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Abstract—Ambient Assisted Living (AAL) aims to create in-
novative technical solutions and services to support independent
living among older adults, improve their quality of life and reduce
the costs associated with health and social care. AAL systems
provide health monitoring through sensor based technologies
to preserve health and functional ability and facilitate social
support for the ageing population. Human activity recognition
(HAR) is an enabler for the development of robust AAL solutions,
especially in safety critical environments. Therefore, HAR models
applied within this domain (e.g. for fall detection or for providing
contextual information to caregivers) need to be accurate to
assist in developing reliable support systems. In this paper, we
evaluate three machine learning algorithms, namely Support
Vector Machine (SVM), a hybrid of Hidden Markov Models
(HMM) and SVM (SVM-HMM) and Artificial Neural Networks
(ANNs) applied on a dataset collected between the elderly
and their caregiver counterparts. Detected activities will later
serve as inputs to a bidirectional activity awareness system for
increasing social connectedness. Results show high classification
performances for all three algorithms. Specifically, the SVM-
HMM hybrid demonstrates the best classification performance.
In addition to this, we make our dataset publicly available for
use by the machine learning community.

I. INTRODUCTION

Life expectancy is increasing, which is primarily influenced
by medical advances in the diagnosis and treatment of dis-
eases, a causative factor for mankind’s massive survival to old
age. It is estimated that over 2 billion people will be over 60
years by 2050 [1]. As persons age, they become vulnerable
to motor and physical disabilities, which limit their partici-
pation in common activities of daily living [2]. Furthermore,
socially and physically inactive seniors are more susceptible to
chronic diseases and social disconnectedness, causing negative
outcomes on mental and cardiovascular health and mortality
[3], [4]. This increases expenditures on long-term care; thus
health and social care services are searching for alternatives
to cope with the macro-economic challenges associated with
an increasing ageing population.

In recent times, human activity recognition (HAR) has
been a key component of ambient assisted living (AAL)
applications for recognizing activities of daily living (ADL)
[5], fall detection [6] and monitoring physical activity lev-
els [7] for sustaining quality of life and independent living
among older people. Unlike previous studies, which have

been largely focused on elderly ambulatory monitoring for
emergency detection, our ultimate research goal is centered
around improving interpersonal awareness and social connect-
edness i.e. the sense of belonging based on the feeling of
self-assuredness knowing that one has enough social contacts
[8], through subtle awareness. To do this, we will exploit
the pre-attentive features discussed in [9], (namely colour,
form, spatial position and motion) to provide a richer and
better abstraction of the data. Our bidirectional ambient display
system opportunistically exploits motion data from the smart-
phone’s accelerometer and gyroscope sensors to infer six basic
activities (walking, ascending the stairs and descending the
stairs, sitting, standing and laying) of both user groups in their
natural environment. These six activity classes are commonly
exploited in human activity recognition experiments [10], [11].

A plethora of studies have proposed various methods to
address the activity monitoring problem, ranging from video
cameras [12], [13], wearable sensors [14] and wireless sen-
sor networks [15]. Smartphones are considered promising
solutions for enabling human activity recognition and health
monitoring in AAL due to its portability, inertial sensors (ac-
celerometer and gyroscope), communication features (WIFI,
3G and Bluetooth) and low cost [16–18].

In this paper, we investigate three activity recognition ap-
proaches, which forms part of a larger experiment [18], [19], in
which an elderly and their caregiver can perceive each others
activity states through a subtle ambient intelligent application
to improve social connectedness. The best performing activity
recognition model will be used in this bidirectional subtle
awareness system. Our envisioned outcome is to demonstrate
enhanced benefits for the abstract presentation of activity
information using an ambient display to support social con-
nectedness and enable peace of mind as demonstrated in [20],
[21]. The application of human activity recognition (HAR)
in the ambient assisted living domain is motivated by the
assumption that subtle awareness of activity states could elicit
affective responses and provide valuable information about
health, moods and habits. In general, the safety of older adults
living alone is a critical requirement of AAL applications to
avoid system failure [22]. As such, algorithms deployed in this
domain should maintain high reliability.
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With the motivation of achieving a higher classification
accuracy among all classes, we exploited the Support Vector
Machines model described in [23] with the use of smart-
phone sensors (accelerometer and gyroscope). A hybrid of the
Support Vector Machine (SVM) and Hidden Markov Model
(HMM) algorithms and Artificial Neural Networks (ANNs)
were also explored. Experimental results on real-life data
show classification performances of over 90% for all three
approaches, with SVM-HMM achieving the highest detection
accuracy. This offers a lot of potential for our awareness
system for improving context awareness and social connect-
edness for older adults and their caregivers over mediated
environments.

