Tactile Band: Accessing Gaze Signals from the Sighted in Face-to-Face Communication

Abstract

Gaze signals, frequently used by the sighted in social interactions as visual cues, are hardly accessible for low-vision and blind people. A concept is proposed to help the blind people access and react to gaze signals in face-to-face communication. 20 blind and low-vision participants were interviewed to discuss the features of this concept. One feature of the concept is further developed into a prototype, namely Tactile Band, to aim at testing the hypothesis that tactile feedback can enable the blind person to feel attention (gaze signals) from the sighted, enhancing the level of engagement in face-to-face communication. We tested our hypothesis with 30 participants with a face-to-face conversation scenario, in which the blindfolded and the sighted participants talked about a given daily topic. Comments from the participants and the reflection on the experiment provided useful insights for improvements and further research.

Author Keywords
Accessibility; eye tracking; visual impairments

ACM Classification Keywords
H.5.2. [Information interfaces and presentation]: User Interface, K.4.2 [Computers and Security]: Social Issues – Assistive technologies for persons with disabilities.

Shi Qiu
Eindhoven University of Technology
P. O. Box 513
5600 MB Eindhoven NL
SQIU@tue.nl

Jun Hu
Eindhoven University of Technology
P. O. Box 513
5600 MB Eindhoven NL
J.Hu@tue.nl

Matthias Rauterberg
Eindhoven University of Technology
P. O. Box 513
5600 MB Eindhoven NL
G.W.M.Rauterberg@tue.nl
Introduction
In face-to-face communication, sighted people communicate smoothly through the transmission and interpretation of nonverbal signals, such as eye gaze, facial expressions and gestures. Eye gaze in particular plays an important role in conversation. A common face-to-face conversation can contain a wealth of gazes and mutual gazes, which the sighted take for granted in their daily routines. A sighted speaker consciously or unconsciously uses gaze or eye contact to communicate with the conversation partner. Through the conversation partner’s eyes, she can sense interest, engagement, happiness etc. Gaze signals are frequently used by the sighted in social interactions as visual cues. However, these signals and cues are inaccessible for the blind and hardly accessible for low-vision people. In this paper, we propose a concept to help the blind people access and react to gaze signals in face-to-face communication in user study. 20 blind and low-vision participants were interviewed to discuss the features of this concept. One feature of the concept is further developed into a prototype, namely Tactile Band, to aim at testing the hypothesis that tactile feedback can enable the blind person to feel attention (gaze signals) from the sighted, enhancing the level of engagement in face-to-face communication.

Related Work
This research draws on theories of gaze behavior and related research on gaze based interfaces. A number of studies have investigated the importance of gaze behaviors of sighted people in social occasions. Argyle studied that in dyadic (two-person) conversations, about 75% of the time people are listening coincides with gazing at the speaker [1]. Kendon suggested that seeking or avoiding looking at the face of the conversation partner has important functions in dyadic conversations, to regulate the flow of conversation and to communicate emotions and relationships [4]. In recent years, research on gaze based interfaces moves forward with advances in eye tracking technology. Rantala et al. introduced eyeglasses that presented haptic feedback when using gaze gestures for input. The glasses utilized vibrotactile actuators to provide gentle stimulation to three locations on the user’s head [7]. Hosobori et al. developed a communication interface namely EyeChime: three participants sit around a table, and sounds were generated and played when participants looked at the other person’s face or when the participants’ eyes met [3].

User Study
In our user study, we proposed a conceptual design, E-Gaze glasses, to help blind people access and react to gaze signals, which aims to enhance the engagement between the sighted and the blind people in social interactions. It has two main functions: to help access gaze signals and to react to the sighted by conveying eye gesture signals. Based on these two functions, four features of E-Gaze (Figure 1) were proposed as follows: (a) gaze detection, slight vibrations from E-Gaze indicate gazes from the sighted conversation partner; (b) eye contact simulation, when the sighted looks at E-Gaze, E-Gaze also looks back to establish “eye contact”; (c) avoiding state, if the sighted gazes long enough, E-Gaze looks away to avoid the long gaze; (d) attention state, the simulated eyes in E-Gaze opens bigger when the heart rate of the blind person increases, indicating an “attention state”. We interviewed 20 blind and low-vision participants (8 females, $M_{age} = 20.88$, $SD = 1.46$; 12 males, $M_{age} = 19.92$, $SD = 3.42$) with ages ranging from 16 to 29.
years old. Ten were from Yang Zhou Special Education School in Chinese mainland and the other ten were from Hong Kong Blind Union. The interviews were conducted online. In the interviews, we explained to participants features of E-Gaze using persona and scenarios. Finally, we collected in total 79 quotes of comments and suggestions about the design of E-Gaze. There were 44 positive responses and 35 negative responses. Example comments are presented as follows:

Gaze Detection
In general, the majority of the participants (17/20) felt gaze detection could be beneficial for the blind. One participant said: “This idea (C1) is good, because we can easily know some people will speak to us” (P20). However, three participants had negative comments on gaze detection. One of them argued: “It is not necessary for knowing being looked at. The sighted could come to call your name directly” (P18).

