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Abstract—When we connect smart devices to one another
we open up many new possibilities. One interesting possibility
is to support high-level semantic interaction without requiring
multiple steps on multiple devices. In this paper we investigate
how ontologies, runtime task models, Belief-Desire-Intention
(BDI) models, and the blackboard architectural pattern may
be used to enable semantic interaction for pervasive comput-
ing. An initial demonstrator was developed to visualize and
manipulate semantic connections between devices in a smart
home environment. The demonstrator provides a way for users
to physically interact with devices on a high level of semantic
abstraction without being bothered with the low-level details.

Keywords-Semantic Web; user interaction; smart home;
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I. INTRODUCTION

As computers disappear into smart environments [1],
novel human-computer interactions will be needed to deal
with the peculiarities of their environments, including invisi-
ble devices, implicit interaction, and real, virtual, and hybrid
interactions [2].

In the conventional GUI genre, designers have typically
developed prepackaged solutions for a predetermined inter-
action space, forcing users to adapt to their specific interac-
tion protocols and sequences. In ubiquitous computing, the
interaction space is ill-defined, unpredictable and emerges
opportunistically [3]. There is the risk of engendering a
mismatch between the system’s model of interaction and
the user’s mental model of the system. In these conditions,
new interaction techniques must be devised to help users
to construct helpful mental models, in order to minimize
system and user model mismatches.

A related issue is how pervasive computing differs from
the sequential nature of traditional GUI interaction. The
single point of control that is usually available in such
interfaces naturally leads to a sequential organization of
interaction. One step inevitably leads to the next; as an
example, consider a dialog box that refuses to let you do
anything else until you click either OK or Cancel. When
we interact with a smart environment, it is not only the
parallel nature of the interaction with the physical world
that is different, but also the many different ways that we
might map our tasks onto the features of the environment [4].

Another difference is that these are not necessarily single-
user interactions, but multiple users interacting in the same
smart space at the same time.

SOFIA1 (Smart Objects For Intelligent Applications) is an
European research project within the ARTEMIS framework
that attempts to make information in the physical world
available for smart services - connecting the physical world
with the information world. The goal is to enable cross-
industry interoperability and to create new user interaction
and interface concepts, to enable users to benefit from smart
environments.

The real payoff of being able to connect smart devices
to one another is that it becomes possible to support high-
level services, that would usually involve multiple steps on
multiple devices [5]. From a user’s point of view, streaming
music from a mobile device to a home entertainment system
is a single high-level task. In practice there are multiple steps
involved, and if the devices involved are from different man-
ufacturers, the user needs to learn the operational details of
each device interface in order to perform the task. Universal
Plug-and-Play (UPnP) with its device control protocols is
not considered an adequate solution, because it has no task
decomposition hierarchy and only allows for the definition
of one level of task [6].

In this paper, we investigate various models and technolo-
gies that may be combined to allow for semantic interaction
in smart environments. We also describe an initial demon-
strator of a system that implements our first steps towards
enabling semantic interaction in a smart environment.

In particular, we consider whether ontologies may be uti-
lized to infer high-level tasks, goals and activities from low-
level commands and events (and vice versa). We also look
at runtime task models and task-centered interface design
to see how these may be applied to pervasive computing
scenarios. We also consider whether the blackboard architec-
tural pattern, used by SOFIA to enable a smart space-based
computing environment, may be combined with runtime
task models and the Belief-Desire-Intention (BDI) model,
to result in a usable software architecture for pervasive
computing.

1http://www.sofia-project.eu/
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II. BACKGROUND

A. Architectural patterns for pervasive computing

Existing architectural patterns for software like Model-
View-Controller, Document-View and Presentation-
Abstract-Control are considered to be inadequate when
trying to design software architectures in the pervasive
computing domain. Pervasive computing needs new kinds
of mechanisms to meet flexibility to change the purpose,
functionality, quality and context of a software system [7].

The approach used in SOFIA is to make use of a
blackboard architectural pattern to enable cross-domain in-
teroperability. It also makes use of ontologies to enable
interoperability without requiring standardization. The first
core component of SOFIA’s interoperability platform (IOP)
is called Smart-M3 and an open source implementation is
available online2.

Given a set of smart devices, a blackboard may be used
to share information between these devices, rather than have
the devices explicitly send messages to one another. If this
information is also stored according to some ontological
representation, it becomes possible to share information
between devices that do not share the same representation
model, and focus on the semantics of that information [8].

SOFIA takes the agent, blackboard and publish/subscribe
concepts and reimplements them in a lightweight man-
ner suitable for small, mobile devices. These agents,
which are termed Knowledge Processors (KPs) can oper-
ate autonomously and anonymously by sharing information
through blackboard spaces (see figure 1). The Semantic In-
formation Broker (SIB) is the information store of the smart
space, and contains the blackboard, ontologies, reasoner and
required service interfaces for the KPs or agents.

