
Interaction Primitives: Describing Interaction
Capabilities of Smart Objects in Ubiquitous

Computing Environments
Bram J.J. van der Vlist, Gerrit Niezen, Jun Hu and Loe M.G. Feijs

Department of Industrial Design
Technische Universiteit Eindhoven

Eindhoven, Netherlands
{b.j.j.v.d.vlist, g.niezen, j.hu, l.m.g.feijs}@tue.nl

Abstract—The design of ubiquitous computing environments
introduces challenges on both infrastructure level and the level
of interaction design. To support the transition from a device-
oriented paradigm towards a system-oriented paradigm with
increased interoperability, we need a framework to describe
interactions and interactive objects in such a way that the
physical and contextual meaning of the interaction is preserved.
In this paper we describe a way to model interactions in terms of
their essential elements, which we call interaction primitives: The
smallest addressable interaction elements that have a meaningful
relation to the interaction itself. By semantically describing the
user interaction capabilities of devices which are meaningful
to be shared with other devices, interoperability will not only
become possible at infrastructure level, but may also improve
user interaction in ubicomp environments.

Index Terms—ontologies; user interaction; interoperability;
semantic mapping; interaction primitives

I. INTRODUCTION

This paper introduces a view on user interaction in ubiqui-
tous computing environments [1], where user interaction is no
longer limited to “one user - one product”, but where users
interact with an ecosystem of interconnected devices.

To support this shift in user interaction from a device-
centred approach to a system-centred approach, we need the
ability to describe interactions and objects for interaction in
such a way that the physical and contextual meaning of the
interaction is preserved. In this paper we describe a framework
to model the essential elements of an interaction, which we
call interaction primitives, the smallest addressable interaction
element that has a meaningful relation to the interaction itself.
We hypothesize that user intentions can be inferred when
the interaction capabilities (in addition to device capabilities
in general) of devices are described semantically, and the
relationships between the devices or the interaction elements
of the devices are described using semantic connections [2].

We model these interactions in a mutually understandable
way by describing them in an ontology. The actual ontology is
described in section V, and we explain the use of the ontology
with a volume control example.

One possible solution to solve the interoperability problem
at the infrastructure level is the software platform developed

within the SOFIA1 (Smart Objects For Intelligent Applica-
tions) project. SOFIA is a European research project within
the ARTEMIS framework that attempts to make information
in the physical world available for smart services—connecting
the physical world with the information world. The goal of
the SOFIA IOP (Interoperability Platform) is that devices will
be able to interact on a semantic level, utilizing (potentially
different) existing underlying services or service architectures.
Part of this effort is to define a core ontology that describes
commonly used concepts, and also model exemplary domains,
more completely in a formal ontology that is expressed in
OWL2 (Web Ontology Language).

The use of interaction primitives to model the essential
elements of user interaction as is introduced in this paper, is
built on the SOFIA IOP, and is currently being implemented
by various project partners. Some of the concepts are planned
to become part of the SOFIA core ontology, while others will
be developed into application- or domain-specific ontologies.

II. RELATED WORK

In order to describe devices in terms of their physical in-
teraction capabilities, we started off with investigating various
taxonomies related to defining and classifying input devices.
Foley et al. [3] describe a taxonomy of input devices that are
structured according the graphic subtasks they can perform:
position, orientation, select, path, quantify and text entry. Card
et al. [4] pointed out that the Foley taxonomy has not tried
to define a notion of completeness, and is thus not generic
enough. Single devices appear many times in the levels of the
tree, which makes it difficult to understand the similarities
among devices. In this sense, Buxton’s taxonomy [5] is a
major step forward, identifying the elementary properties of
position, motion, and pressure. MacKinlay, Card and Robert-
son [6] extended Buxton’s work to propose additional physical
properties that underly most devices. They follow mappings
from the raw physical transducers of an input device into the
semantics of the application. Our work builds on this concept,
and is described in more detail in the following sections.

