
167

CryVE:

CAVE System

Modding the CryEngine2

to create a

CHAPTER 7

Marija Nakevska
Alex Juarez

Jun Hu

168

169

CryVE: Modding the CryEngine2 to create
a CAVE system

Marija Nakevska, Alex Juarez, Jun Hu,
Dept. of Industrial Design, Eindhoven University of
Technology, Eindhoven, The Netherlands
m.nakevska@tue.nl, acordova@tue.nl, j.hu@tue.nl

Game engines and game mods
Game engines

A game engine is a multiplatform middleware software system that facilitates
game development. Game engines include functionality needed to develop
game applications by using a flexible and reusable software platform. This
helps to reduce costs and complexity in game development. Fundamental
components of modern game engine platforms are a rendering engine for
2D or 3D graphics, and a physics engine for accurate physics simulation.
Other common features are collision detection, sound, scripting, animation,
artificial intelligence, networking, streaming, etc.

An example application of game engines is a first person shooter (FPS) game.
A first person shooter (FPS) game is a video game in which the players see
the world from the eyes of their characters and the game revolves primarily
around eliminating or disabling other entities in the game world. A first
person shooter game engine is a game engine specialized for simulating 3D
environments for use in a first-person shooter video game.

Game engines are often used for other kinds of interactive applications
with real-time graphical needs such as marketing demos, architectural
visualizations, training simulations, and modeling environments. As
game engine technology has matured and become more user-friendly, the
application of game engines has also broadened in scope and game engines are
used in visualization, training, medical and military simulation applications.

Game mods

Game engines allow designers to create new game behaviors and graphics by
plugging into reusable architectures that handle polygon rendering, camera
control, lighting and so on. Game engines usually come with scripting

170

languages that allow users to modify behaviors, create new worlds or modify
existing games into completely new ones. Game modifications (generally
called mods) are software plugins made by the general public or developer.
They can include new items, characters, models, textures, levels, story lines,
music and other game mods. Game mods are not standalone software and
require the user to have the original game release in order to run.

Commercial game developers have promoted game mods to the community
in an “open architecture” approach where partial codes and updates are
available to manipulate the game engine. User-created content is usually
gathered in knowledge bases for game playing, editing, level (or map) building
and distribution. With creating new content and knowledge bases, the
community extends and enriches game play experiences. The community also
provides free support and tutorials for code alterations, hints for obtaining
performance benefits of each other.

Cry Engine

CryEngine is a multiplatform game engine originally developed by Crytek.
CryEngine has opened up many possibilities for game designers with its
ability to handle extremely large photorealistic interior and vast outdoor
spaces while still supporting the scene details (Seeley, 2007).

CryEngine supports a number of features that are useful for creating
immersive and realistic games and virtual environments. The necessary
development tools are integrated with the engine itself, including CryEngine
Sandbox world editing system and the Mod SDK that are available as free
downloads.

Crysis Mod SDK

Crysis Mod SDK contains tools; assets and game source code to help modders
(gamers, hobbyists, and game developers) create their own game mods. The
kit includes everything needed to set up a custom modification for Crysis and
CryEngine2, including sample code, tools, mods and assets.

CryEngine Sandbox Editor gives full real-time control to the developers
over their multi-platform creations. It introduces a “What You See Is What
You Play” (WYSIWYP) system where games can be produced and played
immediately. The Sandbox editor is used to create levels for CryEngine-based
games, and tools are provided within the software to facilitate scripting,

171

animation and object creation.

The foundation for a virtual world is laid by creating a new map (level).
Creation and editing of the level and the terrain is facilitated with tools for
creating landscape, surface and textures, to which different effects can be
applied.

A Flow Graph is a simple visual programming system in CryEngine that
gives designers an intuitive interface to create and control events, triggers,
game logic, effects, and sound design. The Flow Graph System facilitates the
building of complex levels without the need of writing code.

The Track View is an editing tool embedded in the Sandbox Editor that
allows creating cut scenes for making interactive movie sequences. Creating
cinematic cut scenes and scripted events can be done in-game by setting a
sequence of objects, animations and sounds in a scene which can then be
triggered automatically by character interaction. Sequences created with Track
View can also be triggered in-game with a specific Flow Graph node.

CAVE systems

A CAVE system is an immersive virtual reality interface usually consisting
of an enclosed environment that surrounds the user with projected images.
CAVE systems appeared at the beginning of 1990’s as a visualization tool for
virtual reality environments that utilized an array of large projection screens,
resembling a room whose walls, ceiling and floor showed images specially
designed to provide the experience of “immersion” in the virtual world
(Cruz-Neira et al., 1992). Since then, several variations of this setup have been
developed, examples including asymmetric screens, portable CAVEs with
only two walls (Sauter, 2003), arrangements in ”U” shape configurations, and
semi-spherical screens.