B. Task models

A task model is often defined as a description of an
interactive task to be performed by the user of an application
through the application’s user interface. Individual elements
in a task model represent specific actions that the user
may undertake. Information on subtask ordering as well
as conditions on task execution is also included in the
model [9]. In traditional UI design, task models are used
only at design time and then discarded [5]. A task-based
user interface uses a task model at runtime to guide the
user.

A task is commonly defined as an activity performed to
reach a certain goal. A goal of a task is considered to be a
specific state that is reached after the successful execution
of a task. Tasks vary widely in their time extent. Some occur
over minutes or hours (like listening to a song or watching
a TV show), while others are effectively instantaneous, like
switching on the TV.

2Available from http://sourceforge.net/projects/smart-m3/
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Figure 1. SOFIA infrastructure model

ANSI/CEA-1028 [5] uses a single uniform task represen-
tation, compared to other representations where high-level
tasks (goals) are separated from low-level tasks (actions).
It does so at all levels of abstraction, providing more flex-
ibility when adjusting the level of granularity. We consider
this a worthwhile option to explore as this allows for the
simplification of the model.

In [10] it is suggested that task models should be based
on an ontology that describes the relevant concepts and
the relationships between them, independently of any used
graphical representations. This also allows for different
visualizations of the same task model.

Task decomposition is the most common ingredient of
task models. This creates a task tree or hierarchy that can
easily be modeled by an ontology. The most important
purpose of a task is that it changes something, otherwise
it has no reason for existing.

Van Welie et al [10] state that task models should be
able to represent the psychological, social, environmental
and situational aspects of agents and their tasks. This is
why we consider runtime task models a good fit for the
Belief-Desire-Intention (BDI) model used for constructing
intelligent agents.

C. Intelligent agents and the BDI model

The BDI model is a philosophical model of human
practical reasoning originally developed by Michael Brat-
man [11], with a number of successful implementations and
applications in the agent research community [12], [13]. It
could be argued that the BDI model is somewhat dated,
as the principles of the architecture were established in the
mid-1980s and have remained essentially unchanged since
then [14].

A desire is the motivational state of an agent, with a
goal having the added restriction that multiple active desires
must be consistent (e.g. concurrent desires of “going to a
party” and “staying at home” is not possible). When an agent
commits to a specific plan with subgoals (based on a belief,
or the informational state of the agent) it needs the capability
to reconsider these at appropriate times when the world
dynamics change. These committed plans and procedures
are called intentions, or the deliberative state of the agent.
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When building intelligent pervasive computing systems, it
may be useful to model computing entities as agents. Chen
et al. [15] defined SOUPA, a context ontology based on
OWL, to support ubiquitous agents in their Context Broker
Architecture (CoBrA). The context ontology covers contexts
in the office/campus environment, but it has no explicit
support for modeling general contexts in heterogeneous
environments.

In SOUPA, agents are defined with a strong notion of
agency, which is characterized by a set of mentalistic notions
such as knowledge, belief, intention, and obligation. In the
SOUPA ontology, both computational entities and human
users may be modeled as agents. SOUPA uses the MoGATU
BDI ontology to express the beliefs, preferences, intentions
and desires of an agent or a user, which makes it possible
to rank the priorities of plans and goals.

When the goals, plans, desires, and beliefs of different
agents are explicitly represented in the ontologies, this
information allows them to share a common understanding
of their “mental” states, helping them to cooperate and
collaborate. If we are then able to represent the human user’s
mental states in the ontology, it may help software agents to
reason about the specific needs of the users in a pervasive
environment. In SOFIA, a reasoner may also be used for
truth maintenance, belief revision, information consistency
and/or information creation [8].

D. Related ontologies

1) SOUPA: Agent/person ontologies are used to describe
actors in a system, where actors include both human and
software agents (or computing entities). In SOUPA a com-
puting entity is characterized by a set of mentalistic notions
such as knowledge, belief, intention and obligation. The
properties of a person agent includes basic profile informa-
tion (name, gender, age etc.) and contact information (e-
mail, phone number, mailing address etc.) SOUPA refer-
ences several classic domain ontologies to do this:

• FOAF - expresses and reasons about a person’s contact
profile and social connections with other people;

• MoGATU BDI - describes an abstract semantic model
for representing and computing over a user’s or an
agent’s profile in terms of their prioritized and tem-
porarily ordered actions, beliefs, desires, intentions and
goals. SOUPA uses this model to help independent
agents to share a common understanding of their “men-
tal” states, so that they can cooperate and collaborate.
The agents also help to reason about the intentions,
goals, and desires of the human users of a system.