This paper is organized as follows: a summary of the state
of the art is presented in section 2. Section 3 describes the
procedure and the proposed methodologies. The results are
discussed in section 4. In section 5, we present the insights
gained and our future research directions.

II. RELATED WORK

The smartphone’s accelerometer and gyroscope sensors
have been used extensively to support human activity recog-
nition for enabling context awareness [10], [24]. Signals
recorded by mobile accelerometers and gyroscopes are typ-
ically represented in the form of time-series i.e. a sequence
of data points usually collected at regular intervals [25].
Specifically, common activities such as walking, standing and
laying are generally represented by time-series patterns, useful
for assessing physical and cognitive well-being in ambient
assisted living (AAL) environments.

In the AAL domain, different machine learning algorithms
have been successfully deployed for recognizing human activ-
ities in various context including remote monitoring, detecting
anomalies and promoting health and well-being. Moreover, the
most popular approaches, which have been considered include
supervised learning techniques [26], conditional random field
[27], rule-based reasoning [28], artificial neural networks [29]
and probabilistic modelling [30], [31]. Also, unsupervised
learning methods have been evaluated for activity recognition
[32]. Despite the success of the aforementioned techniques,
sensor-based activity recognition remains challenging due to
several factors including its inherently noisy nature, people
performing activities differently and in different sequences
and the ambiguity of sensor data. Notwithstanding these
challenges, probabilistic activity recognition models have been
reported to successfully handle these uncertainties [33]. In
particular, Hidden Markov Models (HMM) have demonstrated
solid potential for addressing the ambiguities of interpretation
within the AAL domain [30].

Hidden Markov Models (HMM) are predominantly useful
for activity recognition due to their capability of exploiting
the temporal and sequential characteristics of activity data;
thus enabling the prediction of future states from current
observation data. Although HMMs have demonstrated remark-
able success, they are not without limitations [34]. First, it

has difficulty representing concurrent or interleaved activi-
ties, which can be problematic when modelling continuous
activities within the AAL domain. Second, the HMM’s strict
independence assumptions make it inadequate for capturing
transitive dependencies of the observations. Furthermore, it is
difficult to model the feature vector extracted from accelerom-
eter and gyroscope sensors, making it unfeasible.

A plausible solution is to use a discriminative model such
as the SVM to determine the emission probabilities of an
HMM, which can be combined with the dynamic temporal
features of the HMM to offer improved classification accuracy
in dynamic pattern recognition tasks for AAL applications
as successfully deployed in [35]. In particular, the authors in
[35] demonstrated that the hybrid SVM-HMM model achieves
better performance when contrasted with stand alone SVM
and ANN classifiers. However, this success in recognition
accuracy was achieved using a network of binary sensors,
which is different from the goal of using inbuilt smartphone
sensors in this work. In addition, by using the HMM-SVM
technique the authors in [36] recorded an overall accuracy of
96% for activity recognition using wearable devices. However,
the method used for data collection was somewhat obtrusive
as participants wore many wearable sensors on various parts
of the body including the thigh, both wrists and neck. For
user comfort, in this work, we deploy as little sensors as
possible for activity recognition. Moreover, hybrid SVM-
HMM approaches have been successfully applied within other
domains such as speech recognition [37], speech emotion
recognition [38] and analysis of facial expressions [39].

The biologically inspired Artificial Neural Networks
(ANNs) are commonly presented as a collection of inter-
connected neurons grouped in layers, which are capable of
automatic learning based on experience and approximating
a non-linear combinations of features for pattern recognition
[40]. Artificial Neural Networks are shown to perform well
in [40], [41] for learning static (e.g. standing) and dynamic
activities (e.g. walking) using a wrist-worn wireless sensing
triaxial accelerometer. From this, we see that ANNs provide
an efficient, robust and well-suited design methodology for
pattern recognition and classification involving uncertain and
complex data. However, they have some limitations, including
the requirement of a large volume of training data and the
difficulty of deriving an explicit model as the underlying
reason for high recognition validity is often unknown [40].

