
Distributed Architecture for Delivery Simulators

Jun Hu, Peter Peters, Frank Delbressine, Loe Feijs
Designed Intelligence Group, Department of Industrial Design

Eindhoven University of Technology, The Netherlands
Email: {j.hu, p.j.f.peters, f.l.m.delbressine, l.m.g.feijs}@tue.nl

Abstract—The numbers of high-risk pregnancies and pre-
mature births are increasing due to the steadily higher age of
pregnancy. Medical simulators are used in training the doc-
tors to deal with emergent perinatal situations. To enhance
the training effect, sophisticated simulators are integrated
into a realistic training environment that takes into account
the medical instruments and team aspects. The training
environment becomes increasingly complex and requires a
clear structure for different training scenarios and flexible
hardware configurations. Distributed multi-agent software
architecture with peer to peer communication facilities is
developed for this purpose. The architecture is presented in
this paper.

Keywords-distributed architecture, medical simulators,
medical training, manikin

I. INTRODUCTION

The numbers of high-risk pregnancies and premature
births are increasing due to the steadily higher age of
pregnancy. As a result, mother and child face increasing
risks for miscarriage, premature delivery, birth defects, and
health problems later in life. This makes it increasingly
important to train doctors and health care personnel to deal
with emergency perinatal situations. Medical simulators
are used more and more in training, due to the decreasing
real-life cases. To enhance the training effect, sophisticated
simulators are integrated into a realistic training envi-
ronment that takes into account the medical instruments
and team aspects [1]. The training environment becomes
increasingly complex and requires a clear structure for
different training scenarios and flexible hardware config-
urations.

II. THE MEDSIM SYSTEM

In medical education, how to act in emergency situa-
tions is often trained on an individual basis. In practice
however , patients are handled by a team from multiple
disciplines, hence the training must target on the entire
team. A British study shows that regular team training
leads to 50 percent less brain damage caused by lack of
oxygen during birth [2]. In the last few years, Máxima
Medical Center (MMC) in Veldhoven has been providing
such multidisciplinary team training using medical simu-
lations. The team training is given by a gynecologist and
an experienced midwife, taking place in a fully equipped
delivery room that tries to reproduce the real life situation
(see Figure 1). The training uses a patient simulator that
is the most advanced up to date. The aim is to increase
the skills of a multidisciplinary group of employees in

the delivery room and especially to prevent inadequate
communication in critical obstetric situations.

Patient simulators are already commercially available
from several suppliers [3], [4]. Although technically ad-
vanced, the level of realism is not particularly high. Next
to the toy like external appearance, it is also the not
really flexible material applied which has the effect that
the training experience is still quite remote from reality.
Especially, most of the commercial products today are
designed as a standalone system that does not really take
the aspects of the training environment and team training
into account. These team training aspects are for example
the communication among team members, the position of
every member, the monitoring and analysis of the team
performance and so forth. In the training environment, not
only the mother and baby manikins should be used, but
also the medial monitoring equipment, the space layout
and arrangement, lighting and noise conditions should be
taken into account. This results in a distributed training
environment and the distribution would enhance the train-
ing experience and effect [5]. Hence Eindhoven University
of Technology (TU/e) is cooperating with MMC, aiming
at the next generation simulation based training facilities.
The result of this effort is the design and implementation
of the MedSim system.

In the design, sensors and actuators are integrated into
the mother and baby manikins to simulate the delivery
process and to react on the actions taken by the team.
For example in the baby manikin, sensors are integrated
to detect the position of the baby when the baby is ma-
neuvered inside the birth channel, the pulling and holding
force being applied when the baby is pulled through the
birth channel using forceps (Figure 2), and positions of
the body parts (head, arm and legs). Actuators integrated
into the baby manikin simulate important signals that
the trainees shall observe, such as the muscle tone, skin

Figure 1. Team training with delivery simulators at MMC

Hu, J., et al., Distributed Architecture for Delivery Simulators,
in International Conference on e-Health Networking, Digital Ecosystems and Technologies (EDT 2010),
H. Tan, Editor. 2010, IEEE: Shenzhen. p. 109--112.

Figure 2. Mother and baby manikins

color, breathing behavior. These sensors and actuators
are connected to a microcontroller. The microcontroller
has a wireless network component that communicates
with other system components, for example, the mother
manikin that has sensors and actuators integrated in a
similar manner [6].