As stated earlier, we would like to expand on this concept.
According to Ye et al [2], a set of lower independent profile
ontologies should be built, each of which would reflect the
characteristics of one aspect of a model of a person. These
profile ontologies can then be customized and combined to
satisfy particular application requirements.

2) CAMUS: One of the major goals of context-aware
computing is to provide services that are appropriate for a
person at a particular place, time, situation etc. In CAMUS,
context entities and contextual information are described in
the ontologies [16]. For the entities related to agents, there
is a top level concept called Agent. It has been further clas-
sified into SoftwareAgent, Person, Organization,
and Group. Each Agent has a property hasProfile
associated with it, whose range is AgentProfile. An
Agent is also related through the isActorOf relationship
to an Activity. The Device ontology is based the the
FIPA device ontology specification, with every Device
having the properties of hasHWProfile, hasOwner,
hasService and hasProductInfo.

While we do not necessarily agree with having organi-
zations and groups being direct subclasses of the Agent
class, it makes sense to distinguish between software agents
and persons, and also to link a profile to each one. The BDI
model may form part of the user/agent’s profile.

III. INTERACTION TILE

A. The scenario

In the context of the SOFIA project we have developed an
initial demonstrator that demonstrates an easy way to visu-
alize and manipulate semantic connections between devices
in a smart home environment. A video of the scenario is
available3 and the description is as follows:

“Mark is relaxing at home when his friend Dries arrives.
Dries comes with a portable music player loaded with
his favourite songs. He wants to play some of his recent
collections for Mark. Mark’s home is equipped with a
sophisticated surround sound system. They decide to enjoy
the music from the music player on the sound system.
Mark uses his Interaction Tile to see if he can connect
Dries’s music player to the sound system, which is connected
to the home network. The interaction tile indicates that a
connection is possible and Mark picks up the tile and shakes
it to make the connection.

All the smart devices in the home have a cube-like
representation that can be used with the interaction tile.
The interaction tile shows the connection possibilities with
a high level of semantic abstraction, hiding the complexity
of the wired or wireless networks. By interacting with the
objects, semantic connections can be built, redirected, cut or
bypassed.

Dries starts streaming his music to the environment. Now
the room is full with Dries’s music and they both enjoy
listening to it. Recently Mark has installed an ambient
lighting system that can be connected to the sound system
and renders the mood of the music by dynamic colour
lighting in the room. Mark uses the objects again to create

3http://www.youtube.com/watch?v=vdZcjqfq8RQ
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Figure 2. An overview of the demonstrator

another connection and now the room is filled with Dries’s
music and colourful lighting effects.

Mark’s roommate Sofia comes back from work and de-
cides she wants to watch a movie on the TV. She seems
somewhat annoyed by the loud music. Mark and Dries do
not want to bother her and they again use the objects to
re-arrange the music stream. Now the music is streamed
to Mark’s portable music player while also playing back at
Dries’s. It is also connected to the ambient lighting system
directly, bypassing the sound system. They both are enjoying
the same music using their own favourite earphones (and
the colourful lighting effects), but without loud music in the
environment. Now Sofia can enjoy her movie without any
disturbing music.”

From this scenario one can see that there are multiple
ways and different levels of interacting with the smart
devices in the environment. There are high-level semantic
interactions with the interaction tile (explore/make/break
connections) and also lower-level interactions with the music
player (play/pause/stop music).

The interaction tile, inspired by Kalanithi and Merrill’s
“Siftables” [17], was designed to explore the connections
and interaction possibilities and manipulation by direct
manipulation, and by making simple spatial arrangements.
The interaction tile visualizes the various connections by
allowing a user to explore which objects are currently
connected, and what connections are possible. Coloured
LED lighting and light dynamics visualize the connections
and connection possibilities between the various devices. By
means of putting devices close to one of the four sides of
the tile, a user can check if there is a connection, and if not,
whether a connection is possible.

A more detailed description of the interaction tile and
the demonstrator is available in an article entitled Semantic
Connections: Exploring and Manipulating Connections in
Smart Spaces, also submitted to this workshop [18]. A visual
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Figure 3. Ontology indicating rdf:type relationships

overview of the demonstrator can be seen in figure 2.

B. Ontology used in scenario

The ontology used for the prototype was created in
OWL, the Web Ontology Language used to build expressive
ontologies for the Semantic Web.

While developing the ontology, we realized that the most
promising way of describing low-level interactions seemed
to be to describe them in terms of interaction events, which
are traceable, reversible and identifiable. An interaction
event in the smart space consists of an event ID, timestamp
and other related information (e.g. the position of the cube
next to the interaction tile). For the scenario described, we
distinguished between a number of events that can be seen
in figure 3. As a next step we want to determine how we
can use the semantics and expressivity of ontologies to infer
higher-level tasks and goals from these interaction events.