In general, multi-screen immersive systems typically require one or two video
outputs for each screen and simultaneously utilize several interaction devices.
The capabilities of the CAVE hardware must be assessed before attempting
to develop the simulation, as running multiple projections simultaneously
requires a fast network and substantial graphical processing. If the network
bandwidth is unacceptably low or if the processor speed is inadequate, a
distributed CAVE simulation might not be feasible.

Software for CAVE systems has also evolved from research-oriented, custom-

172

made applications that modified the image aspect ratio and display quality,
into powerful software tools. Existing solutions are capable of performing
high-end 3D modeling and rendering, incorporating multiprocessing and
acting as “glue” to other virtual reality components. Other devices can also
be incorporated to the system, such as head mounted displays, 3D glasses,
pressure and temperature sensors, etc. (Cruz-Neira et al., 2002).

Recently the cost and performance of CAVE systems received a boost with
the appearance of game-engine-based virtual reality systems. These systems
used commercially available software packages - game engines - that provide
advanced simulation and graphics. The most widely known example of this
kind of system is CAVEUT (Jacobson & Lewis, 2005, Jacobson 2005), a
CAVE based on an extension of the Unreal Engine 2.5 (Unreal technology,
2010). CAVEUT public application programming interface (API) enables
users with limited programming experience to build a fully functional CAVE,
without having to modify the internal workings of the game engine itself.

A similar CAVE system was reportedly built using the Half-Life Engine
(Schou et al. 2007), however, the capabilities, implementation requirements,
and costs of such a system were not clearly explained, nor was it clear whether
it could currently compete with the graphics, physics and 3D model quality of
the Unreal Engine 2.5.

In any case, the constant development of games and game engines results in
even more accurate and realistic, state of the art simulation and rendering
of virtual environments, all done using commodity hardware. At the same
time, current game engines offer the possibility to easily modify and extend
the content and behavior of characters and virtual environments through “in-
game” editors and public APIs.

Low-cost implementation of a CAVE system

In previous publications, we mentioned that there is a gap in qualitative and
quantitative terms between commercial and open source solutions. This gap is
the difference between systems that provide stunning visuals, state of the art
modeling, rendering and visualization, and continuous support at high costs;
and systems that provide cost effective solutions, with more limited visuals,
development capabilities, and overall user experience (Nakevska et al., 2011;
Juarez et al. 2010).

As a rule of thumb, commercial solutions like the i-Space (Barco Solutions,
2010) or Apollo (HoloVis Cave solutions, 2010) CAVE systems offer

173

accurate and realistic experience customized to the needs of the client, with
extensive application and installation support, unfortunately, the cost can
be prohibitive. On the other hand, open source, non-commercial solutions
like AGAVE (Leigh et al., 2001) and CAVEUT (Jacobson et al., 2005) offer
cost-effective setups that are in many cases implemented only at education
institutions, using outdated technology, with limited development and scarce
support for potential users.

A low-cost implementation is needed to fill in the gap between commercial
and open source systems.

The main characteristics of such an implementation would be:

•	A	low-cost,	full-size	physical	construction.	While	there	
are CAVE systems of reduced dimensions at affordable
prices, the truly immersive experience comes from a
physical setup that can accommodate at least one person
standing comfortably, allowing for some space to move
and interact with the system.

•	Easy	to	setup,	maintain	and	extend.	A	system	that	
requires the intervention of experts for even the simplest
tasks are unlikely to be more efficient than those where
a dedicated enthusiast can get satisfying results. This
means that the use of standard and simple components,
as well as uncomplicated methods and mechanisms to
modify and extend the CAVE are preferred. Furthermore,
the existence of an active development community that
provides support and continuously improves and extends
the software, is also an important factor.

•	Realistic	immersive	experience.	A	successful	CAVE	
system must provide a believable experience to a spectator,
presenting a visually rich virtual environment. The
available virtual environment development toolkits
provide only a subset of the tools needed to build complete
virtual worlds, reusing the computer game technology is
alternative for building realistic virtual worlds featuring
user-friendly interaction and the simulation of real world.