For a more realistic experience and an optimal training
result it is necessary to involve as many different senses
as possible: vision, sound, smell and also importantly a
realistic touch experience (moistness, warmth, friction).
To realize this the technology should allow mixing things
that are real and things that appear to be real, and aug-
mented reality seems to be promising. Augmented reality
is already applied in other fields at present for several
training goals where the real experience is too dangerous
or too expensive. Examples are training firemen (judging
risks for collapsing of a building or the probability of
an explosion with a tanker truck overturn), or military
personnel (training with realistic impacts of shells). In our
implementation the augmented reality is used for example
to simulate the massive blood flow when things go wrong
during the delivery process.

Next to patient simulators there are also additional
possibilities and requirements for visualizing a realistic
environment (virtual reality). One can think of adding
objects in the background (walls, doors, windows, equip-
ment, but also persons walking by). The advantage of
virtual reality is that the very same training room can be
used for very different training scenarios with little effort,
changing from a delivery room to an emergency room or
a mobile situation in an ambulance.

For team performance monitoring and analysis, video
based techniques such as 3D visual signal processing and
video content analysis are applied. 3D Depth map genera-
tion techniques create the depth map from a non-calibrated
video sequence using the “structure-from-motion” algo-
rithm. This technique facilitates the creation of a 3D
model of a scene from any view angle. Human behavior
analysis and simulation are started by the analysis of
human motion, since motion reflects the behavior. Further,
human modeling techniques including a 2D or 3D human
geometry (skeleton) model and a fitting algorithm link
the detected motion to the model, generating a reliable
model that tracks the motion with sufficient accuracy. It
enables fast semantic analysis of human behaviors. These
technologies, combined with sound and facial expression
analysis, make it possible to couple emotional state recog-
nition to the imposed conditions of the delivery simulator.

The aforementioned concepts bring more software and
hardware devices and components into the training room
than a single patient simulator. We aim at an open system
architecture that is flexible and extensible enough for the
industry to introduce further development and future tech-
nologies into simulation based team training. In the design
of the delivery simulation system, distributed sensors and
actuators are integrated into the mother manikin, the baby
manikin, as well as the environment for the purpose of
medical team training. We introduce the software architec-
ture that supports open and flexible integration, in which
XML (Extensible Markup Language) based messaging
mechanisms and P2P network technology are used.

III. SOFTWARE ARCHITECTURE

The MedSim system uses a script driven, agent based
architecture [3], [4], [7], [8], similar to the structure
proposed in [9]. During a training session many distributed
components are employed, including the mother and baby
manikins, tracking cameras, augmenting projections, med-
ical monitoring equipments, etc. Every physical compo-
nent has integrated sensors and actuators to detect the
actions of the team and the status of delivery process, and
to react upon these actions and status according to pre-
scripted scenarios and fetal-maternal models. Each physi-
cal component has a software counterpart and is modeled
as a software agent. Distributed agents communicate over
a messaging bus using a dedicated messaging protocol.
During a training session, the director agent interprets the
training scenario script and coordinates the actions and
reactions of the distributed agents accordingly, as shown
in Figure 3. XML-based scripting enables the distribution
of the events and messages, and the coordination of the
actions taken by the agents. It does not rely on a particular
system implementation and it is easily extensible [7], [10].

A. Physical components

Each physical component has it own internal structure
that implements its functionalities, as well as a commu-
nication service to connect to its software agent. This is
usually done through its embedded software. The baby
manikin is a good example.

The software in the baby manikin will have to take
care of reading the available sensors, driving the actua-
tors present, doing conversions possibly according to a
physiological model, take care of timing relations and
communication to and from the internal communication
service which in turn connects to the software agent
(Figure 4, [11]). Although the actual implementation of
the prototype software is still simple compared to what it
will be in a full fledged manikin, the same architecture
will be used for future prototypes.

1) Sensors and Actuators: All connected sensors are
read sequentially, their data values are stored and the mean
value of the last 10 measurements is calculated and used as
data to send in the sensor message. The calculation creates
a low pass filter that reduces the amount of noise that
might be present on the signal but it also prevents quick

Hu, J., et al., Distributed Architecture for Delivery Simulators,
in International Conference on e-Health Networking, Digital Ecosystems and Technologies (EDT 2010),
H. Tan, Editor. 2010, IEEE: Shenzhen. p. 109--112.