1http://www.sofia-project.eu/
2http://www.w3.org/TR/owl2-overview/

IEEE Africon 2011 - The Falls Resort and Conference Centre, Livingstone, Zambia, 13 - 15 September 2011

978-1-61284-993-5/11/$26.00 ©2011 IEEE



MacKinlay et al. consider the following to be important
parts of an input device:

• the geometry of the transducers of physical manipulation,
e.g. rotation around the Z-axis;

• the domain of values that the transducer can produce, e.g.
0◦ − 270◦;

• device resolution, e.g. maps continuous region into
{0◦, 45◦, 90◦};

• connections among devices, e.g. mapping
SelectorKnob to AMTuner and FMTuner, and
mapping the rotation of {0◦, 45◦, 90◦} to the set {OFF,
ON} for both tuners.

They then define an input device to be a 6-tuple <M, In,
S, R, Out, W> where:

• M is a manipulation operator, corresponding to the phys-
ical property vector;

• In is the input domain set over which the manipulation
operator will sense a value;

• S is the current state of the device;
• R is a resolution function that maps from the input domain

to the output domain set;
• Out is the output domain set, which describes the range

of the resolution function; and
• W is a general purpose set of device properties that

describes additional aspects of how the input device
works, such as its physical characteristics or its internal
mechanism.

To describe the connections between input devices and
application parameters, the output domain set of one device is
mapped to the input domain set of another device, typically an
output device. Only three parameters are needed: The output
domain of the first device, the mapping function and the input
domain of the second device, e.g. Connect (VolumeKnob,
Volume, f(θ degrees) = Cv × θ decibels) where Cv is a
constant of proportionality, determined by the gain of the con-
trol and conversion factors among the units of measurement. In
the following sections, we build on these concepts to develop
a generic model for describing user interaction in a ubiquitous
computing environment.

Ontologies lend themselves well to describing the character-
istics of devices, the means to access such devices, and other
technical constraints and requirements that affect incorporating
a device into a smart environment [7]. Current RDF-based
schemas for representing information about device charac-
teristics (namely W3C’s CC/PP and WAP Forum’s UAProf)
directly relate to this.

The User Agent Profile (UAProf) specification, used to
describe the capabilities of mobile devices, distinguishes
between hardware and software components for devices,
but the descriptions of interaction capabilities are very
limited. For example, in the Nokia 5800 XpressMusic
UAProf profile3, the only descriptions of user interaction
capabilities are PhoneKeyPad as Keyboard, and

3nds1.nds.nokia.com/uaprof/Nokia5800d-1r100-2G.xml

“2” as NumberOfSoftKeys. Other user interaction
capabilities are defined in a Boolean fashion of yes/no,
e.g. SoundOutputCapable, TextInputCapable,
VoiceInputCapable.

A number of ontologies have been developed for ubiquitous
computing environments that may potentially be used to
describe device capabilities and characteristics. Chen et al.
[8] defined SOUPA, a context ontology to support ubiquitous
agents in their Context Broker Architecture (CoBrA). The
ontology may be used to model devices on a very basic
level (e.g. typical object properties are bluetoothMAC or
modelNumber), but it has no explicit support for modeling
user interaction and more general device capabilities.

The SPICE Mobile Ontology4 allows for the definition
of device capabilities in a sub-ontology called Distributed
Communication Sphere (DCS) [9]. A distinction is made
between device capabilities, modality capabilities and network
capabilities. It is assumed that the properties that are used to
describe outputs (e.g. acoustic/visual/tactile) can also be used
to describe inputs. This is not always the case, as for inputs we
would rather use physical properties like position, movement,
rotation, force and torque. Also, the properties should not be
used to describe the content that may be exchanged, but the
actual interaction capabilities. As an example, if a device has
an AcousticOutputModalityCapability, it should
mean that the device can provide user feedback (e.g. in the
form of computer-generated speech or an audible click) and
not that the device is capable of playing music.

III. USER INTERFACE MODEL

To enable user interaction in smart spaces on the level that
was sketched in the introduction, the developer community
needs to agree on a way of describing the various elements
involved in the interactions. These interaction elements or
controls are physical by nature (i.e. they are material parts or at
least directly perceivable in the physical world), which means
that their physical meaning and some of physical properties
need to be preserved while describing them. Later in section
IV a simple example will be described, explaining why the
previous statement is important, especially when considering
that this user interaction data is shared and used by other
devices.

Figure 1 shows our proposal to model user interfaces in
terms of their physical, real-world interaction properties (like
position, movement, rotation, force and torque) and their trans-
formation towards the consequences they have in the digital
domain (e.g. triggering interaction events, changing states).
The entities represented in the model as circles are what we
call interaction primitives, the smallest addressable interaction
element that has a meaningful relation to the interaction itself.

