J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009 37

IPML.:

Structuring Distributed Multimedia
Presentations in Ambient Intelligent
Environments

Jun Hu, Eindhoven University of Technology, The Netherlands

Loe Feijs, Eindhoven University of Technology, The Netherlands

ABSTRACT

This paper addresses issues of distributing multimedia presentations in an ambient intelligent environ-
ment, examines the existing technologies and proposes IPML, a markup language that extends SMIL for
distributed settings. It uses a metaphor of play, with which the timing and mapping issues in distributed
presentations are covered in a natural way. A generic architecture for playback systems is also presented,
which covers the timing and mapping issues of presenting an IPML script in heterogeneous ambient intel-
ligent environments. [Article copies are available for purchase from InfoSci-on-Demand.com]

Keywords:

Ambient Intelligence; Distributed Multimedia; Play, Sofiware Architecture

INTRODUCTION

Ambient Intelligence (Aml) is introduced by
Philips Research as a new paradigm in how
people interact with technology. It envisions
digital environments to be sensitive, adaptive,
and responsive to the presence of people, and
Aml environments to change the way people
use multimedia services (Aarts, 2004). The
environments, which include many devices,
will play interactive multimedia to engage
people in a more immersive experience than
just watching television shows. People will
interact not only with the environment itself,

butalso with the interactive multimedia through
the environment.

For many years, the research and de-
velopment of multimedia technologies have
increasingly focused on models for distributed
applications, but the focus was mainly on the
distribution of the media sources. Within the
context of Aml, not only are the media sources
distributed, the presentation of and the interac-
tion with the media will also be distributed
across interface devices. This paper focuses
on the design of the structure of multimedia
content, believing that the user experience of
multimedia in a distributed environment can be

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

38 Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009

enriched by structuring both the media content
at the production side and the playback system
architecture at the user side in a proper way.
We refer to the adaptation at the user side as
the mapping problem. One important aspect
of the mapping problem is sketched in Figure
1. The content source and the script should be
independent from the question which speci.c
devicesare available attheuser’s side. This may
vary from a sophisticated home theater with
interactive robots (left) to a simple family home
with a television-like device and a lamp (right).
There is no a priori limit to the type of devices,
for example PDAs and controllable lights are
possible as well. The playback environment
need not even be a home; it could be a profes-
sional theater or a dedicated installation. The
structure should enable both the media presen-
tation and the user interaction to be distributed
and synchronized over the networked devices
in the user environment. The presentation and
interaction should be adaptive to the pro.les
and preferences of the users, and the dynamic
con.gurations of the environment.
AsFEl-Nasrand Vasilakos (2006) point out,
there is very little work that allows the adapta-
tion of the real environment configuration to the
cognitive spaces of the artists, in our example,
the authors of the content and the script. The
area of Cognitive Informatics (Wang, 2006,
2007) provides interesting insights into this
issue. In particular this is a field studies the
mechanisms and process of natural processing
and intelligence, including emotions, cogni-
tion, decision making, and its application to
entertainment, engineering, educational, and
other applications. On the one hand, the users
and the authors should not be bothered by the
complexity hidden behind the surface of the
ambient intelligence; on the other hand the
ambient intelligent environment should be
able to interpret the user’s needs in interaction
and to adapt to the author’s requirements in
presentation. The common part that the users
and the authors share is not a particular user’s
environment, but only the media content. The

media content should be structured in such a
way, that the requirements from the both sides
can meet. To structure the media content, the
following issues need to be addressed:

1. Bywhatmeanswill the authors compose the
content for many different environments?
The authors have to be able to specify the
following with minimized knowledge of
the environments: (a) Desired environment
configurations; (b) Interactive content
specification for this environment.

2. How can the system play the interac-
tive media with the cooperation of the
user(s) in a way that: (a) makes the best
use of the physical environment to match
the desired environment on the fly; (b)
enables context dependent presentation
and interaction. Here the term “context”
means the environment configuration, the
application context, the user preferences,
and other presentation circumstances; (c)
synchronizes the media and interaction in
the environment according to the script.

This paper first examines existing open
standards for synchronized media. Then the
notion of “play” is introduced as a unifying
concept, first in an informal way, later formal-
ized through the design of the language. The
language is developed in two steps: first an ex-
isting scripting language and then the language
IPML which takes full advantage of the notion
of play and addresses all of the aforementioned
issues. The latter language is based on a generic
architecture for the playback system that covers
the timing and mapping problems.

Then we discuss the three main archi-
tectural design elements which are needed to
bring the plays, written in this language, to live:
distributed agents, an action synchronization
engine, and an IPML mapper. It is through this
design that we validate the concepts and thus
prove the feasibility of IPML and demonstrate
its value.

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009 39

Figure 1. The mapping problem caused by variations in playback system architecture

OPEN STANDARDS FOR
SYNCHROIZED MEDIA

SMIL and MPEG-4 are contemporary technolo-
gies in the area of synchronized multimedia
(Battista, Casalino, & Lande, 1999,2000). SMIL
focuses on Internet applications and enables
simple authoring of interactive audiovisual
presentations, whereas MPEG-4 is a superset
oftechnologies building on the proven success
in digital television, interactive graphics ap-
plications and also interactive multimedia for
the Web. Both were the most versatile open
standards available at moment of starting the
design trajectory.

But both were challenged by the require-
ment for distributed interactions. It requires that
the technology is first of all able to describe the
distribution of the interaction and the media
objects over multiple devices. The BIFS in
MPEG-4 emphasizes the composition of media
objects on one rendering device. It doesn’t take
multiple devices into account, nor does it have
a notation for it.

SMIL 2.0 introduces the MultiWindow-
Layout module, which contains elements and
attributes providing for creation and control of
multiple top level windows (Rutledge, 2001).
This is very promising and comes closer to the
requirements of distributed content interaction.
Although these top level windows are supposed

to be on the same rendering device, they can to
some extent, be recognized as software interface
components which have the same capability.

To enable multimedia presentations over
multiple interface devices, StoryML was pro-
posed (Hu, 2003). It models the interactive
media presentation as an interactive Story
presented in a desired environment (called a
Theater). The story consists of several Storylines
and a definition of the possible user Interaction
during the story. User interaction can result in
switching between storylines, or changes within
a storyline. Dialogues make up the interaction.
A dialogue is a linear conversation between
the system and the user, which in turn consists
of Feed-forward objects, and the Feedback
objects that depend on the user’s response. The
environment may have several Interactors. The
interactors render the media objects. And finally,
the story is rendered in a Theater.

One problem of StoryML is that it uses a
mixed set of terms. “Story” and “storylines”
are from narratives, “media objects” are from
computer science, whereas interactors are
from human computer interaction. Scripting
an interactive story requires various types of
background knowledge. It is questionable
whether StoryML has succeeded in both keep-
ing the scripting language at a high level and
let the script authors only focus on the inter-
active content. “Movies did not flourish until

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

40 Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009

the engineers lost control to artists — or more
precisely, to the communications craftsmen.”
(Heckel, 1991)

StoryML uses storytelling as a metaphor
for weaving the interactive media objects to-
gether to present the content as an “interactive
story”. This metaphor made it difficult to apply
StoryML to other applications when there are
no explicit storylines or narratives. Moreover,
StoryML can only deal with linear structure
and use only a storyline switching mechanism
for interaction.

Reflecting on our experiences with Stor-
yML, it is necessary to design a script language
that has a more generic metaphor, that supports
both linear and nonlinear structures and that
can deal with complex synchronization and
interaction scenarios. Next we introduce the
metaphor of “play”, for the design of the new
scripting language, IPML.