Eye Contact Simulation
Fourteen participants had positive comments on the eye contact simulation while six participants had negative ones. Example positive responses were: “It is useful at the beginning of the conversation, when expressing the respect to your conversation partner” (P1). “The sighted could feel me being polite if E-Gaze has eye contact with them” (P16). The negative responses were: “E-Gaze can establish eye contacts with the sighted, but I cannot feel eye contacts” (P11). “I feel uncomfortable if E-Gaze exposes my attention state. It is my privacy” (P2).

Avoiding State
Participants’ attitudes towards avoiding state included seven positive responses and thirteen negative responses. An example positive response was: “It (C3) can be very useful. Nobody liked being gazed at for a long time. It could be a feasible way to stop being gazed” (P13). The example negative response was: “The avoiding state causes misunderstanding. The sighted may consider you are not willing to communicate. If you are not patient about talking, you could tell her or change to the other topic.” (P18).

Attention State
We collected six positive and fourteen negative responses towards the attention state. P20 expressed his positive opinion: “It (C4) is interesting to let the sighted talking to you know that you are interested in the topic.” But some participants thought it was unnecessary to have this function. For example: “The attention state is too artificial and looks like cartoon figures’ expression. I prefer natural expressions” (P9). “I feel uncomfortable if E-Gaze exposes my attention state. It is my privacy” (P2).

Based on results of the user study, we clarified our design direction: selecting gaze detection feature for the further design as the first step. Then we developed gaze detection feature to a prototype: the Tactile Band.

Preliminary Experiment
The Tactile Band was designed to enable the blind person to feel attention (gaze signals) from the sighted. The hypothesis is that the tactile feedback can enhance the level of engagement in face-to-face communication. In our concept, a wearable eye tracker (SMI Eye
Tacking Glasses1), worn by the sighted, can detect her gazes to the blind person. Gaze signals are mapped to vibration signals of an actuator embedded in the Tactile Band, worn by the blind person on her forehead. The blind person perceives a slight vibration from the Tactile Band as a signal of the sighted looking at her face (Figure 2).

The Tactile Band used a Wizard-of-Oz environment in the preliminary experiment. The wizard (a human observer) observed the real-time eye tracking video from SMI eye tracker and controlled vibration actuator of the Tactile Band. If the gaze hit the facial region of the blindfolded participant, a slight vibration was triggered by the wizard. If the gaze was still in the facial region, slight vibrations with equal intervals were triggered by the wizard. The vibration stopped when gaze was out of the facial region.

A within-subject design was conducted and it included one independent variable with three levels (no Tactile Band, Tactile Band without vibrations & Tactile Band with vibrations) and one dependent variable (engagement in a conversation). The level of engagement was measured with two subjective measures: relationship quality (IMI: Intrinsic Motivation Inventory questionnaire) \cite{5} and partner closeness (IOS: The Inclusion of Other in the Self Scale) \cite{2}. IMI included 45 items, assigned to 7 subscales. We were particularly interested in participants’ mutual relationship in conversations. Therefore, we chose one subscale: relatedness (8 items), included the item like “It is likely that this person and I could become friends if we interacted a lot”. IOS Scale was used to measure the closeness. It included seven increasingly overlapping circle pairs, which could indicate the distance of the relationship between themselves and their conversation partners.

The participants were 30 student volunteers from Eindhoven University of Technology (11 females, $M_{\text{age}} = 29.73$, SD = 5.69; 19 males, $M_{\text{age}} = 28.16$, SD = 2.17) with ages ranging from 21 to 42. They were paired randomly to have dyadic conversations and one of them was blindfolded (Figure 3). Three conversations were taken under the following experimental conditions for the blindfolded in a random order: (I) no Tactile Band; (J) Tactile Band without vibrations; (K) Tactile Band with vibrations. Before each conversation, one topic was randomly picked from 14 daily topics from IELTS oral exams included the item like “Describe a job you have done”. Participants were asked to share ideas about the topic. Each conversation lasted around 10 minutes and after each conversation, participants were asked to answer a post-experimental questionnaire. After three conversations and post-experimental questionnaires, we did a short interview to collect the blindfolded participant’s comments and suggestions towards the Tactile Band. Each conversation was video-taped and the interview was audio-tapped. The overall experiment lasted approximately 90-120 minutes.