On the left-hand side of the figure we plot entities that sense
physical properties like position, movement or pressure. We
consider these properties to be very generic, as they do not
report a user’s intention directly. The inputs first need to be

4http://ontology.ist-spice.org/

IEEE Africon 2011 - The Falls Resort and Conference Centre, Livingstone, Zambia, 13 - 15 September 2011

978-1-61284-993-5/11/$26.00 ©2011 IEEE



Physical Digital

Generic
Specific

Transformational

Mouse, Puck
   Joystick, Slider

Volume

[AdjustLevelEvent]

Keyboard [e.g. “P”,“L”,“A”,“Y”,“RETURN”]
[PlayEvent]

Media
   Controller

Gesture [SwipeEvent]
   [PinchEvent]

[PauseEvent, PlayEvent]

Mouse,
   Touch

GUI

[KeyEvent]

[VolumeUpEvent, 
 VolumeDownEvent]

[OkEvent, CancelEvent][ClickEvent]

Fig. 1. User Interface Model

transformed into an intentional event (events that express user
intention). This can happen directly, for example pressing a
play button, which is transformed into an PlayEvent. It
can also follow a series of intermediate transformational steps,
where a sequence of interaction events (possibly happening on
different devices) may be used to capture the user’s intent. This
sequence of events is then transformed into a single intentional
event.

On the right-hand side of the figure we have the digital
entities that represent the intentional events. We consider these
entities to be very specific, as they communicate the (assumed)
intention of the user’s actions directly.

Entities and their relationships in an interaction together
form an interaction path. The interaction exchange or action
between elements in the path is conducted via one or more
interaction channels along which information or action is
communicated [10]. As an example, a typical interaction path
in Figure 1 would be:

Keyboard → KeyEvent → PlayEvent
while an interaction channel exists between Keyboard and

KeyEvent.
During the transformation from physical to digital, the inter-

action devices (or their interaction primitives) also move from
generic to more specific, where generic user interfaces start
off very generic and stay generic or transformational (meaning
they have been transformed but still need further transforma-
tion). This means that such interaction devices or interaction
primitives can still be transformed into many different events
or states. When an interaction primitive travels from generic to
specific with a single transformation (like the media controller
buttons) it means that that these interaction primitives are

Event Entity this event can be performed on
AdjustLevel Volume, Lighting
switchOnOff Lighting, any SmartObject
Navigate Playlist, Menu, SequentialData
Undo/Redo Any interaction event
Stop/Start Application, Media
DragAndDrop Media
Query Media, other events

TABLE I
EXAMPLES OF TRANSFORMATIONAL EVENTS IN A SMART ENVIRONMENT

very specific UI elements (i.e. have one single function). An
example of such an interaction primitive would be a hardware
button with a specific label that is only used for one function.
As another example, consider a gesture; i.e., a (less) generic
interaction primitive that transforms from a physical movement
that is sensed in a certain way, to the digital representation
of that gesture, being a “pinch”, “swipe” etc. The pinch and
swipe are still considered transformational because they still
need to be transformed further to result in a certain interaction
event. However, in the initial transformation, some meaning
is preserved (i.e. the physical characteristics of the gesture).
These characteristics limit the number of actual events the
gesture can still be transformed into, e.g. a “swipe right”
gesture should not be transformed into a “navigate forward”
action, as this is the way we usually navigate backwards.
Table I shows some of the possible transformational events
we consider to be applicable to smart home environments
in which multimedia and lighting devices are connected for
certain applications.

Although describing user interaction capabilities of devices

IEEE Africon 2011 - The Falls Resort and Conference Centre, Livingstone, Zambia, 13 - 15 September 2011

978-1-61284-993-5/11/$26.00 ©2011 IEEE



according to the user interface model is valid for user inter-
action in general, it is specifically relevant when we consider
the notion of a smart space through which this interaction data
can be exchanged. To achieve this, all events that need to be
shared must be modelled in a mutually understandable way.
A good way of modelling them would be an ontology, as is
shown in section V.