PLAY

Instead of storytelling, Interactive Play Markup
Language (IPML) uses the more powerful meta-
phor of play. A play is a common literary form,
referring both to the written works of dramatists
and to the complete theatrical performance of
such. Playsare generally performed in a theater
by actors. To better communicate a unified in-
terpretation of the text in question, productions
are usually overseen by a director, who often
puts his or her own unique interpretation on the
production by providing the actors and other
stage people with a script. A script is a written
set of directions that tell each actor what to say
(lines) or do (actions) and when to say or do
it (timing). If a play is to be performed by the
actors without a director and a script from the
director, the results are unpredictable, if not
chaotic. It is not the intention of this paper to
give a definitive and extensive definition of the
term “play”, nor to reproduce all elements of
such a rich art form. Only the necessary parts
are taken for easier understanding and com-
munication when composing a markup script.
Here we use the word “play” for both its writ-

ten form of a script, and the stage performance
form of this script.

Timing in a Play

Timing in a play is very important whether it be
when an actor delivers a specific line, or when
a certain character enters or exits a scene. It
is important for the playwright to take all of
these into consideration. The following is an
example from Alice in Wonderland (Carroll &
Chorpenning, 1958):

ALICE: Please! Mind what you’re doing!

DUCHESS (tossing ALICE the baby): Here. . .
you may nurse it if you like. I’ve got to get
ready to play croquet with the Queen in the
garden. (She turns at the door.) Bring in the
soup. The house will be going any minute!
(Asthe DUCHESS speaks, the house starts
moving. The COOK snatches up her pot
and dashes into the house.)

COOK (to the FROG): Tidy up, and catch us!
(The FROG leaps about, picking up the
vegetables, plate, etc.)

ALICE (as the FROG works): She said “in the
garden.” Will you please tell me —

FROG: There’s no sort of use asking me. I’'m
not in the mood to talk about gardens.

ALICE: I must ask some one. What sort of
people live around here?

A few roles are involved in this part of the
play. Their lines and actions are presented by
the playwright in a sequential manner, and these
lines and actions are by default to be played
in sequence. However, these sequential lines
and actions are often not necessarily to happen
immediately one after another. For example,
it is not clear in the written play how much
of time the duchess should take to perform
the action “tossing Alice the baby” after Alice
says “Mind what you re doing” and before the
duchess says “Here . . . you may nurse it if you
like”. The director must supervise the timing of
these lines and actions for the actors to ensure

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Huand L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009 41

the performance is right in rhythm and pace.
Furthermore, things may happen in parallel
— For example, the house starts moving as the
duchess speaks, and Alice talks as the frog
works. Parallel behaviors are often described
without precise timing for performing. It is
up to the directors to decide the exact timing
based on their interpretation of the play. For
example, the director may interpret “As the
DUCHESS speaks, the house starts moving”
as “at the moment of the duchess start saying
‘The house will be going in any minute’, the
house starts moving”.

Mapping: Assigning Roles to
Actors

Actors play the roles that are described in the
script. One of the important tasks of the director
is to define the cast — assign the roles to actors.
This is often done by studying the type of a role
and the type ofanactor, and finding a good match
between them. This is also exactly the problem
for distributed presentations: determining which

Figure 2. Role types in Beijing opera

(c) Jing (face painted)

device or component to present certain type of
media objects. It can be very hard for a com-
puter to carry out this task, unless these types
are indicated in some way otherwise.

In some traditional art of play, these types
are even formalized so that a play can be easily
performed with a different cast. We found a
perfect source of inspiration in Beijing Opera.
The characterroles in Beijing Opera are divided
into four main types according to the sex, age,
social status, and profession of the character:
male roles (Sheng, Figure 2(a)); female roles
(Dan, Figure 2(b)); the roles with painted faces
(Jing, Figure 2(c)) who are usually warriors,
heroes, statesmen, or even demons; and clown
(Chou, Figure 2(d)), a comic character that
can be recognized at first sight for his special
make-up (a patch of white paint on his nose).
These types are then divided into more delicate
subtypes, for example Dan is divided into the
following subtypes: Qing Yi is a woman with a
strictmoral code; Hua Danis a vivacious young
woman; Wu Dan is a woman with martial skills
and Lao Dan is an elderly woman. In a script of

(d) Chou(clown)

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

42 Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009

Beijing Opera, roles are defined according to
these types. An actor of Beijing Opera is often
only specialized in very few subtypes. Given
the types of the roles and the types of the actors,
the task of assigning roles to actors becomes
an easy matching game.

Interactive Play

Plays can be interactive in many ways. The ac-
tors may decide their form of speech, gestures
and movements according to the responses
from the audience. This is the case in Beijing
opera, which sometimes can still be been seen
today, and which may be performed in the street
(Figure 3) or in a tea house, where the actors
and the audience are mixed — the actors and the
audience share the stage. The movements of the
actors must be adapted to the locations of the
audience, and the close distance between the
audience and the actors stimulates the interac-
tion. An example of such interaction is that the
characters often strike a pose on the stage, and
the audience is supposed to cheer with enthu-
siasm. The time span of such a pose depends
on the reactions of the audience. Although

Figure 3. 19th century drawing of Beijing opera

this is often not written in the script, such an
interactive behavior is by default incorporated
in every play of Beijing opera.

Other interactive plays allow the audience
to modify the course of actions in the perfor-
mance of the play, and even allow the audience
to participate in the performance as actors. Thus
in these plays the audience has an active role.
However, this does not mean that the readers
of a novel or the members of audience in the
theater are passive: they are quite active, but
their activity remains internal.

The written text of the play is much less than
the event of the play. It contains only the dialog
(the words that the characters actually say), and
some stage directions (the actions performed
by the characters). The play as written by the
playwright is merely a scenario which guides
the director and actors. The phenomenon of
theater is experienced inreal-time. Itis alive and
ephemeral —unlike reading a play, experiencing
a play in action is of the moment — here today,
and gone tomorrow.

To prepare for the formalization in the
next section, we fix some terms. The word
performance is used to refer to the artifact

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Huand L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009 43

the audience and the participants experience
during the course of performing a script by
preferred actors, monitored and instructed by
adirector. The script is the underlying content
representation perceived by the authors as a
composite unit, defining the temporal aspects
of the performance, and containing the actions
which are depicted by the content elements or
the references to these elements. Traditional
multimedia systems use a different set of terms
which are comparable to the terms above; they
are in many cases similar, but should not be
confused.

In the next section we review the language
elements of SMIL (Ayars et al., 2005), later
taking them as a starting point for the design of
our [IPML, preserving the good ingredients and
developing extensions that are necessary.

SMIL
Synchronized Multimedia Integration Lan-

guage (SMIL) is an XML-based language for
writing interactive multimedia presentations

Figure 4. SMIL in UML

(Ayars et al., 2005). It has easy to use timing
modules for synchronizing many different
media types in a presentation. SMIL 2.0 has a
set of markup modules.

Without attempting to list all the elements
in these modules, we show an object-oriented
view of some basic elements in Figure 4: Par,
and Seq from the timing and synchronization
module, Layout, RootLayout, TopLayout and
Region from the layout module, Area from the
linking module, MediaObject from the media
objectmodule, Meta from the meta information
modules and Head, Body from the structure
module. Details about the corresponding lan-
guage elements can be found in the SMIL 2.0
specification (Ayars et al., 2005).

The Region element provides the basics
for screen placement of visual media objects.
The specific region element that refers to the
whole presentation is the RootLayout.

Common attributes, methods and relations
for these two elements are placed in the super-
class named the Layout.