Results

We used SPSS for the data analysis. The conversation quality was analyzed using RM-ANOVA with relationship quality and partner closeness as within-subject factors. Table 1 presents mean and standard deviation of relatedness and partner closeness across three conditions. Before running RM-ANOVA, we checked the data for violations of parametric analysis: the sphericity

1 http://www.smivision.com/
assumption was tested using Mauchly’s test. There were no significant effects of relatedness $F(2, 56) = 0.64, p = 0.53$, and partner closeness $F(2, 56) = 0.20, p = 0.82$ in three conditions. Since the blindfolded participants wore the Tactile Band, their comments and suggestions towards the Tactile Band were analyzed.

Total 70 quotes of user comments were collected and they were merged into three categories: the modality (20 quotes), the prototype (31 quotes) and suggestions (19 quotes).

The modality
Comments of the vibration feedback were gathered from the result of the question: “What do you think about the vibration feedback, when your conversation partner looks at your face?” Two participants (P3, P11) mentioned they could not immediately map the vibration to the gaze signal in conversations. The other participant (P10) explained in the beginning the vibration feedback helped her concentrate on the conversation partner, but after while it became just a subtle clue that she often neglected.

The prototype
We asked participants two open questions: “Which aspects make you like / dislike the Tactile Band?” Six participants liked the Tactile Band. The example comments were: “The Tactile Band did not feel interfering too much. It was easy to wear and it had subtle cues.” “It was used quite soft material, which was comfortable to the skin.” (P10, P14) Some participants also explained why they disliked the Tactile Band. The primary reason was they disliked having the Tactile Band on the head. The example comment was: “The head feels like a scary location for such direct vibrations. It might also be obtrusive for the conversation partner.”(P14)

Suggestions
We received suggestions for improving the Tactile Band in two directions: try other modalities to map gaze signals and improve the wearability of the Tactile Band. As for other modalities, two participants stated temperature changes could map to gaze signals. For example: the soft warmth on eyes indicated a kind of the close feeling (P15). Other participants mentioned cue tone, soft touch and different intensity of the vibration. For the wearability of the Tactile Band, participants gave many suggestions and the top three were: at hand, around the arm and using the mobile device, where were more invisible during the conversation.

Discussion
We get useful implications for further improvements in both the design and the experiment: improve the prototype such as the wearability, redesign the scenario in the experiment and give more time to the participants to get used to mapping between gaze signals and tactile signals.

According to the observations and user comments, we need to improve the wearability of the Tactile Band. For example, it could be worn on the wrist, which is less visible than on the forehead. The intensity of the tactile feedback could be fine-tuned. Other types of tactile feedback can also be explored besides vibration, such as a sense of pressure by changing the shape of the material.
Besides the improvements of the prototype, redesigning the scenario in our experiment is also needed. In interviews, some blindfolded participants expressed several alternative contexts in which they would find them to be more useful. For example, a slight vibration (gaze) signal from the conversation partner predicts the start of the conversation to help them be more concentrated. We also consider in turn-taking, eye gaze plays an important role as it indicates where the speaker’s focus of attention is directed. An alternative scenario can be that, one sighted speaker discusses with two blindfolded participants in triadic (three-person) conversations. The sighted stops talking and gives her turn to one of two blindfolded listeners by the gaze signal.

Spending more time in learning the mapping between gaze signals and tactile signals may be helpful. The blindfolded participants knew the importance of the gazes and they had the direct and clear understanding of gaze behaviors. However, gaze is a visual cue in their perception. It will take some time, even a long-term training for them to map gaze signals to tactile signals, which is unnatural for them. As for the blind people, we found they tend to have the indirect and fuzzy understanding of eyes and gazes [6]. They knew the importance of gazes from descriptions in novels or by others. Mapping gazes with tactile signals is a new experience for them, which is likely to require more time for practicing to get used to.

Conclusion

In the experiment, we get useful insights and design implications. The prototype needs to be improved with the wearability with fine-tuned intensity of the tactile feedback. Other feedback can also be explored such as the cue tone or the sense of pressure caused by the shape changing of material. We also find the approach of adopting blindfolded participants have some limitations. In our future work, we will involve some blind participants in testing the prototype.

Acknowledgements

This research is supported by the China Scholarship Council and facilitated by Eindhoven University of Technology.

References

Proceedings of the Tenth Anniversary Conference on Tangible Embedded and Embodied Interaction

14-17 February 2016, Eindhoven, the Netherlands

Conference Chairs: Saskia Bakker, Caroline Hummels, Brygg Ullmer
Program Chairs: Luc Geurts, Bart Hengeveld, Daniel Saakes
Publications Chair: Mendel Broekhuijsen

Sponsors:
Eindhoven University of Technology, Koninklijke Nederlandse Akademie van Wetenschappen, Fontys Eindhoven, Microsoft Research, Tangible Display
TEI’16 Chairs’ Welcome

Welcome to ACM TEI’16, the 10th-anniversary edition of the International Conference on Tangible, Embedded and Embodied Interaction, hosted at Eindhoven University of Technology, the Netherlands from February 14th to February 17th, 2016.

