UML in Action: Integrating Formal Methods in
Industrial Design Education

Jun Hu', Philip Ross!, Loe Feijs!, and Yuechen Qian?

! Eindhoven University of Technology, 5600MB Eindhoven, NL
2 Philips Research, 5656AE Eindhoven, NL

Abstract. When designing product behavior, the designer often needs
to communicate to experts in computer software and protocols. In
present-day software engineering, formal specification methods such as
the Universal Modeling Language have been widely accepted. Teaching
design students these formal methods is non-trivial because most of
design students often have difficulties in programming the behaviors
of complex produces and systems. Instead of programming, this paper
presents a technique, namely “acting-out”, for design students to master
the formal methods. The experience shows that acting-out not only
worked out very well as a teaching technique, but also showed the
potential for bridging the processes of industrial design and software
engineering.

1 Introduction

The industrial design of embedded systems is a contemporary challenge which
deserves more attention and better support by methods and tools. For a long
time the worlds of embedded systems and industrial design developed separately.
The early examples of embedded systems included products such as telephone
exchanges, plant control, and military applications. The early examples of
industrial design included furniture, radios, cars, and household tools. In other
words: the embedded systems where invisible and their users were not given
much room for affective or spontaneous behavior. In contrast, the industrial
designers had to give high priority to the emotional associations, the styling,
the appeal, the usability and even the fun associated with the product. But now
most everyday personal objects contain embedded systems and the two worlds
are merging. At the methodological level however, much work regarding their
integration remains to be done. The present paper is meant as a contribution to
this integration.

In Fig.Ila number of methods are arranged from left to right. Formal methods
include Z, Object Z, SDL, VDM, CSP, ISpec, Larch, process algebraic methods
etc. They are close to mathematics and they enable very rigorous syntactic
and semantic analysis. Structured methods are more flexible; they developed
in a pragmatic way to answer the needs of software developers. Several useful
notations are integrated in the Universal Modeling Language (UML), which
emerged as a synthesis and de facto standard out of a rich variety of notations one

K.-c. Hui et al. (Eds.): Edutainment 2007, LNCS 4469, pp. 489 {498,[2007.
© Springer-Verlag Berlin Heidelberg 2007



490 J. Hu et al.

or two decades ago (such as Yourdon, SSAD, Objectory, OMT etc.). In the HCI
(Human Computer Interaction) and Industrial Design communities, a growing
interest for the behavior aspects of products arose, not just the form-giving
of screens or the physical forms and materials of products. A new generation
of methods is available which we summarize as “engaging methods”. What
they have in common is the idea that behaviors are not stand-alone elements
that have to be described with great precision. User behaviors arise in social
contexts. Moreover, by letting designers engage in the behaviors themselves, their
emotional, creative and social skills are activated and thus better integrated into
the result as well. We mention for example:

— Personas,

Focus groups,

Acting out,

— Interaction relabelling.

Computer scientists

‘ System developers ‘

‘ HCI Researchers ‘

Industrial Designers

Structured
methods

Formal
methods

Engaging
methods

Fig. 1. Methods ranging from mathematical and formal to social and emotional

We agree with the argumentation line of Grudin and Pruitt that these methods
exploit the power of people [I]. Designers are forced to think about social,
political, but also emotional aspects of design that otherwise go unexamined.

The challenge to which we present a contribution in this paper is to better
integrate the methods of Figure 1 horizontally. One way to do this is designing
another method or language, as done in the DUTCH design method [2]. Rather
than proposing a new language, here we address the question how to open up the
language of the formal and structured methods to industrial designers. One could
try to educate them in software engineering and UML in the traditional way;
but in view of the amount of other skills that industrial designers are expected
to have, this is just another load to their already overloaded education path.



UML in Action: Integrating Formal Methods in ID Education 491

1.1 UML in Industrial Design Teaching

A product with sensors, actuators and network connections can offer an
interesting, useful, or playful behavior to its users and to the other products,
systems and services to which it is connected. The master students from
the department of industrial design (ID), Eindhoven University of Technology
(TU/e) take responsibility for the creation of this behavior. In many cases. if the
product isn’t stand-alone, neither is the designer. Whenever product behavior is
realized through computer software and protocols, the designer often needs to
communicate to experts in these matters. In software design, formal methods are
often used for this purpose [BI4I5/6]. In present-day software engineering, formal
specification methods such as the Universal Modeling Language (UML) [7] have
been widely accepted. It contains “activity diagrams”, “use case diagrams”,
“class diagrams”, “state charts” and “message sequence charts” that are useful
for product designers and software engineers to exchange their ideas and
concepts to reach a common understanding. A module called “Formal Software
Specification in Action” is now taught at ID, TU/e to help the students
understand and use such formal methods for this purpose.