Scenario

Interpreter

Scenario

Director

Messaging Bus

Fetal-maternal

model

Baby Manikin

agent

Mother Manikin

agent

Medical

equipment agent

Baby Manikin Mother Manikin
Medical

equipment

Augmented blood

Augmented blood

projection

Video tracking

and analysis

Cameras

Scenario script

...

...

Software

Hardware

Figure 3. MedSim system overview

changes to be detected and introduces delays. Actuators
are driven as soon as the type of the incoming message
indicates it is an actuator message. The message will also
contain an indication of which actuator to drive and a value
that determines what to do with the actuator.

2) Timing: The most influential factor in all timing of
the software will be the actual speed that is needed for
reading the sensors and driving the actuators. The micro-
controller platform used in the implementation allows for
reading sensors (and driving actuators) with a repetition
rate of 20 mS, which is more than enough for most of the
sensors and actuators. For signals that would require the
fastest reaction time of the microcontroller, for example
the muscle reflex signals, a sensor with local processing
capability, a sensor with direct coupling to the related
actuator, or a more powerful microcontroller is suggested.

3) Communication: The baby manikin communicates
through the communication service. This layer of service
allows the separation of the hardware component from its
software agent. In an ideal implementation, the software
agent can be integrated into the hardware component
as part of the embedded software. Separation can be
necessary especially during the prototyping phase, or when
the physiological model applied is too complicated to to
be implemented in the embedded software.

B. Messaging protocol

In the system the agents operate separately in a de-
centralized manner. Communication among the agents is

Service Layer

I/O services Timer service Comm. service

Driver Driver

Sensor Actuator

Driver

Clock

Driver

RX/TX

Driver Layer

Physical Layer

Application Layer

Local Model

Figure 4. Inside the baby manikin

designed not to be managed through a central server, but to
be carried out by following an XML based protocol that is
independent of network protocols, hardware and software
platforms and implementation languages. The aims are
that not only in a running system can a component join
or leave the system at any moment, but also such a
component can be developed and provided separately by
a third party as long as it follows the protocol.

XML based messages are easily extensible, easy to
read, process and exchange. There are a variety of XML
protocols, including XML-PRC, SOAP, WDDX, XMI,
Jabber, ebXML, WSDL, WIDL, SCL - just to name a
few of them. The Messaging protocol for the MedSim
system went through several design iterations and the final
version (0.1.3) is based on SOAP (Simple Object Access
Protocol) [12]. Although SOAP was originally designed
as a basic messaging framework upon which web services
can be built, it was later extended for general purposes
in exchanging structured information in a decentralized,
distributed environment in a way that is independent of any
particular programming model and other implementation
specific semantics, which satisfies the requirements for
the communication between the MedSim agents. Simply
saying, the MedSim messaging protocol is an application
of SOAP. As an application, implementation of such a
protocol can easily make use of a rich set of existing
SOAP-based communication libraries for many different
hardware and software platforms.

A MedSim message has a header part and a body
part. The header part defines the related information such
as version control, transportation source and destination,
identifications for communication sessions, and quality of
service requirements. In the body part concrete message
entries are defined, each with a list of parameters. A simple
example of such a message is shown in Figure 5.

C. Messaging bus

The communication channels in the system architecture
are implemented as a function of the “Messaging Bus”,
with which the agents can send messages to or receive
messages from the other agents. The structure of the mes-
saging bus is shown in Figure 6. Although the messaging
bus is programmed in Java in our reference implemen-
tation, the components in this structure are specified as

Hu, J., et al., Distributed Architecture for Delivery Simulators,
in International Conference on e-Health Networking, Digital Ecosystems and Technologies (EDT 2010),
H. Tan, Editor. 2010, IEEE: Shenzhen. p. 109--112.

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

xmlns:medsim="http://www.deliverysimulator.id.tue.nl/medsim/">

 <SOAP-ENV:Header>

 <medsim:Sender>Baby</medsim:Sender>

 <medsim:Receiver>Mother</medsim:Receiver>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <medsim:HeartBeat>

 <rate>100</rate>

 <isNormal>true</isNormal>

 </medsim:HeartBeat>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 5. A MedSim message

abstract interfaces such that it can be implemented by a
third party using different tools on different platforms.