This year’s conference marks TEI’s tenth anniversary. We see this as a perfect opportunity for recalling some of our founding values and complementing these with contemporary values, for reemphasizing the relationship between interactive products and systems and the body, and for learning from each other’s approaches and rationales. To do this, we have established the theme ‘Our Body Is Our Manual’: As the interactions we propose in our products and systems are aimed to inform our embodied selves, we should also allow ourselves to be informed by our bodies when designing and researching these interactions. Through a wide palette of work ranging from highly technical to highly artistic, and from highly applied to highly conceptual or theoretical, we wish to trigger discussion and reflection, with the aim of emphasizing what binds us.

TEI’16 hosts a four-day program, starting out with the Graduate Student Consortium and a series of Studio-Workshops that embody the essence of our community by offering intellectual and practical experiences to conference attendees with diverse skills and backgrounds. The main program is kicked off by Takeo Igarashi, who in his opening keynote discusses computer tools that allow end users control over the design of artifacts in their lives. After the opening keynote, the Papers track commences, in a slightly different set up than before. This year we do not include Q&As in the presentations but instead wrap up each session with a reflective discussion between the presenters. The day concludes with the Demos, Posters and Work-In-Progress exhibition. From day two until day four the Art Exhibition questions and frames the impact of new technologies on our lives and proposes new modes of embodiment. Following day three’s Papers sessions we host a full afternoon of Studio-Workshops, engaging all TEI attendees in active, hands-on discussions. Day four includes three Papers sessions, a lunch lecture and panel discussion, and the closing keynote by Tom Djajadiningrat, who reconsiders tangible interaction by discussing new technologies, illustrated through examples by Philips Design.

This year we received 178 submissions to the Papers track, which were all equally subjected to a double-blind peer review process of at least three reviewers and a meta-reviewer. A total of 45 accepted papers makes for an acceptance rate of 25%. For the Work-in-Progress track we received 100 submissions, which were subjected to a double-blind peer review process of two reviewers each. This resulted in 40 accepted submissions, making for an acceptance rate of 40%.

Of course, organizing this conference could not have been possible without the energy and commitment of many, many people. We would like to thank everyone who contributed to TEI’16: the authors for submitting their quality work to the conference, all the organizing committee chairs for managing their part of the conference, the program committee and external reviewers for safeguarding the quality of the conference, the local organizing committee, the sponsors, supporters and partners, and the TEI steering committee.

We wish you a great conference!

Conference Chairs
Saskia Bakker
Eindhoven University of Technology (NL)
Caroline Hummels
Eindhoven University of Technology (NL)
Brygg Ullmer
Louisiana State University (USA)

Program Chairs
Luc Geurts
KU Leuven (Belgium)
Bart Hengeveld
Eindhoven University of Technology (NL)
Daniel Saakes
KAIST (Korea)
Table of Contents

TEI’16 Conference Organizers... XIII

TEI’16 Program Committee & Reviewers... XV

TEI’16 Sponsors.. XXII

Keynote Addresses

Design Everything By Yourself. User Interfaces For Graphics, Cad Modeling, And Robots... 1
Takeo Igarashi (University of Tokyo)

Inherently Meaningful.. 2
Tom Djajadiningrat (Philips Design)

Paper Session 1: Stuff That Works
Session Chair: Peter Bennett

Navigation of Pitch Space on a Digital Musical Instrument with Dynamic Tactile Feedback.. 3
Robert Jack, Tony Stockman, Andrew McPherson

MobiSweep: Exploring Spatial Design Ideation Using a Smartphone as a Hand-held Reference Plane.. 12
Vinayak Vinayak, Devarajan Ramanujan, Cecil Piya, Karthik Ramani

TMotion: Embedded 3D Mobile Input using MagneticSensing Technique ... 21
Sang Ho Yoon, Ke Huo, Karthik Ramani

DataSpoon: Overcoming Design Challenges in Tangible and Embedded Assistive Technologies.. 30
Oren Zuckerman, Tamar Gal, Tal Keren-Capelovitch, Tal Krasovsky, Ayelet Gal-Oz, Tamar Weiss

T4Tags 2.0: A Tangible System for Supporting Users’ Needs in the Domestic Environment.. 38
Andrea Vianello, Yves Florack, Andrea Bellucci, Giulio Jacucci

Paper Session 2: Share, Show And Tell
Session Chair: Vero Vanden Abeele

Interactive Jewellery: a design exploration .. 44
Maarten Versteeg, Elise van den Hoven, Caroline Hummels

Technologies for Everyday Life Reflection: Illustrating a Design Space .. 53
Ine Mols, Elise van den Hoven, Berry Eggen
Towards a Framework for Tangible Narratives ... 62
Daniel Harley, Jean Ho Chu, Jamie Kwan, Ali Mazalek