In sum, many studies have been proposed in recent years to
recognize physical activities based on smartphone accelerome-
ter data using a combination of different reasoning techniques.
In this paper, we developed and explored three human activity
models with the aim of choosing the most accurate model for
our social connectedness experiment in AAL environments. To
the best of our knowledge, an activity recognition system for
improving social connectedness using the smartphone’s inertial
sensors is missing within the AAL domain.



III. EXPERIMENTAL PROTOCOL

The Samsung Galaxy S II smartphones, with inbuilt ac-
celerometer and gyroscope sensors, were used to conduct
our experiment as proposed in [18]. Our mobile sensing
application was developed using Android Development tools.
Signal pre-processing, feature extraction, feature selection and
classification were implemented using Matlab.

A. Data Collection and Feature Extraction

In addition to publicly available smartphone activity
datasets, we collected our own datasets in order to reduce the
uncertainties of the former. We received 5744 samples from
31 healthy volunteers, ranging from 22 to 79 years from 14
countries, namely Russia, Italy, The Netherlands, Germany,
Iran, China, India, Pakistan, Nigeria, Ghana, Tunisia, Lebanon,
Jamaica and Colombia. Like it was done in [42], users were
asked to perform six basic activities (walking, walking up and
downstairs, standing, sitting and laying) while wearing a waist-
mounted smartphone belt on their left or right side. Each activ-
ity was performed for one minute in the context of the elderlys’
homes and the caregivers’ working environment simulating a
semi-naturalistic environment. In addition, accelerometric and
gyroscopic data were collected at a sampling rate of 50Hz.

To reduce the biases associated with using our own dataset,
we merged our collected dataset with the public dataset for
HAR using smartphones [42], which was collected in a similar
manner and at the same frequency. In total, 16043 samples
were available for training, cross-validation and testing. Our
dataset is publicly available on Github [43] and has also been
submitted to UCI Machine Learning repository.

A method similar to [42] has been employed for extracting
features from the accelerometer and gyroscope data collected.
Features were computed on a fixed length sliding window of
2.56 sec with 50% overlap. The raw signal data per window
were filtered using a median filter and a 3rd-order low-pass
butterworth filter of 20Hz corner frequency. The jerk of the
angular velocity, body and gravity acceleration were derived
before computing standard statistical measures described in
Table I and demonstrated in [23]. Overall, 561 features were
extracted per window.

B. SVM and HMM

The original SVM developed in 1990s is a binary clas-
sification method [44]. Later, two strategies were developed
to extend SVM in multi-class problems: 1) one-against-all
strategy, which uses one SVM for each class and 2) one-
against-one strategy, which uses a SVM for each pair of
classes. Here the one-against-all strategy is used, which has
shown superiority for multi-class classification problems [16],
[45]. As described in [10], [46] the one-against-all approach
consists of constructing k SVM models where k is the number
of models. The ith model is then trained with all data samples
belonging to class i as positive points and all other samples
as negative points. Consequently, the classification of new

TABLE I
TABLE SHOWING THE LIST OF MEASUREMENTS FOR THE COMPUTATION

OF FEATURE VECTORS ADAPTED FROM [23].

Function Description
mean Arithmetic mean
std Standard deviation

mad Median absolute deviation
max Largest value in array
min Smallest value in array

skewness Frequency signal skewness
kurtosis Frequency signal kurtosis

maxFreqInd Largest frequency
component

energy Average sum of the
squares

sma Signal magnitude area
entropy Signal entropy

iqr Interquartile range

autoregression 4th order Burg
autoregression coefficients

correlation Pearson correlation
coefficient

meanFreq Frequency signal weighted
average

energyBand Spectral energy of a
frequency band

angle Angle between signal
mean and vector

instances are formulated using a winner-takes-all scheme given
by equation 1, where fi represents the ith classifier.

f(x) = argmaxi fi(x) (1)

The multi-class SVM is trained with a 561 (dimension)
feature vector extracted from the measurements of the ac-
celerometer and gyroscope sensors.