Meta
smit [%1 Head
Layout
Body b—{ Content F
0.*
Switch
Container Par
Synchronization
Seq

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

44 Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009

SMIL 2.0 introduces a MultiWindowLayout
module over SMIL 1.0, with which the top level
presentation region can also be declared with
the TopLayout element in a manner similar to
the SMIL 1.0 root-layout window, except that
multiple instances of the TopLayout element
may occur within a single Layout element.

Each presentation can have Head and Body
elements. In the Head element one can describe
common data for the presentation as whole, such
as Meta data and Layout. All Region elements
are connected to the Head.

The MediaObject is the basic building
block of a presentation. It can have its own in-
trinsic duration, for example if it is a video clip
oran audio fragment. The media element needs
not refer to a complete video file, but may be a
partofit. The Content, Container, and Synchro-
nization elements are classes introduced solely
foramore detailed explanation of the semantics
of the Par, Seq, Switch and MediaObject, and
their mutual relations.

Par and Seq are synchronization elements
for grouping more than one Content element. If
the synchronization container is Par, it means
that direct sub-elements can be presented si-
multaneously. If the synchronization container
is Seq, it means that direct sub-elements can be
presented only in sequence, one at a time. The
Body element is also a Seg container.

The connection between Content and Con-
tainer viewed as an aggregation has a different
meaning for the Synchronization element and
for the Switch element. Ifthe Container element
is Switch, which means that only one sub-ele-
ment from a set of alternative elements should
be chosen at the presentation time depending
on the settings of the player.

With the Area element, a spatial portion
of a visual object can be selected to trigger the
appearance of the link’s destination. The Area
element also provides for linking from non-
spatial portions of the media object’s display.
It allows breaking up an object into temporal
subparts, using attributes begin and end.

IPML

SMIL seems to have the ingredients for map-
ping and timing:

e Itstimingand synchronization module pro-
vides versatile means to describe the time
dependencies, which can be directly used
in the IPML design without any change.

e The SMIL linking module enables non-
linear structures by linking to another
part in the same script or to another script.
Although the Area element can only be
attached to visual objects, this limitation
can be easily solved by lifting the concept
up to a level that covers all elements that
need to have a linking mechanism.

e The SMIL layout module seems to be very
close to the need of distribution and map-
ping. The concept of separating mapping
and timing issues into two different parts,
i.e. Headand Body, makes SMIL very flex-
ible for different layouts —ifa presentation
has to be presented to a different layout
setting, only the layout part must be adapted
and the timing relations remain intact, no
matter whether this change happens before
the presentation in authoring time, or during
the presentation in run time.

Upon firstinvestigation, SMIL appears not
directly applicable for the distributed and inter-
active storytelling: it does not support a notion
of multiple devices. However later we found
that we went one step too far — the StoryML
does incorporate the concept of multiple actors,
but it is its linear timing model and narrative
structure which limit its applicability.

What needs to be done is to pick up SMIL
again as the basis for the design, extending it
with the metaphor of theater play, and bringing
inthe lessons we learnt from StoryML. Figure 5
shows the final IPML extension (marked gray)
to SMIL. The Document Type Definition (DTD)
of IPML can be found in (Hu, 2006).

Note that in Figure 5, ifall gray extensions
are removed, the remaining structure is exactly
the same as the SMIL structure as illustrated

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Huand L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

Int’'l Journal of Cognitive Informatics and

in figure 5. This is an intentional design deci-
sion: IPML is designed as an extension of
SMIL without overriding any original SMIL
components and features, so that the compat-
ibility is maximized. Any SMIL script should
be able to be presented by an IPML player
without any change. An IPML script can also
be presented by a SMIL player, although the
extended elements will be silently ignored.
The compatibility is important, because it can
reduce the cost of designing and implementing
anew IPML player — the industry may pick up
the IPML design and build an IPML player on
top of a existing SMIL player so that most of
the technologies and implementations in the
SMIL player can be reused.

Actor

The Head part of an IPML script may contain
multiple Actor elements which describe the
preferred cast of actors. Each Actor has a
type attribute which defines the requirements
of what this actor should be able to perform.

Figure 5. IPML in UML

Natural Intelligence, 3(2), 37-60, April-June 2009 45

The #ype attribute has a value of URI, which
points to the definition of the actor type. Such
a definition can be specified using for example
RDF (McBride, 2004) and its extension OWL.
RDF is alanguage for representing information
about resources in the World Wide Web. It is
particularly intended for representing metadata
about Web resources. However, by generalizing
the concept of a “Web resource”, RDF can also
be used to represent information about things
that can be identified on the Web, even when
they cannot be directly retrieved on the Web.
OWL adds more vocabulary for describing
properties and classes: among others, relations
between classes (e.g. disjointness), cardinality
(e.g. “exactly one”), equality, richer typing of
properties and characteristics of properties (e.g.
symmetry),and enumerated classes. The “thing”
we need to describe is the type of the actor.
During the performance time, the real actors
present to the theater to form a real cast. Each
actor then needs to report to the director about
what he can perform, i.e. his actor “type”. The
“type” of a real actor is defined by the actor

Bo@o—{ Content %}*

Meta 0.1 RootLayout‘
Head
Layout TopLayout ‘
&0..1 ?
0.*
Actor Region ‘
0.1 0..1
—{ Action MediaObject‘
0.* ? ?
0.* 0..*
‘ Event ‘ ‘ Area ‘
—‘ Switch
Container %1— Par
—{ Synchronization
Seq

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

46 Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009

manufacturers (well, if an actor can be manu-
factured). The real actor’s type can again be
described using an RDF or OWL specification.
The director then needs to find out which real
actor fits the preferred type best. The mapping
game becomes a task of reasoning about these
two RDF or OWL described “types”. First of
all the user’s preferences should be considered,
even if the user prefers a “naughty boy” to
performa “gentleman”. Otherwise, areasoning
process should be conducted by the director,
to see whether there is exactly an actor has a
type that “equals to” the “gentleman”, or to
find an “English man” that indeed always “isa”
“gentleman”, or at least to find a “polite man”
that “can be” a “gentleman” and that matches
“better than” a “naughty boy”, etc. This reason-
ing process can be supported by a variety of
Semantic Web (Berners-Lee & Fischetti, 1999)
tools, such as Closed World Machine (CWM)
(Berners-Lee, Hawke, & Connolly, 2004) and
Jena (McBride, 2001) just for example.

Although Alice in Wonderland would be a
difficult play to map, we can use it to illustrate
some ideas again. For example, Alice could be
played on several devices. But the Duchess is
supposed to appear impressive and with domi-
nance, so a close-up on a large screen serves
that purpose best. The Frog preferably is active
by playing with physical objects, so a robotic
device would be best. Moreover, when played
by arobot, it can jump and run around. One pos-
sible mapping, taking these simple constraints
into account, is shown in Figure 6.

Action

The Action element is similar to the MediaOb-
Jject element in SMIL. However, Action can be
applied to any type of content element which
is not explicitly defined using different media
objects such as Img, Video and Animation in
SMIL. The Action element has an attribute src
giving the URI of the content element and its
type either implicitly defined by the file name
extension in the URI if there is one, or explic-
itly defined in another attribute #ype. The type
attribute defines the type of a content element

as the type attribute of Actor defines the actor
type, using a URI referring to a definition.

Action may have an attribute acfor to
specify the preferred actor to perform it. If it
is not specified, the type of the content element
may also influence the actor mapping process:
the director needs to decide which actor is
the best candidate to perform this “type” of
action. Again, the user preference should be
taken into account first; otherwise a reason-
ing process should be conducted to find the
“gentleman” who can nicely “open the door
for the ladies”.