Designing the Behavior of Interactive Objects.. 70
Marco Spadafora, Victor Chahunea, Nikolas Martelaro, David Sirkin, Wendy Ju

Ideating in Skills: Developing tools for embodied co-design ... 78
Dorothé Smit, Doenja Oogjes, Bruna Goveia de Rocha, Ambra Trotto,
Yeup Hur, Caroline Hummels

Paper Session 3: What Your Body Can Do For You
Session Chair: Katrin Wolf

Modifying Gesture Elicitation: Do Kinaesthetic Priming and Increased Production
Reduce Legacy Bias?... 86
Lynn Hoff, Eva Hornecker, Sven Bertel

If Your Mind Can Grasp It, Your Hands Will Help.. 92
Simon Stusak, Moritz Hobe, Andreas Butz

Exploring the Aesthetic of Tangible Interaction: Experiments on the Perception
of Hybrid Objects.. 100
Daniela Petrelli, Alessandro Soranzo, Luigina Ciolfi, John Reidy

The Aesthetics of Heat: Guiding Awareness with Thermal Stimuli .. 109
Martin Jonsson, Anna Ståhl, Johanna Mercurio, Anna Karlsson, Naveen Ramani, Kristina Höök

Substituting Color for Haptic Attributes in Conceptual Metaphors for Tangible Interaction Design.. 118
Diana Löffler, Lennart Arlt, Takashi Toriizuka, Robert Tscharn, Joern Hurtienne

Paper Session 4: When Learning Is Tough
Session Chair: Patrizia Marti

It Could Just as Well Have Been in Greek: Experiences from Introducing
Code as a Design Material to Exhibition Design Students .. 126
Jennie Schaeffer, Rikard Lindell

A Tangible Embedded Programming System to Convey Event-Handling Concept.............. 133
Danli Wang, Lan Zhang, Chao Xu, Haichen Hu, Yunfeng Qi

SynFlo: A Tangible Museum Exhibit for Exploring Bio-Design.. 141
Johanna Okerlund, Evan Segreto, Casey Grote, Lauren Westendorf,
Anja Scholze, Romie Littrell, Orit Shaer

Engaging 'At-Risk' Students through Maker Culture Activities.. 150
Sowmya Somanath, Laura Morrison, Janette Hughes, Ehud Sharlin,
Mario Costa Sousa

Using Tangible Smart Replicas as Controls for an Interactive Museum Exhibition............... 159
Mark Marshall, Nick Dulake, Luigina Ciolfi, Daniele Duranti,
Hub Kockelkorn, Daniela Petrelli
Paper Session 5: Keep In Shape

Session Chair: Tek Jin Nam

- **LivingSurface: Biofeedback through Shape-changing Display** ... 168
 Bin Yu, Nienke Bongers, Alissa van Asseldonk, Jun Hu, Mathias Funk, Loe Feijs

- **Tangible Viewports: Getting Out of Flatland in Desktop Environments** .. 176
 Renaud Gervais, Joan Sol Roo, Martin Hachet

- **ReFlex: A Flexible Smartphone with Active Haptic Feedback for Bend Input** .. 185
 Paul Strohmeier, Jesse Burstyn, Juan Pablo Carrascal, Vincent Levesque, Roel Vertegaal

- **A basic form language for shape-changing interfaces** .. 193
 Morten Winther, Anna Vallgårda

- **Balancing user and system control in shape-changing interfaces: a designerly exploration** 202
 Majken Kirkegaard Rasmussen, Timothy Merritt, Miguel Bruns Alonso, Mariane Graves Petersen

Paper Session 6: With All Your Forces

Session Chair: Ellen Do

- **On the Other Hand: Embodied Metaphors for Interactions with Mnemonic Objects in Live Presentations** ... 211
 Fabian Hemmert, Gesche Joost

- **Snake Charmer: Physically Enabling Virtual Objects** .. 218
 Bruno Araujo, Ricardo Jota, Varum Chadalavada, Jia Xian Yao, Karan Singh, Daniel Wigdor

- **TOBE: Tangible Out-of-Body Experience** ... 227
 Renaud Gervais, Jérémy Frey, Alexis Gay, Fabien Lotte, Martin Hachet

Paper Session 7: Not For Kids Only

Session Chair: Panos Markopoulos

- **From Patchwork to Appliqué: Reflections from an Interaction Design Remake** 236
 Moa Bergsmark, Ylva Fernaeus

- **Embodied Companion Technologies for Autistic Children** ... 245
 Katharina Spiel, Julia Makhaeva, Christopher Frauenberger

- **SmallTalk: Using Tangible Interactions to Gather Feedback from Children** .. 253
 Sarah Gallacher, Connie Golsteijn, Yvonne Rogers, Licia Capra, Sophie Eustace