A notable object property used in the ontology is the
connectedTo property, which is both symmetric and
irreflexive. Irreflexive properties are a new feature in OWL 2.
A symmetric property is its own inverse, which means that
if we indicate a connectedTo relationship from device
A to device B, device B will also have a connectedTo
relationship to device A. Another way to think of symmetric
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Figure 4. Example instance of ontology showing some individuals

properties is that they are bidirectional relationships. An
example of an instance of the ontology used to store (and
reason about) the necessary data is shown in figure 4.

An irreflexive property is a property that never relates an
individual to itself [19]. This allows us to restrict our model
by not allowing a connectedTo relationship from a device
to itself.

To determine which other smart objects a specific device
is connected to, a simple SPARQL query suffices:

select distinct ?object where{
deviceID semcon:connectedTo ?object }

To get the last event belonging to a specific device,
including the position of the cube (representing the device)
next to the interaction tile, the SPARQL query is a little bit
more complex, but still surprisingly manageable:

select ?position ?eventType where{
deviceID semcon:hasRFIDTag ?tag .
?event semcon:hasRFIDTag ?tag .
?event semcon:hasPosition ?position .
?event a ?eventType .
?event semcon:inXSDDateTime ?time .
FILTER (
?eventType = semcon:NFCEnterEvent ||
?eventType = semcon:NFCExitEvent) }
ORDER BY DESC (?time)

A big advantage of using SPARQL and a triple store is
that it is easy to add additional constraints and/or specifics
to the query, compared to a traditional SQL database where
unions between columns and tables can get quite complex
very quickly.

We consider all class instances in the triple store to form
part of the BDI beliefs of the agent (or KP), from the
connectedTo relationships between the smart objects, to

interaction events that occurred in the past.
If we describe a sequence of actions (plan) in the ontology

to achieve a certain intention, we may then use the inter-
action events to trigger the plan, update beliefs or modify
goals. Goals may be defined in the ontology as desires,
where we can add the necessary property restrictions to
ensure that active desires are consistent.

If sequences of actions are sufficiently defined in the
ontology, we may even be able to use a reasoner to infer
subsumption hierarchies of plans based on the user’s current
actions, which in turn would allow us to determine the user’s
intentions.

IV. CONCLUSION

When user interaction and computational intelligence are
considered together with the “disappearing computer”, per-
vasive computing becomes part of the broader concept of
ambient intelligence. Marzano and Aarts [1] formulated the
following five key technology features to define the notion
of ambient intelligence:

• Embedded - many networked devices are integrated into
the environment.

• Context aware - the system can recognize you and your
situational context.

• Personalized - the system can tailor itself to meet your
needs.

• Adaptive - it can change in response to you.
• Anticipatory - the system anticipates your desires with-

out conscious mediation.
The SOFIA project tries to solve the interoperability

problem by means of a blackboard-based approach. Some
of the problems associated with current blackboard-based
platforms are scalability and access rights. While our im-
mediate goals does not involve solving these problems, they
should be considered as possible constraints.

We consider context awareness to be one of the most
important features of a smart environment, especially when
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we consider a user’s interaction with the smart space.
Considering the parallel nature of our interaction with the
physical world, any smart space will require context to help
it make sense of the many different ways in which users
map their tasks onto the environment.

Where the system tries to predict what the user is trying
to accomplish, by being adaptive and anticipatory, we need
to identify ways to give the users appropriate means to
express themselves. The possibilities, available services and
information that exist in the smart environment needs to
be communicated in a meaningful way. Only if this is
done correctly will users be able to build helpful mental
models of the functionality the environment has to offer,
set goals and make plans on how to act. By developing
novel and meaningful interaction devices, the user can then
perform the necessary actions and the system can in turn
try to understand the user’s goals and make the match
to its internal models. We see a vital role here for the
theory of product semantics [20], the study of how artefacts
acquire their meaning and use its theories to define common
concepts and semantics.

To be able to create a personalized environment, we
consider both runtime task models and the BDI model to be
important. Task models may be used to describe the user’s
actions, while the BDI model may be used to represent the
psychological, social and situational aspects of the tasks.
Once the task model is defined, the system can adapt to
the user, by mapping the user’s current activity or task to
higher-level goals and intentions.

The BDI model approach focuses on the anticipatory
aspect of ambient intelligence, where the system tries to
predict what the user is trying to accomplish. We also
hope to use the low-level events and command currently
implemented in the system to automatically infer higher-
level tasks and goals, with the final step being able to model
the user’s (and/or agent’s) intentions using an ontology.
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