Inaddition, the Action element may have an
observe attribute which specifies the interested
events. This attribute is designed for an actor
to observe the events that are of interest during
the course of performing a specific action. For
example, when an actor is performing an action
to present a 3D object, it may be interested in
the controlling events for rotating the object.
This actor can then “observe” these events and
reacton it. Note that these observed events have
no influence on the timing behavior. It will not
start nor stop presenting this 3D object unless
they are included in timing attributes, i.e., begin
and end. Events that are not listed will not be
passed by the director to the actor during this
action, thus the event propagation overhead
can be reduced.

However, some actors may be interested
in the events that are not related to certain ac-
tions. To accommodate this and not to change
the original SMIL structure, we require these
Actors to perform an action of the type null,
specified using a special URI scheme “null:”,
which allows events to be “observed” during
an action of “doing nothing”.

Event

The third extension of IPML to SMIL is event
based linking using the Event element. Event
elements in an Action element are similar to
Areaelements in a visual MediaObject element
in SMIL, with the exceptions that it does not
require the parent Action elementto have a visual
content to present, and that the events are not

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009 47

Figure 6. Mapping Alice and Duchess to large screen and Frog to robot

Duchess Vs

%)

==

limited to the activation events (clicking on an
image, for example) on visual objects. An Event
has an attribute enable to include all interested
events during an action, including all possible
timing events and user interaction events.
Once one of the specified events happens, the
linking target specified using the attribute sref’
is triggered. Similar to the Area element, the
Event element may also have begin, end and
dur attributes to activate the Event only during
aspecified interval. Event based linking makes
IPML very flexible and powerful in constructing
non-linear narratives, especially for the situ-
ations where the user interaction decides the
narrative directions during the performance.

Again with Alice in Wonderland

To show whatan IPML script would look like in
practice, we again use the example from Alice in
Wonderland. Since we can’tembed multimedia
content elements in this printed paper and we
only have printed lines and action instructions,
we introduce two exotic URI schemes: “say:”
for the lines and “do:” for the action instruc-

tions, just for the fun of it.

<ipml>
<head>
<actorid="ALICE” type="http://alice.wonderland.
eu/lovelygirl” />
<actor id="DUCHESS” type="http://alice.won-
derland.eu/seriouswoman” />
<actor id="COOK” type="http://alice.wonder-
land.eu/cook” />
<actor id="FROG”
land.eu/frog” />
<actor id="HOUSE” type="http://alice.wonder-
land.eu/woodenhouse” />
</head>
<body>
L — >
<action id="As_1" actor="ALICE” src="say:
Please! Mind what you're doing!” />
<par>
<actionid="Dd_2" actor="DUCHESS” src="do:
tossing Alice the baby” />
<action id="Ds_2" actor="DUCHESS”
src="say:Here...you may nurse it if you like,

I've got to get
\ ready to play croquet

with the Queen in the garden.” />
<action id="Ad_2" actor="ALICE” src="do:
receiving the baby” begin="Dd_2.baby-

type="http://alice.wonder-

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

48 Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009

tossed”/>

</par>

<action id="Dd_3" actor="DUCHESS” src="do:
turns at the door” />

<action id="Ds_3" actor="DUCHESS” src="say:
Bring in the soup.” />

<par>
<action actor="HOUSE” src="do:moving” />
<seq>
<par>
<action actor="DUCHESS” src="say:The
house will be going any minute!” />
<action actor="COOK” src="do:snatches
up her pot and dashes into the house” />
</par>
<action actor="COOK” src="do:turns to
the FROG” />
<action actor="COOK” src="say:Tidy up,
and catch us!”
<par>
<action actor="FROG” src="do:leaps
about” />
<action actor="FROG” src="do:picking
up the vegetables, plates, etc.” />
<action actor="ALICE” src="say:She said
‘in the garden’, will you please tell me -” />
</par>
<action actor="FROG” src="say:There’s

no sort of reason aski’r\"gy
not in the mood to

talk about gardens.” />

<action actor="ALICE” src="say:| must
ask some one.
\What sort of people live

around here?” />

</seq>

</par>

</body>
<fipml>

Now that we have a scripting language
that can be used for describing a distributed
presentation, a playback system is needed to
turn a written “play” to a performance. Next
the structure of such a playback system is
presented.

ACTORS:
DISTRIBUTED PAC AGENTS

The actors are in the system not only to perform
their actions to present the multimedia objects,
but also to provide the interface for the users
to interact with the system. Many interactive
architecture structures have been developed
along the lines of the object-oriented and the
eventdriven paradigms. Model-View-Control-
ler (MVC) (Krasner & Pope, 1988) and Pre-
sentation-Abstraction-Control (PAC) (Coutaz,
1987) are the most popular and often used ones
(Buschmann, Meunier, Rohnert, Sommerlad,
& Stal, 1996).

The MVC model divides an interactive
agent into three components: model, view and
controller, which respectively denotes process-
ing, output and input. The model component
encapsulates core data and functionality. View
components display information to the user. A
View obtains the data from the model. There
can be multiple views, each of which has an
associated controller component. Controllers
receive input, usually as events that encode
hardware signals from input devices.

Coutaz (1987) proposed a structure called
Presentation-Abstraction-Control, which maps
roughly to the notions of View-Controller pair,
Model, and the Mediator pattern (Gamma,
Helm, Johnson, & Vlissides, 1995). It is refer-
enced and organized in a pattern form by Bus-
chmann et al. (1996): the PAC pattern “defines
a structure for interactive software systems in
the form of a hierarchy of cooperating agents.
Every agent is responsible for a specific aspect
of the application’s functionality and consists
ofthree components: presentation, abstraction,
and control. This subdivision separates the hu-
man-computer interaction of the agent from its
functional core and its communication with
other agents.”

In the design of the IPML player, PAC is
selected as the overall system architecture, and
the actors are implemented as PAC agents that
are managed by the scheduling and mapping
agents in a PAC hierarchy, connected with the
channels, and performing the actions. Hu (2006)

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Huand L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009 49

argues in detail why PAC is preferred to MVC
for the IPML player.

Distributed PAC

This structure separates the user interface from
the application logic and data with both top-
down and bottom-up approaches (Figure 7). The
entire system is regarded as a top-level agentand
it is first decomposed into three components:
an Abstraction component that defines the
system function core and maintains the system
data repository, a Presentation component that
presents the system level interface to the user
and accepts the user input, and in between, a
Control component that mediates the abstract
component and the presentation component.
All the communications among them have to
be done through the control components.

At the bottom-level of a PAC architecture
are the smallest self-contained units which the
user can interact with and perform operations
on. Such a unit maintains its local states with
its own Abstraction component, and presents
its own state and certain aspects of the system
state with a Presentation component. The
communication between the presentation and
the abstraction components is again through a
dedicated Control component.

Between the top-level and bottom level
agents are intermediate-level agents. These
agents combine or coordinate lower level agents,
for example, arranging them into a certain

Figure 7. Distributed PAC in a hierarchy

layout, or synchronizing their presentations if
they are about the same data. The intermediate-
level may also have its interface Presentation
to allow the user to operate the combination
and coordination, and have an Abstraction
component to maintain the state of these opera-
tions. Again, with the same structure, there is a
control component in between to mediate the
presentation and the abstraction.