- **Tangible Play Objects: Influence of Different Combinations of Feedback Modalities** 262
 Hanneke Hooft van Huysduynen, Linda de Valk, Tilde Bekker

- **ChillFish: A Respiration Game for Children with ADHD** .. 271
 Tobias Sonne, Mads Møller Jensen
Papers: Demos and Posters

Comparing Tangible and Multi-touch Interaction for Interactive Data Visualization Tasks ... 279
Shiroq Al-Megren, Roy A. Ruddle

Sparse Tangibles: Collaborative Exploration of Gene Networks using Active Tangibles and Interactive Tabletops... 287
Ahmed Sabbir Arif, Roozbeh Manshaei, Sean Delong, Brien East, Matthew Kyan, Ali Mazalek

Designing the Vertigo Experience: Vertigo as a Design Resource for Digital Bodily Play ... 296
Richard Byrne, Joe Marshall, Florian ‘Floyd’ Mueller

Gleamy: An Ambient Display Lamp with a Transparency-Controllable Shade ... 304
Seijin Cha, Moon-Hwan Lee, Tek-Jin Nam

Pneumatibles – Exploring Soft Robotic Actuators for the Design of User Interfaces with Pneumotactile Feedback ... 308
Kristian Gohlke, Eva Hornecker, Wolfgang Sattler

DoDoc: a Composite Interface that Supports Reflection-in-Action ... 316
Pauline Gourlet, Sarah Garcin, Louis Eveillard, Ferdinand Dervieux

Soft Pillows and the Near and Dear: Physical-to-Abstract Mappings with Image-Schematic Metaphors ... 324
Jörn Hurtienne, Oliver Meschke

Experience as an Object to Think with: from Sensing-in-action to Making-Sense of action in Full-Body Interaction Learning Environments ... 332
Laura Malinverni, Edith Ackermann, Narcis Pares

Crafting Mechatronic Percussion with Everyday Materials ... 340
Hyunjoo Oh, Jiffer Harriman, Abhishek Narula, Mark D. Gross, Michael Eisenberg, Sherry Hsi

Engagement Through Embodiment: A Case For Mindful Interaction ... 349
Vincent van Rheden, Bart Hengeveld

miMic: The Microphone as a Pencil ... 357
Davide Rocchesso, Davide A. Mauro, and Stefano Delle Monache

MOR4R: How to Create 3D Objects Using a Microwave Oven ... 365
Kentaro Yasu

Work-in-Progress

EmotiPlant: Human-Plant Interaction for Older Adults ... 373
Leonardo Angelini, Stefania Caparrotta, Omar Abou Khaled, Elena Mugellini

Maketec: A Makerspace as a Third Place for Children ... 380
David Bar-El, Oren Zuckerman
Functional Demonstrators to Support Understanding of Smart Materials
Bahareh Barati, Elvin Karana, Kaspar Jansen, Paul Hekkert

IrukaTact: Submersible Haptic Search Glove
Aisen C. Chacin, Takeshi Oozu, Hiroo Iwata

Penseive Box: Themes for Digital Memorialization Practices
Charu Chaudhari, Anjanakshi Prakash, A.M. Tsaasan, Jed R. Brubaker, Joshua Tanenbaum

Embodying Alternate Attitudes: Design Opportunities for Physical Interfaces in Persuasive Gaming Experiences
Emily S Cramer, Brendan B Matkin, Alissa N Antle

Exploring the Potential of Realtime Haptic Feedback during Social Interactions
Ionut Damian, Elisabeth André

Comparing bare-hand-in-air Gesture and Object-in-hand Tangible User Interaction for Navigation of 3D Objects in Modeling
Sanmathi Dangeti, Yingjie (Victor) Chen, Chunhui Zheng

Storytime with Hue: An Innovative Approach to Storytelling Where Storytellers Control a Dynamic Lighting Environment
Catherine Downey, Sherin W. Kamel

InfoPhys: Direct Manipulation of Information Visualisation through a Force-Feedback Pointing Device
Christian Frisson, Bruno Dumas

Making Communication Frequency Tangible: How Green Is My Tree?
Carolina Fuentes, Iyubanit Rodriguez, Valeria Herskovic

Code Bits: An Inexpensive Tangible Computational Thinking Toolkit For K-12 Curriculum
Sidhant Goyal, Rohan S Vijay, Charu Monga, Pratul Kalita

TASK: Introducing The Interactive Audience Sensor Kit
Florian Güldenpfennig, Oliver Hödl, Peter Reichl, Christian Löw, Andreas Gartus, Matthew Pelowski

Toward Thingy Oriented Programming: Recording Marcos With Tangibles
Florian Güldenpfennig, Daniel Dudo, Peter Purgathofer

Exploring the Use of Shape Change in Home Appliances
Frederik Lund Jakobsen, Stefan Michael Pedersen, Jacob Albæk Schnedler, Nikolai Houlberg Øllegaard