174

CryVE CAVE System

CryEngine automatic Virtual Environment (CryVE) is a CAVE system based
on the game engine CryEngine 2. CryEngine 2 is game engine developed by
the company Crytek. Crytek is founded in 1999, after releasing numerous
demos of the game X-Isle, it evolved to the game Far Cry and the CryEngine
that the game uses. In 2007 the game Crysis with the CryEngine 2 was
released. The game Crysis Warhead as an expansion of Crysis was released in
2008 as a PC-exclusive game. The game engine CryEngine 3 is released on
October 2009, in August 2011 Crytek has released CryEngine 3 Free SDK
package. CryEngine 3 is free for educational and non-commercial use. Sample
assets are included with the Free SDK, but also artists, animators and audio
engineers can design and export assets to the CryEngine.

The software architecture uses the multiplayer features of a CryEngine computer
game to build projections for the different sides of the installation. The system
architecture is similar to that of CAVEUT: multiplayer instances of a CryEngine
2 game are started on all computers in the system. Computers are connected to
each other through a network hub, with one of them acting as a server (master)
while the rest are game clients (slaves). The server can control the in-game
action (walking, jumping, shooting, etc.) while the clients provide the extra
“cameras” that complete the peripheral view required by the CAVE, aligning
and synchronizing themselves to the pose and motion of the master.

Finally each computer renders its piece of the virtual world to the
corresponding projector and projection screen (see Figure 1). In principle any
computer game that is based on the CryEngine 2 can be used in a CryVE
setup. Examples of games using CryEngine 2 are Crysis, Crysis Warhead,
Entropia Universe and Blue Mars.

175

Physical Setup

The CryVE system physical setup is an arrangement of screens resembling
a cubic room, with the projection done from the outside of the room. This
allows viewers to move around inside without creating undesired shadows on
the projection screens. The installation was built around an aluminum frame
that held a plastic white translucent canvas as seen in Figure 2a.

Figure 1; CryVE system architecture.

Figure 2; Physical installation of the CryVE system.
(Left) Steel frame holding the canvas
(Right) Projectors mounted 4.0 meters above ground

176

Each side of the room measures 3 X 3 meters and five of the six walls are
projecting screens, leaving out only the floor. Each projector is controlled by
a single computer, which in turn is connected to a computer network. The
first prototype that we created consisted of only three faces of the cube used as
projection screens, resulting in a “U” CAVE configuration.

 The room enclosing the CAVE installation offered a maximum of 2.2 meters
of space on each projecting side. Due to this limitation in the physical space
available, Hitachi ED-A100 XGA projectors were used. These projectors
offer the advantage of a short throwing distance and easy image adjustment
to cover the square canvas of the projection screen, albeit at a higher cost
than normal projectors. Furthermore, the back projection nature of these
devices allowed us to mount them at 4.0 meters above ground outside of the
room, enabling free transit around the CAVE without undesired shadows
appearing on the canvas (see Figure 2b). Each projector was then connected to
a computer that controlled one of the projected faces of the room.

Software setup

The CryVE software implementation consists of three components: a game
modification (mod), a game Flow Graph and a modified multiplayer map. A
CryEngine 2 game mod is a piece of code (usually written in C++) that can
access the low-level data structures and API of the game engine, and extends

Figure 3; Physical installation of the CryVE system.

177

its functionality by modifying the behavior and appearance of characters, and
even the gameplay itself.

The CryVE mod component is in charge of deciding if a specific instance of
a game is dedicated as a server or client in the CryVE setup. If the current
instance is a master, the mod sends a signal to potential clients (other slaves)
that it is available to connect to. If the instance is a client, the mod obtains
the camera gaze of the master and aligns the camera view of the client
accordingly.

CryVE mod and programming environment of CryEngine
Level setup

Creating the foundation for a virtual world starts with the creation of a new
map (level). The Sandbox editor facilitates the process of creation of new maps.
Using the option File>New, the map is created in new folder which contains
all the required files. The most important file is the .cry file, which contains
all the major information for the editor. Creating and editing of terrain is
easily managed by using the option Terrain>Edit Terrain which opens the
Generation window (see Figure 4), where the appearance of the terrain can
be influenced by setting the parameters: feature size, noise, detail, variation,
blurring and sharpness. These parameters determine the amount of land
created the deformation of the surface, the random way of seeding of islands,
the smoothing or sharpness of the surface.

Figure 4; Creating and editing terrain.

178

The surface texture is easily generated with the option File > Generate surface
texture. In the Sandbox editor more environment setup options are available
for modifying terrain: vegetation tool, palette of effects as frozen level or
weather effects. The created level can be exported and used in game mode.
After creating the virtual world of the game the mission logic can be defined
using the Flow Graph system in the Sandbox editor.