Hybrid SVM-HMM models have been shown to signif-
icantly improve classification accuracies over the standard
SVM models [39]. The standard SVM is a discriminative
classifier that does not provide class probabilities used by
the HMM. However, simple post processing is proposed in
[47] that can map the output of SVM to posterior class
probabilities. The proposed method in [47] uses a sigmoid
function to estimate these probabilities:

p̂(x = m|f(y)) = (1 + exp(Amf(y) +Bm))−1 (2)

where f(y) is the output decision value of the SVM trained
to separate class m from all other classes.

HMM is a basic approach for modeling correlated time
series. The first order HMM is graphically shown in Fig.
1. It consists of a hidden state sequence {x0, · · · , xk, · · · }
and an observation sequence {y1, · · · ,yk, · · · }. The observa-
tion vector yk at time k corresponds to quantities that can
be directly measured by sensors or computed from sensor
output deterministically. The state variable xk where k ∈
{1, · · · ,K}, represents the class label at time k that should
be inferred. Note that this formulation is only valid for our
problem as it does not depict the general formulation of the
HMM. Temporal dependencies between class labels can be
effectively modeled using HMM by assuming that the label



· · · xk−1 xk · · ·

· · · yk−1 yk · · ·

Fig. 1. Hidden Markov Model.

at time k is independent of the whole history of the process
given the immediate previous label at time k − 1.

HMM is characterized with two conditional probability
density functions: 1) p(xk|xk−1) depicted as horizontal arrows
in Fig. 1, which is referred to as the state transition model
and 2) p(yk|xk) represented with vertical arrows in Fig. 1,
which is called the emission model. The transition model is a
categorical distribution

p(xk|xk−1 = n) = Cat(πn), (3)

where πn = [π1,n, · · · , πK,n] is the parameter vector of length
K whose mth element πm,n equals the transition probability
from state n to state m in subsequent time instances, i.e.
p(xk = m|xk−1 = n). In total, there are K parameter vectors
{π1, · · · ,πK}, each of which corresponds to one state label.
If sequences of the class labels (hidden states) are available
as training data, the transition parameters can be estimated
using Maximum A-Posteriori (MAP) estimation by assuming
a Dirichlet distribution prior for parameter vector

πn ∼ Dir(α), (4)

where α, the concentration parameter, is set to 0.05 in this
experiment. With this setup, the transition model MAP pa-
rameters can be calculated as

π̂n,m =
α+Nn,m

K × α+
K∑
i=1

Nn,i

, (5)

where Nn,m is the number of times a transition from state n
to state m occurs in the training sequences.

On the other hand, the emission model p(yk|xk) can
be any kind of density function depending on the prob-
lem. For the HMM model, the observation vector would
be the 561 feature vector but, defining a density function
for such a high dimensional vector is unfeasible. However,
using a well trained SVM classifier, it is still possible to
calculate the posterior probabilities. The filtering task in
the HMM is defined as the calculation of the posterior
p(xk|y1, · · · ,yk, · · · ), which is done either by calculating
forward filtering ρ(xk) = p(xk|y1, · · · ,yk) or T -lag forward-
backward filtering ρT (xk) = p(xk|y1, · · · ,yk, · · · ,yk+T ).

These quantities can be calculated using forward αk(m) and
backward βk(m) values:

ρ(m) ∝ αk(m), (6)

ρT (m) ∝ αk(m)βk(m). (7)

The forward value is calculated recursively as

α1(m) = γ1(m)/K,

αk+1(m) = γk+1(m)
K∑

n=1

αk(n)πn,m,
(8)

and the backward value is calculated as

βk+T (m) = 1,

βk(m) =
K∑

n=1

βk+1(n)πm,nγk+1(n).
(9)

where γk(m) is the conditional probability of the label at
time k given the feature vector calculated by (2) and m, n
are hidden states xk and xk+1 respectively. Having calculated
the posterior probabilities, the activity class is found as the
Maximum A Posteriori (MAP) state.

C. Artificial Neural Networks

Artificial Neural Networks (ANNs) is a machine learning
paradigm, inspired by the way in which biological neural
structures in the human brain, process information. Figure 2
shows the simplest model of an artificial neuron.