The entire system is then built up as a PAC
hierarchy: the higher-level agents coordinate
the lower level agents through their Control
components; the lower level agents provide
input and get the state information and data
from the higher level agents again through the
Control components. This approach is believed
more suitable for distributed applications and
has better stability than MVC, and it has been
used in many distributed systems and applica-
tions, suchas CSCW (Calvary, Coutaz, & Nigay,
1997), distributed real-time systems (Niemeld
& Marjeta, 1998) , web-based applications
(Illmann, Weber, Martens, & Seitz, 2000; Zhao
& Kearney, 2003), mobile robotics (Khamis,
Rivero, Rodriguez, & Salichs, 2003; Khamis,
Rodriguez, & Salichs, 2003), distributed co-
design platforms (Fougeres, 2004) and wireless
services (Niemeld, Kalaoja, & Lago, 2005).

To a large degree the PAC agents are
self-contained. The user interface component
(Presentation), the processing logic (Abstrac-
tion) and the component for communication
and mediation (Control) are tightly coupled

top level

Intermediate
level

U hottom level

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

50 Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009

together, acting as one. Separations of these
components are possible, but these distributed
components would then be regarded as PAC
agents completed with minimum implementa-
tion of the missing parts. Thus the distribution
boundaries remain only among the PAC agents
instead of composing components.

Based on this observation, each component
is formally described by Hu (2006), modeling
the communication among PAC agents with
push style channels from the Channel pattern.
In Figure 1, a “®” indicates a data supplier
component; a “o” indicates a data consumer
component and a connecting line in between
indicate the channel. The symbol “m” indicates
that the attaching component has a function of
physically presenting data to the user, and the
symbol “0” indicates the function of capturing
input from the user interface or the environ-
ment.

Actor: A PAC Agent

Afterthis detailed comparison withMVC we are
ready to harvest the fruits of the PAC style: the
PAC agents are perfectly suited to implement
the notion of “play”, that is, the central notion
in IPML scripts.

An actor is basically a PAC agent. It
reacts on the user input events and schedul-
ing commands, and takes actions to present
media objects. Hu (2006) describes an ex-
ample implementation of an actor based on
the Distributed PAC pattern and other patterns
including Synchronizable Object, Channel and
Action described therein.

IPML Player: An IPML Actor

The final IPML system is simply an IPML ac-
tor, or in other words, an Actor implementation
that is capable of presenting the IPML scripts.
IPML is a presentation description language
that extends SMIL, describing the temporal and
spatial relations among distributed actions on
synchronizable content elements.

Note that IPML is an extension of SMIL,
and a SMIL document is actually a composite

contentelementby itself. Hence an [PMLactor is
first of all a SMIL player and it may present the
contained content elements to its own Presenta-
tion component. What makes IPML superior to
a SMIL player is the capability of distributed
presentation, interaction and synchronization:
It can delegate content presentations to other
actors, synchronize the presentation actions
of these actors, and propagate distributed user
interaction events among these actors.

The IPML actor implements the role of a
Director, which has a mapping engine, creates,
manages and connects the virtual actors, and
has a timing engine which schedules the timed
actions for the delegating virtual actors (Figure
8). Depending on the physical configuration of
the “theater” — the presenting environment, the
mapping engine may also connect appropriate
“real actors” to virtual actors, where the virtual
actors keep the role of software drivers for the
“real actors”. The mapping engine may make use
of distributed lookup and registration services
such as UPNP (Michael Jeronimo, 2003) and
JINI (Edwards, 2000) to locate and maintain a
list of “real actors”, but this architecture leaves
these possibilities open to the implementation
of the mapping engine.

The timing and mapping engines are es-
sential parts of the system. In the flowing two
sections they are presented in more detail.

ACTION SYNCHRONIZATION
ENGINE

An interactive play has been defined as a
cooperative activity of multiple actors that
take actions during certain periods of time to
present content elements. An action, as the
basic component of such an activity, has a time
aspect per se. That is, a timing mechanism is
needed to decide when the actor should com-
mence the action, how long the action should
take, and how the actions are related to each
other in time.

IPML has been presented as the scripting
language, in which the SMIL timing model is
used for describing the time relations between

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009 51

Figure 8. IPML system: an IPML actor

Timing
engine
O-®
IPML Actor Director
Mapping
engine

Virtual Actor A Virtual Actor B

.- | Virtual Actor C

Real Actor A ‘ ‘ Real Actor B1 ‘ ‘ Real Actor B2 ‘

actions. A runtime synchronization engine is
presented here. It provides a powerful, flexible
and extensible framework for synchronizing
the actions. This engine is used by the direc-
tor to schedule the actions for the actors, no
matter whether the actors are distributed over
the network.

ASE Model

ASE is a runtime Action Synchronization En-
gine that takes the timing and synchronization
relations defined in an IPML script as input,
and creates an object-oriented representation
based on an extended version of the Object
Composition Petri Net (OCPN) (Little &
Ghafoor, 1990).

An ASE model is a nine tuple that extends
OCPN, seec Box 1.

The behavior of the Petri net is governed
by a set of firing rules that allows the tokens to
move from one place to another. The inclusion
ofanull value in the ranges of the functions DU
and RE means that there are places without a
pre-determined duration, and there are places
not related to any content resources.

The ASE model distinguishes priority
places from other places. Special firing rules
will be used for these priority places to imple-
ment the IPML endsync semantics and to cope
with nondeterministic durations and interaction

events. A priority place is drawn as acircle in an
ASE graph like other places, but using a special
(thicker) circle to emphasize its priority.

The added transition controllers 7C make
it possible to change the structure between
two transitions in run time. It may fire another
linked transition instead of the current enabled
transition, which can be used to repeat or skip
the structure between the controlled transition
pairs. The controller may use a counter to con-
trol the number of repeat iterations, and may
add and remove timer places in the structure
to control the total duration for repeat. This
mechanism is useful when dealing with IPML
restart, repeatCount and repeatDur semantics.
In an ASE graph, a box represents a transition
controller, and dashed lines connect the con-
trolled transition pairs (Figure 9).

As already mentioned, there are places
that do not have a pre-determined duration.
The actual duration of these places can only
be determined after the actions at these places
have been carried out. These places are called
nondeterministic places:

NP = {pl: PLIDU(pl) = null}.

Non-deterministic places in an ASE graph
are circles marked with a question mark.

Some nondeterministic places are not re-
lated to any content resources. These places are

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

52 Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009

Box 1.

where,

PL={pl,pl,,---,pl}, where f >

AR : 1O, where [
I1=PL< TR
O=TR < PL

MA:PL—>N

DU : PL — {null} R

PP:PPL
TC = {tc,,1c, -+, 1c,} where § >
CT :P(TRxTCxTR)

G, = (PL, TR, AR, MA, DU, RE, PP, TC, CT),

TR ={tr,,tr,,---,tr,}, where k> APLNTR=O

[tokens mapping places to natural numbers]

RE : PL — {null,re,,re,---,re, } where § >

[places]
[transitions]
directed arcs]
[input arcs]

[output arcs]

[durations]
[resources]
[priority places a subset of PL

[runtime transition controllers]

[TC controlled transition pairs]

Figure 9. Transition controller

try tr,

used in an ASE model to represent the actions
that need to be taken by the engine itself to
check certain conditions, to detect user interac-
tion events, or simply to block the process etc.
These places are called auxiliary places:

AP = {pl: NP\RE(pl) = null}.

Thereare also places that do have duration,
but do not have a content element attached to
it. These places are used by the ASE model
to include an arbitrary interval to construct
temporal relations. These places are called
timer places:

TP = {pl: PLIDU{pl} # null A RE(PL) =
null}.

Timerplaces are indicated withaclock icon
with the hands pointing to 9:00am. To construct
an ASE graph from an IPML script structur-
ally, it is sometimes necessary to connect two
transitions. Since an arc can only be the link
between a transition and a place, a zero-dura-
tion timer place can be inserted to maintain the
consistency. These zero-duration timer places
are called connecting places, indicated with a
clock icon with its hands pointing to 0:00pm,
and marked with an anchor link.