Flow Graph

The Flow Graph is a visual scripting system built into the Sandbox Editor
for the CryEngine2. It is used by designers and programmers in creating
environment interaction logic. The Flow Graph facilitates the process of game
development by using visual scripting.

The Flow Graph uses nodes to represent entities or behaviors that can be
controlled by linking them to other nodes. Flow Graph logic is stored in XML
format and can be easily exported to disk, in order to be redistributed. A
graph is always created and stored on a specific entity which has the benefit of
the graph being exported with the object.

A Graph is the final result which defines a behavior; it consists of a series of
Nodes which are Linked together via their Port.

 A node is the representation of an entity or an action inside the Flow Graph.
Node is a container of Output and Input Ports. There are two categories of
nodes: entity nodes and component nodes.

Entity nodes represent entities, the input and output ports depend on the ports
defined in the entity. Component nodes are nodes which can perform special
functions but are not related to any entity.

A node consists of two sides, an input and an output side, the information
transfer of the nodes is handled through Ports. Ports can send out or receive
information. On the left side of a node are input ports used to connect
incoming links, links from other nodes are connected into these ports. The
ports on the right side of the node are called output ports and are activated
depending on the behavior of the node. Ports are represented in the interface
as small arrows on both sides of the nodes. Ports can have different data types;
the data type is determinate with specific colors. A port can have one of six
different types: any, Boolean, Integer, Float, String, Vec3 (data type consisting
of three float values, used to store positions, angles or color values).

179

Links are used to connect ports and transfer information between them. A
Link connects an Output Port to an Input Port between two Nodes. Link is
visualized as line between the ports of connected nodes.

Flowgraph Plugin System

The modding community provides a number of tools which reduce the
labor of making new mods. A big percentage of the modding is based on
flow graphs. In order to facilitate the modding process, the Flowgraph Plugin
System was developed (Crytek, 2011).

The Flowgraph Plugin System aims to relive the process of distribution of
new custom Flow Graph nodes. Previously, a custom mod dll that contained
all the new nodes had to be built and this dll had to be distributed to each
community member who wished to use the new nodes. The new defined
Flow Graph nodes are separated into their own lightweight dll files – plugin;
these plugins are detected and loaded by the system automatically merging
its contents of Flow Graph system into the main system. To use any plugin,
the Flowgraph Plugin System has to be installed in the relevant CrysisWars
mod. The Flowgraph Plugin System is installed by extracting the Plugin
DLLs into FGPlugin’s bin32 and bin64 folders according to the dll versions.
The users have to copy the dlls containing the Flow Graph nodes into that
folder in the mod directory. To launch the mod in the Sandbox Editor the
name of the mod has to be included in the path, with preceding –mod (see
Figure 5). With lunching Sandbox Editor the included nodes will appear in
the Flow Graph Editor.

 Figure 5; Including a mod in Sandbox Editor.

180

Setting up a programming environment

When the game Crysis Wars is installed onto the host pc, the Software
Development Kit Crysis Mod SDK folder containing the necessary code is
automatically created in C:\Program Files\Electronic Arts\Crytek\CrysisWars\
Mods. The solution file is located in the folder Code named GameDll.sln. Before
changing the code it is recommended to copy and rename the CrysisWarsMod
folder.

In the newly created folder you can find and open GameDll.sln solution file in
Visual Studio, we are using Visual C++ 2005 Express Edition.

To set up the properties of the project, right click on the project and Properties
(see Figure 6), set Configuration to Active(Debug), expand C/C++ section and
in Code Generation change Runtime Library from Multi-threaded Debug DLL(/
MDd) to Multi-threaded)/MT) and then click Apply.

Figure 6; Setting properties for Code Generation.

The path of the output file can be set using the options in Linker->General
(see Figure 7)

181

Creating a Custom Flow Node

The CryVE software uses game modification which aligns the camera view
of specific instance of a game as a server or client in the CryVE setup. This
implementation is done by creating a custom flow node which later will be
connected in Flow Graph.

The custom flow node (CFlowNode_CryVE) created for the CryVE software
has defined specific Input and Output ports. They are as follows:

Input Ports:

•				new	config	is	initialized	(EIP_SetNewConfig),

•				parameter	for	the	name	of	the	config	file	(EIP_
ConfigFileName),

•				input	when	we	want	to	restrict	the	moving	of	the	
camera in different directions (EIP_FixedCamMode),

•				input	when	we	want	to	fix	the	camera	orientation	
(EIP_FixCurrentCameraOrientation).

