs (e.g., data and time cost). Therefore, in research aimed at exploring 
the feasibility of EOG-HCI, threshold-based methods are preferred.

As EOG-HCI research advances and concepts like the metaverse gain acceptance, especially with the 
development of head-mounted displays such as AR and VR, there is a growing demand to incorporate 
EOG-HCI into these emerging research and application domains. This demand calls for more precise eye 
movement classification algorithms for extensive eye movements, eliminating the need for frequent 
recalibration, and requiring robust EOG eye movement multiclass technology. However, threshold 
detection methods, due to their sensitivity to signal variations and heavy reliance on prior knowledge, are 
ill-suited to meet the requirements of these trends for multiclass eye movement recognition tasks. As one 
advantage of DL, the capability of capturing high-dimensional features that are challenging for humans to 
comprehend, is more likely to detect the sample-dependent and sample-independent features under various 
eye movement activities. This makes DL a promising approach for developing more mature EOG multiclass 
classification algorithms.

In fact, in other eye movement detection domains, DL has already shown remarkable success. Tang et al. 
proposed the concept of representing biosignals as time-dependent graphs and presented GraphS4mer, a 
general graph neural network (GNN) architecture that improves performance on biosignal classification 
tasks by modeling spatiotemporal dependencies in biosignals[52]. Gupta et al. applied DL to capture the 
mechanism of visual asymmetry through psychological experiments[53]. In the future, researchers may be 
able to use EOG-HCI in psychological and neurological research to contribute to the monitoring and 
treatment of some visual diseases.
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To support the application of DL technology in the EOG-HCI field, one challenge is the need to establish 
open EOG datasets tailored for HCI. The eye movements of individuals and the EOG signals are constantly 
influenced by a variety of physiological and psychological factors. Currently, the correlation between the 
variations in individual resting-state EOG signals and their physiological and psychological factors remains 
largely unexplored. These unexplored factors, to some extent, impact the development of DL in the field of 
EOG-HCI. Therefore, in order to harness deep learning more effectively as a powerful tool for developing 
EOG-HCI, we should draw insights from mature fields such as sleep monitoring, as exemplified by the 
template provided in reference[54], for creating multimodal databases tailored for EOG-HCI.

High-quality EOG eye-tracking databases contain a wealth of information on eye movements across 
different tasks, as well as various physiological, psychological, and potential phenotypic information about 
the subjects. Leveraging DL's high adaptability and automated feature learning capabilities, as well as its 
ability to handle complex data forms, we can process eye movement data, EOG signals, and other 
multimodal signals together. This can result in highly accurate, generalized, and robust EOG-based eye-
tracking analysis models. Ultimately, this will result in a technological breakthrough in EOG-HCI, liberating 
researchers in the field from the constraints of laboratory environments and allowing them to design more 
complex HCI tasks/applications without being limited to just a few simple but robust eye movements, such 
as blinking.

Furthermore, from the perspective of HCI task/application design, it can be seen that both the interaction 
benefit brought by the research's interaction design itself and the evaluation system used in the research 
indicate that there is still untapped potential in EOG-HCI research from the user's perspective. From the 
many experimental set-ups reviewed, it can be seen that there is great variety in the types of stimuli offered. 
However, there are some mismatches regarding the user experience. Some stimulus types are audio-based 
(such as the rotating sounds[37]), while others are image-based (such as the target groups and target letters[6]). 
These stimuli may obstruct or hinder the user's perception of natural sounds and images in their 
environment. Whether such a hindrance makes sense or not depends on the application type and the user's 
specific needs. When designing HCI tasks, it is essential not only to consider the technical feasibility of 
EOG-HCI but also to consider the user, equipment, environment, and context as a whole. Moreover, most 
of the research requires users to use additional eye movements to operate the EOG-HCI system, which 
introduces significant changes in the user's visual field. Vision is a crucial source of information for humans, 
and forcing users to shift their visual focus for interaction can be inconvenient and even risky. When the 
user's actions and attention cannot be separated in specific scenarios, eye movement-based operations can 
become frustrating. For instance, when using eye movements to control a wheelchair in an unfamiliar 
environment, users are likely to have difficulty controlling their movements due to unintended eye 
movements.

To strike a balance between user needs and technical requirements, user-centered design methods such as 
context mapping and user values mapping are essential. We anticipate a trend where HCI work for EOG-
HCI will evolve into subcategories, each tailored to a specific application domain. In the future, with the 
increasing adoption of a top-down approach in EOG-HCI research, it is foreseeable that more user-centric 
evaluation metrics such as the Usability Metric for User Experience (UMUX) score[55] and the System 
Usability Scale (SUS)[56] will be used to assess research outcomes. As a result, the interaction benefits for 
end-users will improve, the integration of technology and interaction design will become more rational, and 
better user experiences will result from the outcomes of EOG-HCI research.
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CONCLUSION
This review provides an overview of the research status in the EOG-HCI field from 2002 to 2022. The study 
reveals that the research vitality in this field has been continuously increasing. The research summarizes and 
categorizes various aspects, including hardware design, electrode arrangement, preprocessing methods, 
feature extraction, classification algorithms, and interaction design in the domain. Based on commonly used 
evaluation metrics, the research focus in the current stage is analyzed.

One notable finding is that the existing research lacks a user-centric and user-driven research design 
concept, which may lead some studies to deviate from the primary goal of HCI. Consequently, the 
outcomes of such research might be hampered by rejecting users. This presents both challenges and 
opportunities for researchers in this field. In response to this limitation, the paper proposes a 5-level model 
for EOG-HCI research. It is hoped that this model will assist future researchers in formulating research 
plans that align with their knowledge background and prioritize user perspectives.
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