When modelling, only that which is meaningful to be shared
with other devices is considered. It is not necessary to describe
interactions that are internal to the device and that are not
shared. An accelerometer, for example, may be modelled as
a separate device, sharing the raw accelerometer data to be
used by other devices. However, when integrated into smart
phones, the accelerometer’s data can often be abstracted as part
of an interaction path, e.g. to only share the orientation of the
device, or specific gestures measured with the accelerometer.
In this case, the raw values may only need to be available
locally on the device, to be used by the developers of other
device-specific applications.

IV. EXAMPLE: VOLUME CONTROL PROBLEM

To underline the relevance of describing a device’s inter-
action capabilities according to the user interface model we
proposed, let us consider an example. We take a fairly simple
example of sharing a “rocker switch” or a group of two buttons
that can often be found on smart phones or media players
to control the volume of various (local) audio sources (e.g.
music, ringer, movie, etc.). It is likely to assume that, when
considering a scenario where many devices are interconnected
and user interaction information can be shared, controlling the
volume of music playing remotely with the rocker switch on
your smart phone will be desirable.

Rocker switches to control volume come in different ver-
sions, but to keep it simple, we consider rocker switches that
are labeled with (+) and (-) (like we find on the iPhone 4) and
versions that are not labelled (like we find on the Samsung
Galaxy S and iPhone 3G(S)). The way the labeled buttons
appear in the physical world, prescribe that the part labeled
(+) should be mapped to adjustLevel “up” or directly
to VolumeLevelUpEvent, and adjustLevel “down” or
VolumeLevelDownEvent for the part labeled (-). For the
AdjustLevel transformation also see table I.

For the unlabeled versions it is more difficult, as just
choosing an arbitrary mapping might result in mappings that
are not expected by a user. If we take for instance the unlabeled
rocker switch of the Samsung Galaxy S, we find that they
mapped the top part of the rocker switch to “volume up” and
the lower part to “volume down” (when holding the phone
in upright/portrait position; Figure 2a). When using the phone
in landscape position, the right button is mapped to “volume
up”, and the left to “volume down”, which still makes sense
(Figure 2b). When rotated 180 degrees, from both portrait
and landscape position, the chosen mapping becomes a little
confusing as the mapping now seems reversed (Figure 2c/d).
Now, suddenly, the mapping that was chosen appears less
natural.

(a) (b)

(c) (d)

Fig. 2. Volume adjust problem: (a) portrait position, volume up; (b) landscape
position volume up; (c) portrait position (rotated 180◦), volume down; (d)
landscape position (rotated 180◦), volume down.

With something as trivial as controlling the volume, this is
not much of a problem. But when the concepts behind the
mappings become more complicated, issues like those just
described become more problematic.

This simple example shows the importance of semantic
mapping, where leaving out physical properties that are mean-
ingful to a user may result in unexpected behaviour. What
we would like to propose as an interaction primitive for an
unlabelled rocker switch, is thus not only mapping the rocker
switch up and down positions, to volume up and down, but
also taking the orientation into account. Thus making the
mapping context (orientation) dependent, and sharing the more
meaningful, contextualized mapping.

V. SEMANTIC INTERACTION ONTOLOGY

The Semantic Interaction ontology we have developed is
shown in Figure 3. As an example of how the ontology
may be used, we start off by defining a smart object and
its interaction primitives. Recalling that it is only necessary
to describe interaction primitives of a device if we use that
device’s interaction primitive to control another device through
the smart space, we can describe the volume control rocker
switch on a smart phone as an interaction primitive:

SmartPhone rdf:type SmartObject
PhoneRockerSwitch rdf:type InteractionPrimitive
SmartPhone hasInteractionPrimitive PhoneRockerSwitch

We now need to define the properties of the interaction
primitive. We start by describing the range measure, or the
range of values that the interaction primitive can produce (e.g.
the rocker switch can produce Up, Down or Neutral values).