Output Ports: message for multiplayer setup, used as debug message (EOP_
Message).

Figure 7; Setting General properties.

182

Declaring the Class

After opening the solution file GameDll.sln in Microsoft Visual Studio, a new
source file CryVE.cpp should be created in the Nodes filter of the GameDll
project. More header files need to be included:

#include “StdAfx.h”

#include “GameRules.h”

#include “GameCVars.h”

#include “Player.h”

#include “Nodes/G2FlowBaseNode.h”

#include <string>

#include <fstream>

#include <iostream>

The precompiled header file and the Nodes/G2FlowBaseNode.h file define a
class CFlowBaseNode which aids in creating a custom flow node.

The defined class CFlowNode_CryVE inherits the CFlowBaseNode class and
overloads a few member functions to handle the logic behind the node. We
will define the following member functions:

Constructor

Signature: Constructor(SActivationInfo* pActInfo)

The Constructor will need to take in a SActivationInfo* as its only argument.
The constructor is usually used for handling the member variables that have
been defined.

Destructor

Signature: virtual Destructor(void)

GetConfiguration

Signature: void GetConfiguration(SFLowNodeConfig

183

&config)

This member function is called by the Flow Graph System to get the
information about the node from the Flow Graph Editor. The argument
config is an out variable and is used to supply the info about the node for the
system.

ProcessEvent

Signature: void ProcessEvent(EFlowEvent event,
SActivationInfo *pActInfo)

This member function will be called whenever an event needs to be
handled and implements the functions of the node. Such events include
its initialization and when a port becomes active or a key is pressed, what
means we have to load different configuration. The event argument gives
information about the event and pActInfo pass the information needed to
handle the event.

Setting up the Configuration

Configuration of a node includes information about what Input and Output
ports it has, the default values for any Input Ports, Help strings for the node
and the ports, the default values for any Input Ports used to hold data.

GetConfiguration routine handles the default values and help strings.
SFlowNodeConfig is one argument of GetConfiguration routine; this object
has two member variables that allow specifying the input and output ports.
These member variables are pointers to a data type SInputPortConfig and
SOutputPortConfig. The ports are defined into two separate arrays, one for
input and one for output ports and then supplied to the config object.

The Ports are defined in array format and each port has own index value in
the array, the portIDs are defined in enumeration object and have to be in
the same order. Two enumeration objects EInputPorts and EOutputPorts are
declared to hold the index values of the ports. Using the ports defined from
the beginning, the enumeration is:

 Examples:
enum INPUTS {
 EIP_SetNewConfig = 0,
 EIP_ConfigFileName,
 EIP_FixedCamMode,

184

 EIP_FixCurrentCameraOrientation
 };
 enum OUTPUTS
 {
 EOP_Message

 };

The signatures of the template InoutPortConfig and OutputPortConfig
functions are as followed:

Examples:

InputPortConfig<type> (Name, HelpString, HumanName, UIConfig)

InputPortConfig<type> (Name, DefaultValue, HelpString, HumanName, UIConfig)

InputPortConfig_Void (Name, HelpString, HumanName, UIConfig)

The Port arrays in GetConfiguration routine have to be static. Required
arguments when defining a port are Name and Default Value. Help string is
not mandatory but it is recommended, it helps when working with the node
in the Flow Graph Editor.

Default Value argument is used to assign a default value to the port. This
argument is used by setting the port to a common value which helps the
user in the Flow Graph Editor. If this argument holds a string value, then all
the next arguments have to be defined to at least NULL value otherwise the
compiler may confuse the Default Value argument with Help String argument
or it can throw an ambiguity error.

HelpString argument is used to define the help message the user will get in
the Flow Graph Editor when hover the mouse over the port. This argument is
not required but it is recommended to use a description which will explain the
purpose of the port.

Example: _HELP(“Call to do something!”)

HumanName argument is used to specify a more human like name for the
port used in the Flow Graph Editor.

Example: _HELP(“My Port”)

With the argument UIConfig an enumeration of possible values can be
specified and the user can select one of those values when setting the value of
the port. Enumeration is used when set of choices is limited and presented as a

185

list instead of free value.