During the project we created three reference implemen-
tations in Java, firstly “local” then “unicasting” and “mul-
ticasting”. The local messaging bus was created firstly for
testing purposes, which only channels the communication
among agents on the same local machine. The unicasting
and multicasting messaging bus was implemented using
JXTA protocols [13]. The JXTA protocols are a set of
six protocols that have been specifically designed for ad
hoc, pervasive, and multi-hop peer-to-peer (P2P) network
computing. Using the JXTA protocols, peers can cooperate
to form self-organized and self-configured peer groups
independently of their positions in the network, and with-
out the need of a centralized management infrastructure.
The multicasting messaging bus propagates the message
to all the peers connected to the same bus. Although
multicasting may cause higher demand on the network
traffic, for a small amount of peers, it is convenient. If
the system scales up, the multicasting bus can be easily
switched to a different type, namely, a unicasting bus, by
requesting a different bus from the MessagingBusFactory.

IV. CONCLUSION

The software architecture presented in this paper is
implemented in the MedSim system, which is now used
at the MedSim Center in Eindhoven for medical training.

MessageBusFactory

MessageBus MessageFactory

Message

MessageHeader MessageBody

MessageEntry

MessageBusListener

creates

1

creates

receives

sends

LocalMessageBus

MulticastingMessageBus

UnicastingMessageBus

Figure 6. Messaging bus

The XML based messaging mechanisms and the P2P
network technology support the integration of distributed
sensors and actuators into the training environment, which
has been proven in practice to be solid and flexible.
TU/e researchers from different departments and medical
staff from MMC are working together towards the future
perinatal solutions.

REFERENCES

[1] W. Chen, J. Hu, S. Bouwstra, S. B. Oetomo, and L. Feijs,
“Sensor integration for perinatology research,” Interna-
tional Journal of Sensor Networks, 2010, to appear.

[2] M. James, “Does training in obstetric emergencies improve
neonatal outcome?” British journal of Obstetrics and Gy-
naecology, vol. 113, no. 8, 2006.

[3] J. Hu and L. Feijs, “A distributed multi-agent architecture
in simulation based medical training,” Transactions on
Edutainment, vol. III, LNCS 5940, pp. 105–115, 2009.

[4] ——, “A distributed multi-agent architecture in simulation
based medical training,” in Learning by Playing. Game-
based Education System Design and Development, ser.
Lecture Notes in Computer Science, M. Chang, R. Kuo,
Kinshuk, G.-D. Chen, and M. Hirose, Eds. Banff, Canada:
Springer Berlin / Heidelberg, 2009, vol. 5670/2009, p. 49.

[5] J. Hu, M. Janse, and H.-j. Kong, “User experience evalu-
ation of a distributed interactive movie,” in HCI Interna-
tional 2005, Las Vegas, 2005.

[6] P. Peters, L. Feijs, and G. Oei, “Plug and play architectures
for rapid development of medical simulation manikins,”
in WMSCI 2008 - The 12th World Multi-Conference on
Systemics, Cybernetics and Informatics, vol. 2, Orlando,
Florida, USA, 2008, pp. 214–219.

[7] J. Hu and L. Feijs, “Ipml: Extending smil for distributed
multimedia presentations,” in Interactive Technologies and
Sociotechnical Systems, ser. Lecture Notes in Computer
Science. Xi’an, China: Springer, 2006, vol. 4270/2006,
pp. 60–70.

[8] ——, “An agent-based architecture for distributed inter-
faces and timed media in a storytelling application,” in
The 2nd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-03), Melbourne,
Australia, 2003, pp. 1012–1013.

[9] J. Hu, “Design of a distributed architecture for enriching
media experience in home theaters,” PhD Thesis, De-
partment of Industrial Design, Eindhoven University of
Technology, 2006.

[10] ——, “Storyml: Enabling distributed interfaces for interac-
tive media,” in The Twelfth International World Wide Web
Conference, vol. CDROM, p135, Budapest, Hungary, 2003.

[11] P. Peters, “Design of a medical simulator hard- and software
architecture,” 2010, to be published.

[12] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau,
H. Nielsen, A. Karmarkar, and Y. Lafon, “Soap ver-
sion 1.2 part 1: Messaging framework. available from
http://www.w3.org/tr/soap12-part1/,” 2003.

[13] L. Gong, “Jxta: A network programming environment,”
IEEE Internet Computing, vol. 5, no. 3, pp. 88–95, 2001.

Hu, J., et al., Distributed Architecture for Delivery Simulators,
in International Conference on e-Health Networking, Digital Ecosystems and Technologies (EDT 2010),
H. Tan, Editor. 2010, IEEE: Shenzhen. p. 109--112.