Table 1 shows the graph representations
of the different ASE places and their priority
versions. To show how an ASE would look like,
the example of Alice in Wonderland is again
used. The script fragment between two “<!---
->” lines in the example given in the section
“Againwith Alice in Wonderland’ are converted
to a temporal structure as shown in Figure 1.
The connecting places are not visible in this
structure, but they are essential in the process
of converting an IPML script to an ASE model.
Every temporal element in an IPML is firstly
formally mapped to an ASE model that utilizes

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009 53

Table 1. Places in ASE

Place

Normal

Priority

Normal

(-

(-

Nondeterministic

Timer

Connecting

—P

—P

connecting places. The purpose is to keep it
always possible to embed sub-models into this
model, which corresponds to the hierarchical
temporal structure of the IPML elements. A fter
the entire IPML is converted, the connecting
places in the model are removed whenever it is
possible to simplify the final ASE model.

The firing rules of ASE and the formal
process of translating an IPML script into a
simplified ASE model are described by Hu
(2006). More comprehensive examples are
also given therein.

Object-oriented Implementation of
ASE

The ASE inthe IPML system is implemented in
an object-oriented manner (Figure 11): Places
and transitions are objects with input and out-
put references that realize the arcs; transition
enabling and firing are simply event-driven
invocations. The Observer pattern can be used
toimplement the structure, where the transitions
observe the token states of the connected places.
Transition controllers are also objects with

Figure 10. An example of the ASE model

Ddb. babytossed

references to and from two related transitions.
If the different types of the places are omitted
from Figure 11, the remaining static structure
is rather simple. The dynamic behavior of
these objects is driven by the firing rules and
the implementation of the dynamic behavior is
straightforward. The remaining design problem
now is how to convertan IPML timing structure
to an ASE model.

Get Ready Just-in-time

For an action to be immediately taken at the
scheduled time, actors need to get ready prior
to that time. For media objects, enough data
needs to be prefetched; For robotic behaviors
the mechanical system needs to be at a ready
position for the next move. Two extreme strat-
egies could be adopted by the director. First,
the director informs all actors to get prepared
for all possible actions before the performance
is started; second, the director never requests
the actor to get ready before any action. The
first strategy guarantees the smooth transitions
between actions, and manages nondeterministic

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Huand L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

54 Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009

Figure 11. Object-oriented implementation of ASE

Token

0..*

‘ PriorityPlace }—‘% Place

A
Prioritization

TransitionController ‘
0..1

2
Transition ‘

PriorityAuxiliaryPlace

4{
4{

PriorityTimerPlace

NondeterministidPlace ‘

i

AuxiliaryPlace ‘

—{ PriorityNondeterministid®lace }—%
\
|

% TimerPlace ‘

1

—{ PriorityConnectingPlace }

timing and user interaction well. However the
cost is also obvious: it may result in a long
initial delay and for media objects, and every
actor needs a large buffer for prefetching all
media objects in advance. The second strategy
minimizes the initial start delay and the buffer
requirement, but every transition between two
actions will take time because the next action
only starts to be prepared after the previous one
stops. Hence smooth transitions between action
places are notpossible, unless the actions donot
need to be prepared, which is rare in multimedia
presentations. The nondeterministic user inter-
actions make the situation even worse — Users
may experience along delay between their input
actions and the system reactions. A different
approach is needed for the IPML system.

Just-in-Time Approach

The director in the IPML system uses a “just-in-
time” approach, in which the action preparation
process is required to be completed just before
the action time. With this strategy, the director
informs the actor to prepare an action before

% ConnectingPlace ‘

the action time with the necessary preparation
time taken into account. This strategy therefore
requires less use of data buffers and facilitates
more efficient use of network bandwidth.

In an ideal situation, i.e. the action time of
all actions can be determined in advance, the
start-preparation time for each action, that is,
when an actor should start preparing an action,
can be calculated based on its playback time, its
QOS request, and the estimation of the available
network bandwidth.

However for an IPML performance, the
accurate action time often cannotbe determined
before the performance takes place, because of
the nondeterministic action durations and user
interaction events. The best an ASE can do is to
predict the earliest action time for each action
as if the non-mechanistic events would happen
at the earliest possible moments. This can be
done before the performance starts, as long as
the ASE model has been established. During
the performance, adynamic error compensation
mechanism can be used to adjust the estimate
of the action time for each action and the start-
reparation time as well.

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009 55

Action Time Prediction

Once an ASE is converted and simplified from
agiven IPML, the director estimates the earliest
possible action time for each action in the ASE
by first assigning the duration of all nondeter-
ministic places to zero and then traversing the
ASE. The action time of an action is the firing
time of its starting transition. There are two
possible cases for a transition in the ASE: 1. it
has no priority input place, or 2. it has at least
one priority input place. For case 1, the firing
time of the transition is the firing time of the
preceding transition plus the maximum duration
ofthe input places. For case 2, the firing time of
the transition is instead the preceding transition
plus the smaller one between the minimum du-
ration of the priority places, and the maximum
duration of the non priority places. Note that
for time independent actions, such as presenting
images and text, if the duration is not explicitly
given, it is considered nondeterministic and its
duration is considered as zero for prediction. For
time-dependent actions, like presenting audio
and video media objects, if the duration is not
defined explicitly, the duration of the place is
the implicit duration of the object if it can be
determined from the server in advance.
During this traversal process of predicting
the earliest possible firing time of each transi-
tion, it is also necessary to deal with the transi-
tion controllers to get more accurate values. The
restart controller deals with events that could
restart an element during the active duration of
the element, so the earliest case for its ending
transition would be that there is no restart at all.
Thus, the restart controller is ignored during
prediction. The repeat controller deals with the
repeatDur attribute as well as the repeatCount
attribute. The repeatDur attribute sets the dura-
tion of repeating an element, so the firing time
of the ending transition should be the end of
the repeat duration. The repeatCount attribute
specifies the number of times to repeat, thus the
firing time of the ending transition is extended
as many times as specified. If any of them is
setto be “indefinite”, the duration is considered
nondeterministic hence a value of zero.

Dynamic Adjustment

Obviously, the actual action time of every action
willnotbe earlier than the prediction made prior
to the performance. The differences between
the actual action time of the actions that have
already been taken and their predicted earliest
times can be used to adjust the predicted ac-
tion time of the actions that have not yet been
performed. The predicted action time can then
be updated for those yet to happen. The updated
prediction of the action time can then be used
to update the start-preparation time. Note that
start-preparation time should not be updated if
the preparation request has already been sent
to the actor, since the actor may have already
started preparation and an ongoing preparation
process should not be interrupted. Nevertheless
an ASE action time prediction with this dynamic
adjustment mechanism does make the predicted
action time of later actions closer to the actual
action time, hence seems more intelligent than
without.

Distributed Time

Since they inhabit on different hardware plat-
forms, actors may have time systems that are
different from the directors. In order to get
everything synchronized, the actors must use
the director’s time, or at least agree on the time
difference. A simple approach to getactors have
the same time as the director’s, is to use clock
synchronization mechanisms to synchronize the
clocks of the underlying platforms.