A single output (y) of the neuron is given by

y = f(
∑
i

wixi) = f(wTx) (10)

where x represents the input vector, w, the weight vector
denotes the efficiencies of the neurons’ synapses and f is the
activation function. An Artificial Neural Network (ANN) is a

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Fig. 2. Model of a basic artificial neuron.

network of neurons, which consists of an input vector, propa-
gated via weights through the hidden layer until the activation
reaches the output layer [48]. Figure 3 shows a generic ANN
with 5 input units, 3 neurons in the hidden layer and 1 output.
In this work, different ANN configurations including one and
two hidden layers and varying number of neurons in the hidden
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Fig. 3. Diagram showing the topology of the multi-layered ANN.

layers were evaluated. The configurations were trained using
the scaled conjugate gradient algorithm [49] with the number
of epochs tuned to 250. In the end, the one-hidden-layer ANN
with 40 neurons gave the highest accuracy for our input vector.

IV. RESULTS

As mentioned earlier, one of the primary goals of this
work is to achieve the best classification performance for the
development of a social connectedness application within the
safety critical ambient assisted living domain. To determine the
classification accuracy, the prominent K-fold cross-validation
[50] (with k = 10) technique was applied to each classifier.
This approach to validation was preferred to the traditional
holdout method as it reduced the variance of the resulting
estimates. The data was randomized and partitioned into ten
equal parts, where 90% was used for training and 10% for
testing in the cross-validation process. Consequently, every
data point was used in the test set only once. The overall
average performance was then calculated.

The confusion matrices of the classifiers are shown in Tables
II, III and IV respectively. Rows of the confusion matrix
represent the actual class while the columns represent the
classifier output. The values in the confusion matrices are the
number of instances in the test set. The last two columns of
each table of the models show the classifiers’ sensitivity and
specificity scores for each class whilst the overall accuracies
of the classifiers are provided at the bottom of the tables.
Sensitivity, also known as true positive rate (TPR) or recall,
defined by equation (11) estimates the probability of accurately
identifying the class of a random data point.

TPR =
True positives(Tp)

Tp + False negatives(Fn)
× 100 (11)

TABLE II
CONFUSION MATRIX USING THE SVM MODEL.

W
A

L
K

U
P

D
O

W
N

SI
T

ST
A

N
D

L
A

Y

WALK 2703 11 20 0 0 0 98.9 99.7

UP 19 2353 18 3 3 6 98 99.7

DOWN 19 24 2289 0 2 2 98 99.7

SIT 1 0 0 2773 122 4 95.6 99

STAND 0 0 2 129 2804 0 95.5 99.0

LAY 0 5 0 0 0 2731 99.8 99.9

OVERALL ACCURACY 97.6% T
PR

(%
)

T
N

R
(%

)

TABLE III
CONFUSION MATRIX USING THE ANN MODEL.

W
A

L
K

U
P

D
O

W
N

SI
T

ST
A

N
D

L
A

Y

WALK 2538 123 71 0 2 0 92.8 98.3

UP 111 2126 111 8 6 40 88.5 98.1

DOWN 108 104 2109 7 4 4 90.3 98.6

SIT 0 8 4 2540 304 44 87.6 97.7

STAND 3 5 7 281 2637 2 89.9 97.6

LAY 0 13 2 5 0 2716 99.3 99.3

OVERALL ACCURACY 91.4% T
PR

(%
)

T
N

R
(%

)

TABLE IV
CONFUSION MATRIX USING THE HYBRID SVM-HMM MODEL.

W
A

L
K

U
P

D
O

W
N

SI
T

ST
A

N
D

L
A

Y

WALK 2722 0 12 0 0 0 99.6 100

UP 0 2399 3 0 0 0 99.8 100

DOWN 0 0 2326 10 0 3 99.6 99.9

SIT 0 0 0 2892 8 15 99.7 99.9

STAND 0 0 0 10 2925 0 99.7 99.9

LAY 0 0 0 0 0 2736 100 100

OVERALL ACCURACY 99.7% T
PR

(%
)

T
N

R
(%

)

On the other hand, the specificity or the true negative rate
(TNR), defined by equation (12), estimates the probability
that a random data point not belonging to a class will be so
rightfully identified by the classifier.