Example: _UICONFIG(“enum_int:On=1,Off=0”)

Category of the node can be defined with using the function config.
SetCategory() to filter the nodes which can be used in the FlowGraph
Editor. The valid categories which can be set and they generally stand for:
EFLN_APPROVED, EFLN_ADVANCED, EFLN_DEBUG, EFLN_WIP,
EFLN_LEGACY, EFLN_NOCATEGORY. Depending on the set category the
node can be approved and guaranteed to work(EFLN_APPROVED), labeled
as advanced(EFLN_ADVANCED), used only for debugging purposes(EFLN_
DEBUG), considered a Work in progress(EFLN_WIP), outdated and will
be deleted (EFLN_LEGACY), or it can be labeled as no category (EFLN_
NOCATEGORY).

The GetConfiguration routine will be defined as:

void GetConfiguration(SFlowNodeConfig& config)

 {

 static const SInputPortConfig inputs[] =

 {

 InputPortConfig<bool>(“SetNewConfig”,false,_HELP(“New configuration”)),

 InputPortConfig<string>(“ConfigFilename”,_HELP(“Name config. file.”)),

 InputPortConfig<bool>(“FixedCameraMode”, _HELP(“Fixed camera.”)),

 InputPortConfig<bool>(“FixCurrentCameraOrientation”, _HELP(“”)),

 {0}

 };

 static const SOutputPortConfig outputs[] =

 {

 OutputPortConfig<string>(“Message”, _HELP(“Debug message”)),

 {0}

 };

186

 config.pInputPorts = inputs;

 config.pOutputPorts = outputs;

 config.sDescription = _HELP(“FG node that sets up a CAVE environment”);

 config.SetCategory(EFLN_APPROVED);

 }

Handling the Events

ProcessEvent member function defines the logic for handling the events of the
node. This routine has an event argument of type EFlowEvent. The datatype
EFlowEvent is an enumeration with events most important arguments are:

•			 eFE_Update event, called when the node is updated.

•				eFE_Activate event, called when one or more Input
Ports are active.

• eFE_FinalActivate, has the same function as eFE_
Activate but is called after eFE_Update.

•		 eFE_Initialize event, called after the level has been
loaded, then some basic initialization can be done.

The event argument can be wrapped in a switch statement and the events can
be handled in case statements. IsPortActive is a helper function which gives
information if the referred port is active.

In the CryVE setup we want to create a node which - depending on the
configuration - will decide if a specific instance of a game is a server or
client. Then the system is calibrated accordingly; if the current instance is
a master, the mod sends a signal to potential clients (other slaves) that it is
available to connect. If the instance is a client, the mod obtains the gaze of
the master and aligns the camera view of the client accordingly. Once the
cameras are aligned, CryVE reads a configuration file for the required image
transformation (place translation, rotation and frustum shape transformation
in 3D space).

In order to calibrate the system appropriately, there are some parameters that
must be calculated depending on the geometry of the CAVE and the desired
viewing position inside it. These parameters are the field of view (FOV), yaw,

187

pitch, and roll of the projection. M. Penna (M. Penna, 1991) showed that the
yaw, pitch and roll parameters for the perspective projection of a quadrilateral
can be calculated using

where r_x are the components of a 3 X 3 matrix that defines the desired rigid
motion rotation of the projection plane.

As the prototype implementation is a cubic CAVE, the desired point of view
was fixed at the center of the cube. This simplifies the calculation of the
camera look view parameters, resulting in

The calculation of the vertical and horizontal FOV is done by applying the
formula, where H and W are height and width of the cube, respectively

However, given the cubic shape of the CAVE, we know that FOVvertical=
FOVhorisontal. Furthermore, we observe that p = W∕2 = H ∕2, therefore, the
formula for FOV (both horizontal and vertical) can be simplified to

188

The calculation of the parameters for each face of the cube is done in a similar
way. After this, the process of translation and rotation is applied to each image
frame before it is rendered by the clients. Figure 8 shows the process diagram
for the CryVE mod.

Figure 8; CryVE mod process diagram.

Registering with the Flow Graph System

The created custom Flow Node has to be registered to be used in the Flow
Graph Editor. The system handles the node class according to which register
macro is chosen. We are using REGISTER_FLOW_NODE macro with this
registration, a new instance of the node is created each time it is used in a
graph.

REGISTER_FLOW_NODE(“Multiplayer:CryVESetup”,
CFlowNode_CryVE);

189

Other register macros which can be used to register the node

•			 REGISTER_FLOW_NODE_SINGLETON, uses a
single instance of the class for all occurrences of the node
regardless of where it is used.

•				REGISTER_FLOW_NODE_EX, REGISTER_
FLOW_NODE_SINGLETON_EX are extended
registration methods and should be used if the node class
is a template.

Using the Node in the Editor

According to registration of the node above, we can find it in the Flow Graph
Editor under Multiplayer/SetupCryVE.