Clock Synchronization

An actor may perceive data skews due to
asynchrony of its local clock with respect to
the clock of the director, which may arise due
to network delays and/or drifts in the clocks.
In the absence of synchronized clocks, the time
interval of an actor may have drifted to a value
bigger or smaller than that of the director.
Clocks can be synchronized using an
asynchronous protocol between the transport
level entities in the presence of network de-

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

56 Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009

lays compounded by clock drifts. Most clock
synchronization protocols require the entities
to asynchronously exchange their local clock
values through the network and agree on a
common clock value. These protocols use
knowledge of the network delays in reaching
agreement. For instance, the NTP requires the
entities to receive their clock values from a
central time server that maintains a highly stable
and accurate clock and to correct the received
clock values by offsetting the network delays.
For clock synchronization protocols to function
correctly, it is desirable that the network delay
is deterministic, i.e., the degree of randomness
in the delay is small and the average delay does
not change significantly during execution of
synchronization protocol. Accordingly, the
transport protocol may create a deterministic
channel with high loss and delay sensitivity
to exchange clock control information. Clock
synchronization is a complex topic of its own,
and details of such protocols are outside the
scope of this paper.

Software Clocks

The actors are not the only ones who inhabit a
hardware platform. There may be other hard-
ware or software components sharing the same
platform clock. Applying clock synchronization
mechanisms to the shared clock may result in
unexpected consequences on the components
that are not under the supervision of the play
director but have other time critical tasks of
their own.

To avoid this side effect, the IPML system
requires every actor to implement a software
clock. The actor’s clock is then synchronized
with the director’s clock using NTP according
to the director’s time on a regular interval basis.
During the update interval, the actor’s clock ticks
ahead according to the local platform time.

“Action!” delayed

Thedirectorissues action scheduling commands
over the network to the actors. “Action!” the

director yells and expects the actor immedi-
ately starts the action. In real performance,
these directing commands travel at the speed
of sound and will be heard by the actor almost
“immediately”. However in the [PML system,
these commands are not the only data traveling
through the network. A command may need to
be cut into pieces, packaged and queued at the
director’s side waiting for the network service
to move it over. Once the packages arrive at
the actor’s side, they are again put in the queue
for the network service to retrieve them. Once
retrieved, depending on the network protocol,
the data packages might need to be verified and
confirmed before the command is reassembled
and handed over to the actor. All these take time.
Depending on the protocol and the bandwidth,
it varies from few milliseconds to hundreds
of milliseconds, or even more. The command
will eventually be heard late. Since a particular
network protocol is not assumed for transport-
ing the commands, it is necessary to handle the
delay at the architecture level.

Several strategies are adopted in the [PML
system. First of all, all scheduling commands
from the director are tagged with a time stamp
that indicates when exactly the command is
issued. Upon receipt, the actor retrieves the
time stamp and compares it to its local software
clock. Since the actor’s clock is synchronized
with the director’s clock, the traveling time of
the command can be calculated. If the com-
mand is not to start an action to present time-
dependent content, the traveling time of the
command is ignored. Otherwise if the traveling
time is bigger than a QOS threshold, the actor
will skip a fragment of time-dependent content
that should have been performed right after the
command was issued and before the command s
received. Thus the distributed content elements
can always be synchronized over the network,
at the price of a small portion of the content
being dropped at the beginning. If the network
has enough bandwidth, the dropped content is
hardly noticeable by the user.

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009 57

IPML MAPPING

As learnt from the formal study on the mapping
issues (Feijs & Hu, 2004), a mapping process
is a set of controlling commands, to be sent
through control channels to the components
that are capable of copying and combining
streams from input channels to output chan-
nels. All the actors in the IPML system are all
connected through channels ina PAC hierarchy
and controlling commands can be sent though
these connecting channels. How the mapping
can be handled in a dynamic setting is briefly
described next.

Virtual Actors

Virtual actors are required in the IPML system
architecture (Figure 8) as an essential layer of
software PAC agents for dynamic mapping.
These agents can be provided by the vendors
of the real actors as a software driver, or by
the content producers as a “recommended”
actor if there is no real actor available. These
virtual actors can be provided by an installation
package which requires the user to install it in
advance, or for example an Internet resource
identified by a URL such that the virtual actor
canbe downloaded and installed automatically.
Here one shall not try to cover the security and
privacy consequences of this automatic down-
loading and installation process, since it has
been an issue for all Internet applications and
should be taken care of by dedicated protocols
and subsystems.

Once the virtual actors are available to the
IPML system, it is then registered and main-
tained by the mapping engine of the director.

Channel Resources

The system also provides and maintains a
distributed channel service over the connected
devices. Here it benefits from the design of
the channel patterns (Hu, 2006): all channels
between actors and the director are distributed
objects managed by a channel service, hence
the network resources can be easily monitored

and allocated with QOS and load balancing
taken into account. The director may query
the channel service so that the communication
conditions can be taken into account during the
mapping process.

Mapping Heuristics

The IPML director has a list of available virtual
actors together with their types given. The di-
rector also has access to the channel service to
query the channel resources to find out whether
avirtual actor is connected to areal actor. Given
an actor type as the requirement, the [IPML uses
the following heuristics to map the required
actor type to a virtual actor:

1. The user preference has top priority.

2. If after 1 multiple virtual actors can be
selected, the ones having the “closest” type
have the priority over the others.

3. If after 2 multiple virtual actors can
be selected, the ones with a real actor
connection have priority over those with-
out.

4. Ifafter 3 multiple virtual actors can be se-
lected, the one that has been selected most
recently for this type is again selected. If
none of them have ever been selected, the
director randomly selects one from these
virtual actors.

5. Ifnone ofthe virtual actors can be selected,
the director creates a “dummy” virtual actor
for this type. The “dummy” virtual actor
will do nothing but ignore all requests.

In step 2, how to decide an actor is the
“closest” to another among the others is not
clearly described. It depends on how the types
are defined. In practice, one may leave it to
an ontology reasoning system for example
a semantic web tool for RDF or OWL type
descriptions.

During the action time, these heuristic con-
ditions may change, for example, the real actors
may connect and disconnect from the “theater”
at any time, and users may change their minds
at any time to have a “gentleman” instead of a

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

58 Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009

“naughty boy” to be the actor or vice versa. To
dynamically update the mapping relations, the
director needs to repeat this mapping process
on a regular interval basis.

Actor/director Discovery

The problem now is how the virtual actors, the
real actors and the director can find each other
for registration and connection. This is actually
awell-known device/service discovery problem
and many middleware standards (for example
JINI, HAVI, OSGi and UPnP) have a solution
for it. So one may simply leave the discovery
task of registering virtual actors to the direc-
tor, and leave the task of connecting virtual
actors and the real actors to these middleware
infrastructures.

CONCLUSION

On top of existing network technologies and
platform architectures, a generic architecture
has been designed to enable playing IPML in
anetworked environment with user preference
and dynamic configurations taken into ac-
count. The architecture has been implemented
and tested in Java, and several demonstrators
have been built upon this architecture (Feijs &
Hu, 2004; Hu & Bartneck, 2005; Hu & Feijs,
2003; Hu, Janse, & Kong, 2005; Janse, van
der Stok, & Hu, 2005). It has been applied in
various projects, from big projects funded by
the Information Society Technologies program
of the European Commission (NexTV, IST-
1999-11288; ICE-CREAM, IST-2000-28298),
to small educational projects at the Department
of Industrial design, Eindhoven University of
Technology. The users of the architecture range
from the professionals inside Philips Research,
to undergraduate industrial design students.

In this design, the metaphor of play was
an essential design decision. The scripting
language and the architecture of the playback
system are designed around this metaphor. The
conceptof mapping and timing are well covered

in the architecture and proven to be easily un-
derstandable by both the system designers and
the scriptwriters. In this era of digitalization,
this might be yet another example that we still
have much to learn from the traditional arts
such as play.

REFERENCES

Aarts, E. (2004). Ambient intelligence: amultimedia
perspective. IEEE Multimedia, 11(1), 12-19.