MARCut: Marker-based Laser Cutting for Personal Fabrication on Existing Objects
Takashi Kikuchi, Yuichi Hiroi, Ross Smith, Bruce Thomas, Maki Sugimoto
UnicrePaint: Digital Painting through Physical Objects for Unique Creative Experiences ... 475
Mami Kosaka, Kaori Fujinami

Grasping Cultural Context through Multisensory Interactions .. 482
Jamie Kwan, Jean Ho Chu, Daniel Harley, Melanie McBride, Ali Mazalek

Exploring SCI as Means of Interaction through the Design Case of Vacuum Cleaning .. 488
Lasse Legaard, Christian Hannesbo Lorentzen, Josephine Raun Thomsen, Jonas Techen

Four Stories About Feeling Close Over A Distance .. 494
Eva Lenz, Marc Hassenzahl, Wasili Adamow, Patrick Beedgen, Kirstin Kohler, Thies Schneider

Click: Using Smart Devices For Physical Collaborative Coding Education ... 500
Dixon Lo, Austin Lee

HandyFeet: Social Bodily Play Via Split Control of a Human Puppet's Limbs .. 506
Robb Mitchell, Andreas Fender, Florian 'Floyd' Mueller

HydroMorph: Shape Changing Water Membrane for Display and Interaction .. 512
Ken Nakagaki, Pasquale Totaro, Jim Peraino, Thariq Shihipar, Chantine Akiyama, Yin Shuang, Hiroshi Ishii

Tangible Modeling Methods for Faster Rapid Prototyping .. 518
Satoshi Nakamuru, Jakob Bak, Dhruv Saxena

Expressing Intent: An Exploration of Rich Interactions .. 524
Rachel Ng, Raghavendra Kandala, Sarah-Marie Foley, Dixon Lo, Molly Steenson and Austin Lee

Interactive Jewellery as Memory Cue: Designing a Sound Locket for Individual Reminiscence .. 532
Karin Niemantsverdriet, Maarten Versteeg

Designing a Multi-user Interactive Simulation Using AR Glasses .. 539
Seungjae Oh, Kyudong Park, Soonmo Kwon, Hyo-Jeong So

MoCap Tango: Traces Of Complexity ... 545
Jeroen Peeters, Ambra Trotto, Stoffel Kuenen

Functional Interactive Tatting - Bringing Together a Traditional Handicraft and Electronics ... 551
Alan Poole, Anne Poole

Tactile Band: Accessing Gaze Signals from the Sighted in Face-to-Face Communication ... 556
Shi Qiu, Matthias Rauterberg, Jun Hu

E-Gaze Glasses: Simulating Natural Gazes for Blind People ... 563
Shi Qiu, Siti Aisyah Anas, Hirotaka Osawa, Matthias Rauterberg, Jun Hu
Inner Garden: an Augmented Sandbox Designed for Self-Reflection .. 570
Joan Sol Roo, Renaud Gervais, Martin Hachet

A Tangible Tool for Visual Impaired Users to Learn Geometry ... 577
Lisa Marie Rühmann, Nuno Otero, Ian Oakley

Cubio: A Low-Budget Platform for Exploring Stackable Interactions 584
Marc Teyssier, Pattie Maes, Lucas Silva, Pattie Maes

The Speaker's Staff: Supporting Remote Multidisciplinary Team Meetings in Hospitals .. 591
Bert Vandenberghe, David Geerts

MagnetoWear: A Magnetic Wearable Device to Interact With the Smartphone to Perform Personalized Actions .. 597
Rohan S Vijay, Sidhant Goyal

Present-at-Body Self-Awareness in Equestrians: Exploring Embodied ‘Feel’ through Tactile Wearables ... 603
Jillian L. Warren, Brendan B. Matkin, Alissa N. Antle

Designing Sculpting Light Systems for Information Decoration ... 609
Jiang Wu, Harm van Essen, Berry Eggen

DrawForming: An Interactive Fabrication Method for Vacuum Forming 615
Junichi Yamaoka, Yasuaki Kakehi

KIP3: Robotic Companion as an External Cue to Students with ADHD 621
Oren Zuckerman, Guy Hoffman, Daphne Kopelman-Rubin, Anat Brunstein Klomek, Noa Shitrit, Yahav Amsalem, Yaron Shlomi

Art Exhibition

The BIODress: A Body-worn Interface for Environmental Embodiment 627
Sara Adhitya, Beck Davis, Raune Frankjaer, Patricia Flanagan and Zoe Mahony

POEME: A Poetry Engine Powered by Your Movement ... 635
Shannon Cuykendall, Ethan Soutar-Rau and Thecla Schiphorst

Functionality in Wearable Tech: Device, as Jewelry, as Body Mediator 641
Alexandra Ju