TNR =
True negatives(Tn)

Tn + False positives(Fp)
× 100 (12)

Moreover, the overall accuracy (ACC) defined by equation
(13) gives the fraction of data points correctly identified by



the classifier.

ACC =
Tp + Tn

TpFp + Tn + Fn
× 100 (13)

All classes predicted by the stand-alone SVM achieved over
95% true positive and true negative rates while achieving an
overall accuracy of 97.6%. From Table II, it was observed
that dynamic activities i.e. walking, ascending and descending
of stairs were a few times misclassified. Also, stationary
activities i.e. standing, sitting and laying were occasionally
indistinguishable by the SVM classifier .

The ANN classifier displayed the lowest detection accuracy
among the classifiers with an overall accuracy of 91.4%.
Like the SVM, walking, going up and downstairs, standing
and sitting were occasionally indistinguishable. However, the
ANN classifier displayed significantly more misclassifications
when compared to the SVM. For example, the sensitivity (true
positive rate) of sitting and standing were 87.6% and 89.9%
respectively for ANN and, 95.6% and 95.5% respectively for
SVM.

On the other hand, we noticed a very high overall accuracy
of 99.7% for the SVM-HMM hybrid model outperforming
the ANN and SVM models by 8.3% and 2.1% respectively.
Notably, we observed improvements in predictions of all
classes for the hybrid SVM-HMM classifier.

In sum, the hybrid SVM-HMM classification approach
outperformed the other classifiers, showing an accuracy of
99.7%. Moreover, the performance of our SVM-HMM activity
recognition model provides convincing evidence for its robust-
ness and relevance in ambient assisted living environments.

V. DISCUSSION AND CONCLUSION

In this paper, we evaluated and compared three approaches
to activity recognition (i.e. SVM, ANN and SVM-HMM) on
real world data, i. our own generated dataset and ii. a publicly
available dataset, using the smartphones’ inertial sensors. This
was done in an attempt to find the best classification accuracy
for our bidirectional context awareness system within an AAL
context. Experimental results reveal the superiority of the
hybrid SVM-HMM classifier for human activity recognition
against the ANN and SVM classifiers within an AAL context.
Moreover, we have demonstrated the successful use of the
smartphone for sensing in AAL, which made the data collec-
tion process inexpensive and easy to setup, and less obtrusive
for our target users.

In total, we obtained the following recognition accuracies
91.4%, 97.6% and 99.7% for the ANN, SVM, SVM-HMM
respectively. Albeit the SVM and ANN classifiers demon-
strated good performance, the results show that SVM and
ANN classifiers are less robust in dealing with the complex-
ities and uncertainties of activity recognition data as stand
alone classifiers. Through a combination of the time warping
capabilities of the HMM and discriminative properties of
the SVM, we obtained improved detection accuracies on all
classes, demonstrating that the hybrid approach was better
to overcome the HMM’s weakness of discriminating between
different classes.

Although smartphone based activity recognition offers great
potential, it is not without limitations. For instance, within
uncontrolled AAL environments, the smartphone’s operational
and functional challenges could impede large-scale adoption.
Common challenges include limited battery life, memory
capacity and processing power, privacy concerns and users
deciding to turn off the device or possibly forgetting to charge
or carry the device as discussed in [51], [52]. Moreover,
location sensitivity could be an issue as the smartphone’s
sensors are heavily dependent on the sensor’s positioning
and orientation on the participant’s body as posited in [53].
In the future, this could be addressed with the use of the
magnetometer as proposed in [17].

On the other hand, the problem of participant sensitivity i.e.,
varying motion patterns among different people, makes recog-
nition accuracy highly dependent on the participants used in
the training and testing phases. By making our dataset publicly
available, we contribute to the availability of diversified and
reliable public mobile activity recognition datasets discussed
in [51] through the inclusion of people from different countries
with different age groups between 22 and 79 years.

While there is room for improvement in the area of
smartphone based human activity recognition, we believe
the application of machine learning to activity recognition
problems using smartphone sensors in AAL holds promise for
data scientists, designers and engineers to explore innovative
solutions for the acquisition and presentation of activity data.
As a continuation of this work, we will exploit our proposed
hybrid approach in a social connectedness setting with an AAL
context.
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