Ayars, J., Bulterman, D., Cohen, A., Day, K., Hodge,
E., Hoschka, P., et al. (2005). Synchronized Multi-
media Integration Language (SMIL 2.0) - [Second
Edition] (W3C Recommendation).

Battista, S., Casalino, F., & Lande, C. (1999). MPEG-
4: A Multimedia Standard for the Third Millennium,
Part 1. IEEE MultiMedia, 6(4), 74-83.

Battista, S., Casalino, F., & Lande, C. (2000). MPEG-
4: A Multimedia Standard for the Third Millennium,
Part 2. IEEE MultiMedia, 7(1), 76-84.

Berners-Lee, T., & Fischetti, M. (1999). Weaving
the Web: The Original Design and Ultimate Destiny
of the World Wide Web by Its Inventor: Harper San
Francisco.

Berners-Lee, T., Hawke, S., & Connolly, D. (2004).
Semantic Web Tutorial Using N3 (Turorial).

Buschmann, F., Meunier, R., Rohnert, H., Sommer-
lad, P., & Stal, M. (1996). Pattern-Oriented Software
Architecture, Volume 1: A System of Patterns: John
Wiley & Sons, Inc.

Calvary, G., Coutaz, J., & Nigay, L. (1997). From
single-user architectural design to PAC*: a generic
software architecture model for CSCW. CHI'97
Conference, 242-249.

Carroll, L., & Chorpenning, C. B. (1958). Alice
in Wonderland: Dramatic Publishing Co., Wood-
stock.

Coutaz, J. (1987). PAC, an Implemention Model for
Dialog Design. Interact’87, 431-436.

Edwards, W. K. (2000). Core JINI: Prentice Hall
PTR.

El-Nasr, M. S., & Vasilakos, T. (2006). DigitalBeing:
AnAmbient Intelligent Dance Space. Fuzzy Systems,

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009 59

2006 IEEE International Conference on, 907-914.

Feijs, L. M. G., & Hu, J. (2004). Component-wise
Mapping of Media-needs to a Distributed Presenta-
tion Environment. The 28th Annual International
Computer Software and Applications Conference
(COMPSAC 2004), 250-257.

Fougeres, A.-J. (2004). Agents to cooperate in dis-
tributed design. /EEE International Conference on
Systems, Man and Cybernetics, 3,2629-2634.

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1995). Design Patterns - Elements of Reusable
Object-oriented Sofiware: Addison-Wesley.

Heckel, P. (1991). The Elements of Friendly Soft-
ware Design.

Hu, J. (2003). StoryML: Enabling Distributed Inter-
faces for Interactive Media. The Tivelfth International
World Wide Web Conference.

Hu, J. (2006). Design of a Distributed Architecture
for Enriching Media Experience in Home Theaters:
Technische Universiteit Eindhoven.

Hu, J., & Bartneck, C. (2005). Culture Matters - A
Study on Presence in an Interactive Movie. PRES-
ENCE 2005, The 8th Annual International Workshop
on Presence, 153-159.

Hu, J., & Feijs, L. M. G. (2003). An Adaptive
Architecture for Presenting Interactive Media onto
Distributed Interfaces. The 21st IASTED Inter-
national Conference on Applied Informatics (Al
2003), 899-904.

Hu, J., Janse, M. D., & Kong, H. (2005). User
Evaluation on a Distributed Interactive Movie. HCI
International 2005, 3 - Human-Computer Interfaces:
Concepts, New Ideas, Better Usability, and Applica-
tions, 735.731-710.

Illmann, T., Weber, M., Martens, A., & Seitz, A.
(2000). A Pattern-Oriented Design of a Web-Based
and Case Oriented Multimedia Training System in
Medicine. The 4th World Conference on Integrated
Design and Process Technology.

Janse, M. D., van der Stok, P., & Hu, J. (2005).
Distributing Multimedia Elements to Multiple
Networked Devices. User Experience Design for
Pervasive Computing, Pervasive 2005.

Khamis, A., Rivero, D. M., Rodriguez, F., & Salichs,
M. (2003). Pattern-based Architecture for Building

Mobile Robotics Remote Laboratories. /EEE Inter-
national Conference on Robotics and Automation
(ICRA°03), 3,3284-3289.

Khamis, A.,Rodriguez, F.J., & Salichs, M. A. (2003).
Remote Interaction with Mobile Robots. Autonomous
Robots, 15(3).

Krasner, G. E., & Pope, S. T. (1988). A cookbook
for using the model-view controller user interface
paradigm in Smalltalk-80. Journal of Object Oriented
Program, 1(3), 26-49.

Little, T. D. C., & Ghafoor, A. (1990). Synchroniza-
tion and Storage Models for Multimedia Objects.
IEEE Journal on Selected Areas in Communications,
8(3), 413-427.

McBride, B. (2001). Jena: Implementing the RDF
Model and Syntax Specification. Semantic Web
Workshop, WWW2001.

McBride, B. (2004). RDF Primer (W3C Recom-
mendation).

Michael Jeronimo, J. W. (2003). UPnP Design by
Example: A Software Developer s Guide to Universal
Plug and Play: Intel Press.

Niemeld, E., Kalaoja, J., & Lago, P. (2005). Toward
an Architectural Knowledge Base for Wireless Ser-
vice Engineering. IEEE Transaction on Software
Engineering, 31(5), 361-379.

Niemeld, E., & Marjeta, J. (1998). Dynamic Con-
figuration of Distributed Software Components.
ECOOP ‘98: Workshop ion on Object-Oriented
Technology, 149-150.

Rutledge, L. (2001). SMIL 2.0: XML for Web Mul-
timedia. [EEE Internet Computing, 5(5), 78-84.

Wang, Y. (2006). Cognitive Informatics - Towards the
Future Generation Computers that Think and Feel,
Keynote, Proc. 5th IEEE International Conference
on Cognitive Informatics (ICCI’06), Beijing, China,
IEEE CS Press, July, pp. 3-7.

Wang, Y. (2007). The Theoretical Framework of
Cognitive Informatics. International Journal of
Cognitive Informatics and Natural Intelligence,
1(1), 1-27.

Zhao, W., & Kearney, D. (2003). Deriving Architec-
tures of Web-Based Applications. Lecture Notes in
Computer Science, 2642,301-312.

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global

is prohibited.

J. Hu and L. Feijs, “IPML: Structuring Distributed Multimedia Presentations in Ambient Intelligent Environments,”
International Journal of Cognitive Informatics & Natural Intelligence (IJCiNi), vol. 3, no. 2, pp. 37-60, 2009.

60 Int'l Journal of Cognitive Informatics and Natural Intelligence, 3(2), 37-60, April-June 2009

Jun Hu is an assistant professor in the Department of Industrial Design at the Eindhoven University of
Technology. He has a background in mathematics, computer science and human-computer interaction. His
expertise and research interests are in interactive multimedia, software architecture and formal methods.

He is a qualified system analyst and senior programmer. He worked for several companies and institutes
including the Institute of Geophysics of Jiangsu Oil Exploration Corp (Nanjing, China), the information

center of Shaanxi Construction Machinery Co. Ltd. (Xi’an, China), the Institute of Visualization of North-

west University (Xi’an, China) and Philips Research (Eindhoven, The Netherlands).

Loe Feijs studied Electrical Engineering at TU/e and has a PhD in computer science. He is a full professor
in the Designed Intelligence group, the department of Industrial Design of Eindhoven University of Tech-
nology. His research interests include semantics, artificial languages, ambient intelligence and embedded
systems. He is the author of several books on formal specification and design.

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