Dissidual Plays Experimental Lab - An installation derived from Dividual Plays 647
Keina Konno, Richi Owaki, Yoshito Onishi, Ryo Kanda, Sheep, Akiho Takeshita, Tsubasa Nishi, Naoko Shiomi, Kyle McDonald, Satoru Higa, Motoi Shimizu, Yosuke Sakai, Yasuaki Kakehi, Kazuhiro Jo, Yoko Ando, Kazunao Abe and Takayuki Ito

A Flying Pantograph: Interleaving Expressivity of Human and Machine 653
Sang-Won Leigh, Harshit Agrawal and Pattie Maes

What We Have Lost / What We Have Gained: Tangible Interactions between Physical and Digital Bodies .. 658
Matthew Mosher and David Tinapple
Exploring Bodies, Mediation and Points of View using a Robotic Avatar ... 663
Paul Strohmeier

Tangible Scores ... 669
Enrique Tomàs

Heart Calligraphy: an Abstract Portrait Inside the Body ... 675
Bin Yu, Rogier Arents, Jun Hu, Mathias Funk and Loie Feijts

Graduate Student Consortium

Crafting Tangible Interaction to Prompt Visitors’ Engagement in House Museums 681
Caroline Claisse

Towards Self-Aware Materials ... 685
Artem Dementyev

Exploring the Design Space of Tangible Systems Supported for Early Reading Acquisition in Children with Dyslexia ... 689
Min Fan, Alissa N. Antle, Emily S. Cramer

Embodied Spatial Thinking in Tangible Computing .. 693
Brendan Alexander Harmon

Performance-Led Design of Computationally Generated Audio for Interactive Applications ... 697
Christian Heinrichs, Andrew McPherson

Designing for the Mindbody in Technology-Mediated Music-Making ... 701
Aura Pon

Exploring 3D Printed Interaction ... 705
Martin Schmitz

Designing Posture Monitoring Garments to Support Rehabilitation .. 709
Qi Wang

Student Design Challenge

BrainstORB ... 713
Conor Byrne, Evan Healy, Nigel Frahill, Rebecca Power

Sensole: An Insole-Based Tickle Tactile Interface ... 717
Eric Geißler, Andreas Mühlenberend, Klaus Harnack

InflatiBits – A Modular Soft Robotic Construction Kit for Children .. 723
Christopher Kopic, Kristian Gohlke

Whoosh Gloves: Interactive Tool to Form a Dialog Between Dancer and Choreographer 729
Svetlana Mironcika, Joanne Pek, Jochem Franse, Ya Shu
Hulagram: Inspiring Creativity Through Human Movement .. 733
Megan Dalton Rafferty, Danielle Daly, Anthony O’Brien and Craig Fleming

Tommy Blocks: a modern redesign of the classical children’s building blocks 738
Riccardo Rigo, Charlotte Kortbeek, Cristian Grama, Denis Laure

MuSme: A Tangible Skin Suit for Music Creation .. 743
Amal Tidjani, Eileen Cho, Priscilla Lee

Studio-Workshops

Designing Tangibles for Children: One Day Hands-on Workshop 749
Alissa N. Antle, Jillian L. Warren, Brendan B. Matkin, Min Fan, Emily S. Cramer

Tangible Data, explorations in data Physicalization ... 753
Trevor Hogan, Eva Hornecker, Simon Stusak, Yvonne Jansen, Jason Alexander,
Andrew Vande Moere, Uta Hinrichs, Kieran Nolan

MeMod: A Modular Hacking And Programming Toolkit For Everyday Objects 757
Austin S. Lee, Dhairya Dand

The Interaction Engine: Tools for Prototyping Connected Devices 762
Nikolas Martelaro, Michael Shiloh, Wendy Ju

TEI 2016 Studio: Inflated Curiosity .. 766
Jifei Ou, Felix Heibeck, Hiroshi Ishii

Bodily Sketching With Sensable Stretchables ... 770
Alan Poole, Robb Mitchell, Katrin Wolf, Rahimullah Sarban

Embodying Soft Wearables Research .. 774
Oscar Tomico, Danielle Wilde

Stereo Haptics: Designing Haptic Interactions using Audio Tools 778
Siyan Zhao, Zachary Schwemler, Adam Fritz, Ali Israr

Developing Responsive and Interactive Environments with the ROSS Toolkit 782
Andrea Bellucci, Anesh P. Tarun, Ahmed Sabbir Arif, Ali Mazalek

GaussStudio: Designing Seamless Tangible Interactions on Portable Displays 786
Rong-Hao Liang, Han-Chih Kuo, Miguel Bruns Alonso, Bing-Yu Chen

Second Workshop on Full-Body and Multisensory Experience 790
Assunta Matassa, Leonardo Angelini, Maurizio Caon, Marianna Obrist, Elena Mugellini

XII