The CryVE Flow Graph can encapsulate the libraries produced by the mod
into a component that can be reused in any CryEngine 2 game. The Flow
Graph defines input and output ports for the mod and connects them to other
in game components, such as player_HUD (Head-Up Display), player_id,
player_position, and player_stance. Figure 9 shows the resulting Flow Graph
in the CryVE plugin, along with other components and Flow Graphs already
available in the game engine.

Every Flow Graph must be encapsulated in a map for it to be used within a
game. In a previous academic publication (Nakevska et al., 2011) we presented
several case studies that ran as a mixed reality environment. For the needs of
every application, a map is created, which also contains the Flow Graph and
mod implementations. The map has to be installed in all the computers in the
network.

Figure 9; CryVE prototype Flow Graph.

190

A Virtual Museum Tour

We developed a conceptual design of a Virtual Museum Exhibition that
show-cased historic events from the Netherlands (Juarez et al., 2009). The
virtual environment resembled a medieval settlement, a virtual world that
recreated sixteenth century Holland (see Figure 10). For this, a medieval game
map was modified by adding dynamic interactions that could be selected by
the visitors, leading to the main historic event. Visitors of the museum can
use a portable controller in combination with CryVE to have an immersive
experience. Using a handheld device, the visitor walks through the landscape
and meets people (avatars) with whom he or she can interact. The handheld
device is used as interface for interaction and in a subtle way it will introduce
the visitor to the historic event that is about to happen in the virtual world.
Other museum visitors can also join the exhibition. Each visitor has their
own audio, and is able to select their own interaction with people in the
virtual world through the handheld device. Having separate audio and shared
visuals in the virtual world, allows visitors to have both individual and group
experiences, and at the same time, it enables them to interact with people and
objects in the virtual environment.

Virtual Garden with tangible interfaces

The Virtual Garden project is an attempt at aiding a layperson to design his
or her garden, without requiring the user to be proficient with computers. A
CryEngine-driven CAVE is used to create a convincing virtual environment.
The user can explore and manipulate this environment through a tangible
interface, which is basically a miniature representation of the virtual
environment (see Figure 11). Because of this direct mapping between
objects of the interface and of the visualization, users of the installation
can understand the interaction and start to explore the virtual environment
instantly. The current prototype is implemented using existing visualization

Figure 10; A tour in the Virtual Museum.

191

and VR techniques. The physical objects of the interface are fitted with
pattern markers and are tracked by a webcam from underneath the objects.
The position and rotation of the object from the video stream are written
to an XML file where each of the objects is a child with three attributes
(xpos, ypos, rotation). This XML file is subsequently read out by the game
engine, which dynamically updates the positions of the objects in the virtual
environment according to the acquired position data using a custom handler.

 Figure 11; Impression of the Virtual Garden.

Conclusion

We presented CryVE, CryEngine 2 game modification software which creates
the new Flow Graph node needed to enable the CryEngine to be used as
underlying software for a CAVE system. We presented the tools and methods
needed for development of this kind of modification and the advantages of
using game engine as an alternative in building virtual and mixed reality
environments. With CryVE system we have created a platform for easily
development of virtual environments; our challenge in the near future is to
develop platforms which will easily integrate different inputs from mixed

192

reality environments. Problems which have to be solved are synchronization
of the frame buffers, integration of different input devices and flexibility in
incorporation of different sensors, actuators and input/output devices.

References
Barco Solutions (2011). i-space cave system: Multi-walled stereoscopic

environment. Retrieved from http://www.barco.com/en/product/732

Cruz-Neira, C., Sandin, D., DeFanti, T., Kenyon, R., & Hart, J. (1992).
The CAVE: audio visual experience automatic virtual environment.
SIGGRAPH, June 1992.

Cruz-Neira, C., Bierbaum, A., Hartling, P., Just, C., & Meinert, K. (2005).
VR juggler-an open source platform for virtual reality applications.
40th AIAA Aerospace Sciences Meeting and Exhibit..

Crytek (2011). Cryengine2 Specifications. Retrieved from http://crytek.com/
cryengine/cryengine2/overview.

Flowgraph Plugin System for Crysis-Wars (2011). Retrieved from http://fgps.
sourceforge.net/Help/main.html

HoloVis, Cave solutions (2011). Apollo CAVE solutions: Saving time and
money through immersive visualizations. Retrieved from http://
www.holovis.com/pdf/HoloVisCAVE.pdf

Jacobson, J. & Lewis, M. (2005). Game Engine Virtual Reality with CaveUT.
IEEE Computer 38 (4), 79–82.