IEEE Africon 2011 - The Falls Resort and Conference Centre, Livingstone, Zambia, 13 - 15 September 2011

978-1-61284-993-5/11/$26.00 ©2011 IEEE



SmartObject Identification
hasIdentification

hasInteractionPrimitive

InteractionPrimitive

idValue

ofIDType

xsd:string

IDType

dataValue

xsd:string / 
xsd:boolean / 

etc.

hasRangeMeasure

RangeMeasure

canBeTransformedTo

Event

launchesEvent

inXSDDateTime

xsd:dateTime(for the sake of brevity, inverse properties are not shown)

Fig. 3. Semantic Interaction Ontology

Range measure Possible values
Binary True/False, 0 or 1
SingleDigit up to 9 discrete values
DoubleDigit up to 99 discrete values
TripleDigit up to 999 discrete values
LargeDigit more than 1000 discrete values

TABLE II
RANGE MEASURES FOR INTERACTION PRIMITIVES

These range measures are similar to the measure of the
domain set used by MacKinlay (described in section II). Using
the range measures, we can then infer which transformational
events may be used to map the input values to other interaction
primitives or events. In the next version of the ontology, it
should be possible to also describe the different manipulation
operators of the interaction primitive, e.g. rotation on the z-
axis or movement along the y-axis.

Table II shows the current range measures defined in the
ontology. In our example we specify the RangeMeasure of
our interaction primitive as follows:

PhoneRockerSwitch hasRangeMeasure SingleDigit

The actual data value of the interaction primitive is de-
scribed using the dataValue property. Data values may be
strings, boolean values or other datatypes, e.g.:

PhoneRockerSwitch dataValue "neutral"ˆˆxsd:string

When PhoneRockerSwitch is pressed, the data value is
updated with:

PhoneRockerSwitch dataValue "up"ˆˆxsd:string

This enables other devices to make use of the user input on
the PhoneRockerSwitch, irrespective of the interaction
events generated. In fact, using Transformation, it
becomes possible to map the physical, generic button presses
from interaction primitives like PhoneRockerSwitch

to specific high-level events like VolumeUpEvent or
VolumeDownEvent using the default transformation
AdjustLevel as is described in table I.

By specifying the transformation using the proper OWL
2 DL (Description Logic) semantics, the reasoner should
be able to infer which user inputs can be mapped to
which specific high-level events. This shows up as a
canBeTransformedTo property between an interaction
primitive and an event.

In our example, this means that the following relationship
will be inferred:

PhoneRockerSwitch canBeTransformedTo VolumeEvent

where the "up" data value may then be mapped to
VolumeUpEvent and the "down" may be mapped to
VolumeDownEvent, which are both sub-classed from
VolumeEvent. This prevents situations (as described in
section IV) where arbitrary mappings causes some of the
semantics of the interaction to disappear.

VI. CONCLUSION

Even though the Semantic Interaction Ontology describes
parts of a SmartObject, it does not fully describe all the
properties and capabilities of the smart object. It only describes
its interaction related properties. Particularly it defines the
SmartObject interaction primitives and its identification
means.

Idempotency is the property of being able to perform the
same action twice or more times in sequence, and end up
with the same result as if the action was performed once. In
the triple store, defining a smart object or interaction primitive
is idempotent as long as the definition does not change on the
triple-level. The idempotency of interaction events depends on
whether a new timestamp is used when inserting the event into
the triple store.

IEEE Africon 2011 - The Falls Resort and Conference Centre, Livingstone, Zambia, 13 - 15 September 2011

978-1-61284-993-5/11/$26.00 ©2011 IEEE



The ontology supports the description of interaction data
generated by interaction devices and sensors. Additionally, it
shows that an interaction primitive may trigger an interaction
event or a state change that may need to be specified in more
detail by a more application-specific ontology. That is to say,
this ontology may also be used to perform semantic mapping
from the interaction data to user goals and/or available services
[11]. Any additional information related to the smart object
may be added by extending the schema defined in the Semantic
Interaction Ontology.

The ontology opens up the way to context-based in-
teraction device reconfiguration. For example, if a Con-
text Monitor application recognizes a situation where the
PhoneRockerSwitch should no longer control the volume,
but adjust the level of lighting instead, the triple could be mod-
ified accordingly. Just such a simple change would implement
a behaviour that adapts to the situation.

Context-dependent functionality changes of a control may
not necessarily be a desirable feature and there is a long
standing discussion in user interface research on whether or
not to allow for such behaviour. It should however be noted
that we only consider context-dependent meaning change with
generic interaction primitives, that in itself do not have a
specific, function related meaning (and might already being
used for different functions, like the rocker switch in the
example). Additionally, the re-mapping is only considered for
those interaction elements with compatible transformational
properties, e.g. the rocker switch may only be mapped to other
AdjustLevel transformations, and not to Start/Stop.
The specified range measures are used to control the re-
mapping between a interaction primitive and an interaction
event, in a similar way that the input and output domains of
[6] are used to control the expressiveness between an input
device and its application parameter.