Jacobson, J., Le Renard, M., Lugrin, J., & Cavazza, M. (2005). The
CaveUT system: immersive entertainment based on a game engine.
Proceedings of the 2005 ACM SIGCHI International Conference on
Advances in computer entertainment technology, ACM, 187.

Juarez, A., Schonenberg, W., Bartneck, C. (2011). LIVE HISTORY - a
vision for the National Historic Museum in Arnhem, Netherlands.
Retrieved from http://nhm.id.tue.nl.

Juarez, A., Schonenberg, B., & Bartneck, C. (2010). Implementing a Low-
Cost CAVE system using the CryEngine2. Journal of Entertainment
Computing, Vol1, Issue 3-4. Elsevier, Dec. 2010, 157-164.

Nakevska, M., Vos, C., Juarez, A., Hu, J., Langereis, G. & Rauterberg, M.

193

(2011). Using Game engines in mixed reality installations. 10th
International Conference on Entertainment Computing, Vancouver,
Canada, 2011.

Penna, M. (1991). Determining camera parameters from the perspective
projection of a quadrilateral. Pattern Recognition, 24 (6), 533–541.

Leigh, J., Dawe, G., Talandis, J., He, E., Venkataraman, S., Ge, J., Sandin,
D. & DeFanti, T. (2001). Agave: Access grid augmented virtual
environment. Proc. AccessGrid Retreat, Argonne, Illinois.

Sauter, P. M. (2003), Vr2go: a new method for virtual reality development.
SIGGRAPH Comput. Graph. 37 (1) (2003) 19–24. Retrieved from
doi:http://doi.acm.org/10.1145/763993.763995.

Schou, T., Gardner, H. (2007). A Wii remote, a game engine, five sensor
bars and a virtual reality theatre. Proceedings of the 19th Australasian
conference on Computer-Human Interaction: Entertaining User
Interfaces, ACM, 234.

Seeley, H. (2007). Game technology 2007: Cryengine2. ACM SIGGRAPH
2007 Computer Animation Festival, ACM, 64.

Unreal technology (2010). Retrieved from http://www.unrealengine.com/
features

Gam
e M

ods: Design, Theory and Criticism
Champion

Are games worthy of academic attention?
Can they be used effectively in the

classroom, in the research laboratory, as
an innovative design tool, as a persuasive

political weapon? Game Mods: Design
Theory and Criticism aims to answer these
and more questions. It features chapters

by authors chosen from around the world,
representing fields as diverse as

architecture, ethnography, puppetry,
cultural studies, music education,

interaction design and industrial design.
How can we design, play with and reflect
on the contribution of game mods, related

tools and techniques, to both game
studies and to society as a whole?

Contributors include:

Erik Champion, Peter Christiansen,
 Kevin R. Conway, Eric Fassbender,

Jun Hu, Alex Juarez, Friedrich Kirschner,
Marija Nakevska, Natalie Underberg

http://etc.cmu.edu/etcpress

C
ham

pion

Game Mods: Design, Theory and Criticism

Copyright © by
Erik Champion et al.
and ETC Press 2012

ISBN: 978-1-300-54061-8
Library of Congress Control Number: 2012956042

TEXT: The text of this work is licensed under a Creative Commons
Attribution-NonCommercial-NonDerivative 2.5 License
(http://creativecommons.org/licenses/by-nc-nd/2.5/)

IMAGES: All images appearing in this work are property
of the respective copyright owners,
and are not released into the Creative Commons.
The respective owners reserve all rights.

 Design, Theory and Criticism

edited by Erik Champion

Game Mods:

Table of Contents

9 Introduction: Mod Mod Glorious Mod
 Erik Champion

27 Chapter 1: Between a Mod and a Hard Place
 Peter Christiansen

51 Chapter 2: Between Fact and Fiction in
 Cultural Heritage
 Natalie M. Underberg

67 Chapter 3: Use of “The Elder Scrolls
 Construction Set” to create a
 Virtual History Lesson
 Eric Fassbender

87 Chapter 4: Game Mods, Engines, and
 Architecture
 Kevin R. Conway

113 Chapter 5: Teaching Mods with Class
 Erik Champion

149 Chapter 6: From Games to Movies:
 Machinima and Modifications
 Friedrich Kirschner

167 Chapter 7: CryVE: Modding the CryEngine2
 to create a CAVE System
 Marija Nakevska, Jun Hu, Alex Juarez

194 Contributors