Besides automatic context-dependent functionality changes
of controls, we especially consider user-initiated re-mapping of
controls. By enabling users to make associations, or semantic
connections [2] between devices or interaction elements and
devices, users can express their intentions in terms of mapping
controls [11]. These semantic connections, together with con-
text information and user interaction data described according
to the model we proposed, may be a good start to enabling
semantic interaction in ubiquitous computing environments.

While many of the issues discussed in this paper apply to
user interaction in general, the way in which interaction events
and interaction primitives are distributed between multiple
devices makes our work especially applicable to ubiquitous
computing environments. Semantic mappings between inter-
action primitives and interaction events happen not only on a
single device, and mappings between different devices is also
supported.

The use of interaction primitives to model the essential
elements of user interaction is currently being implemented by
various project partners, and up until now seem promising. A
thorough evaluation and validation is part of our next steps, as
well as integration of the introduced concepts into the SOFIA

core ontology or application- or domain-specific ontologies.

ACKNOWLEDGMENT

SOFIA is funded by the European Artemis programme
under the subprogramme SP3 Smart environments and scalable
digital service.

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific American,
September 1991.

[2] B. van der Vlist, G. Niezen, J. Hu, and L. Feijs, “Semantic connections:
Exploring and manipulating connections in smart spaces,” in Computers
and Communications (ISCC), 2010 IEEE Symposium on, 22-25 2010,
pp. 1 –4.

[3] J. D. Foley, V. L. Wallace, and P. Chan, “The human factors of
computer graphics interaction techniques,” IEEE Computer Graphics
and Applications, vol. 4, no. 11, pp. 13–48, 1984.

[4] S. K. Card, J. D. Mackinlay, and G. G. Robertson, “A morphological
analysis of the design space of input devices,” ACM Transactions
on Information Systems (TOIS), vol. 9, no. 2, p. 99, 1991. [Online].
Available: http://portal.acm.org/citation.cfm?id=123078.128726

[5] W. Buxton, “Lexical and pragmatic considerations of input structures,”
ACM SIGGRAPH Computer Graphics, vol. 17, no. 1, pp. 31–37, 1983.
[Online]. Available: http://portal.acm.org/citation.cfm?id=988586

[6] J. Mackinlay, S. Card, and G. Robertson, “A Semantic Analysis of the
Design Space of Input Devices,” Human-Computer Interaction, vol. 5,
no. 2, pp. 145–190, Jun. 1990.

[7] “OWL Web Ontology Language Use Cases and Requirements,”
http://www.w3.org/TR/webont-req/, 2004.

[8] H. Chen, F. Perich, T. Finin, and A. Joshi, “SOUPA: standard ontology
for ubiquitous and pervasive applications,” in Mobile and Ubiquitous
Systems: Networking and Services, MOBIQUITOUS 2004, 2004, pp.
258–267.

[9] C. Villalonga, M. Strohbach, N. Snoeck, M. Sutterer, M. Belaunde,
E. Kovacs, A. Zhdanova, L. Goix, and O. Droegehorn,
“Mobile ontology: Towards a standardized semantic model for
the mobile domain,” in Service-Oriented Computing-ICSOC 2007
Workshops. Springer, 2009, pp. 248–257. [Online]. Available:
http://www.springerlink.com/index/r5410m517j67w455.pdf

[10] E. Dubois and P. Gray, “A design-oriented information-flow refinement
of the asur interaction model,” Engineering Interactive Systems, vol.
4940/2008, pp. 465–482, 2008.

[11] G. Niezen, B. van der Vlist, J. Hu, and L. Feijs, “From events to goals:
Supporting semantic interaction in smart environments,” in Computers
and Communications (ISCC), 2010 IEEE Symposium on, 22-25 2010,
pp. 1029 –1034.

IEEE Africon 2011 - The Falls Resort and Conference Centre, Livingstone, Zambia, 13 - 15 September 2011

978-1-61284-993-5/11/$26.00 ©2011 IEEE