The knowledge and skills that students gain by participating in this module
helps them to express the structure and behavior of the software components
of their design in a way that is understandable to other parties. The students
develop an understanding and appreciation of what it means to master com-
plexity through formal methods. The scope is widened from small programs to
complex software systems. Although developing and maintaining such systems
usually involves computer scientists as well, the ID Master students are expected
to be well equipped to use formal methods such as UML and thus specify system
structure and desired behavior.

UML as a formal specification tool is widely used in an object-oriented design
process in software engineering. Such a process can follow a traditional waterfall
model going through object-oriented analysis (OOA), object-oriented design
(OOD) and object-oriented programming (OOP) [8], testing and delivery. It can
also following a spiral process that includes fast iterations, each of which going
through analysis, design, implementation and evaluation. The later is more and
more used in software industrial, often being referred as rapid prototyping, or in
a more recent buzz word, Agile design [9].

Either method has a phase of implementation or iterations of implementations
so that the ideas and concepts under design can be visualized and tested. This
often requires the designers or the engineers to have enough programming skills
to implement the system (waterfall model) or to prototype the behavior (agile
design). In a teaching course of such methods, students with no experience of
programming would find it difficult to fully understand the entire process.

This is exactly the difficulty one may expect in teaching industrial design
students a formal specification language such as UML. Most of the students in
an industrial design education are not trained extensively in programming tasks,
neither do they need to. They are not software engineers, they are designers.
But as a designer who is expected to design “intelligent products and services”,



492 J. Hu et al.

understanding of and communicating about the structure and the behavior of a
complex system are certainly unavoidable. To deal with this dilemma, instead of
pushing extensive programming courses to the design students, we need to find
a method that can be better integrated in an industrial design (not software
design) process. Hence a technique called “Acting-out” was proposed and tried
out in our module for the master students at ID, TU /e.

1.2 Acting-Out as a Design Technique

In design of interactive, networked products and systems the intended interaction
experience often emerges as a main design criterion. “Traditional” design
techniques, like storyboards, or on screen simulations seemed unfit to deal
with the multifaceted and dynamic character of interaction experience. Several
design and design research communities have developed approaches to deal with
this complexity in different stages of the design process, based on introducing
real, bodily involvement in the design process. Different communities gave
different names to these techniques, e.g. “Experience Prototyping” at IDEO [10],
Informance Design [I1], Designing actions before product [I2], Choreography of
Interaction [I3], Gesturing out [I4]. In this paper, we refer to this collection
of techniques using “acting-out”. These approaches have in common that they
allow designers to make aspects of a product or system experiential and
vivid by physically acting out (elements of) interaction scenarios. Buchenau et
al. [10] describe the following advantages of acting-out techniques: understanding
existing interaction experiences and contexts, evaluating design ideas, exploring
new design ideas, and communicating designs to an audience.

These last three advantages, i.e., evaluation, exploration and communication
in the design process, make acting-out especially valuable in the Industial
Design UML module. UML is a highly abstract language, but it is a tool
that, in Industrial Design practice, referes to real products and systems that
make real life experiences happen. Our assumption in this module is that
through acting-out a concept UML diagram, its structures, objects, properties,
connections and restraints gain an experiential dimension in an early stage. This
experiential dimension could help identify possible inconsistencies and flaws in
the UML diagrams and help suggest improvements. Furthermore, it may help
communication to other designers or software engineers what the problems or
ideas for improvement are.

In the next section, the module is presented, followed by the feedback from
the students.

2 Zoo of Tamagotchi Animals

In this section we describe the trial based on the principles of Section [[LIl The
trial was done as one “education module”.
2.1 Participants

The module was a one-week course for 32 master students. Students were divided
into five teams (about six students each). Each team was given the same task.



UML in Action: Integrating Formal Methods in ID Education 493

2.2 Procedure

The module was a one-week (5 full days) course, including morning sessions
for lectures and afternoon sessions for a project. The lectures gave introductory
information about software engineering and formal methods in general, object-
oriented design process, selected UML diagrams for the project and acting-out
as a design approach. The students were expected to use what they learnt from
the lectures in their projects, going through a single process of analysis, design
and acting-out. Each team was given the same task: Designing a system called
Zoo of Tamagochi Animals.

The module was designed such that the students would not only learn and
experience writing specifications, but also to learn and experience reading the
specifications made by others. In this way both direct results (the specifications)
and indirect feedback results (how the other participants interpret the direct
results) could be obtained. This was done as follows:

— The first half of the project was for analyzing the requirements, making and
specifying the object-oriented design of the system;

— In the middle of the project, the teams swapped their specifications for
acting-out each other’s specifications;

— The second half of the project was for acting-out the specifications received.

The students were asked to “implement” the system by acting the specification
out to show how the system should work according to the specification. Students
could play the objects, showing their behaviors and the communication in
between. Stage props could also be used to represent objects, interfaces, and
events, etc. Students were asked to use imagination and creativity in acting-out,
since we did not have experience in acting-out UML in a design process.

Finally the students were asked to reflect on the process itself, see Section 2.0l

2.3 Materials

The students were allowed to use all the materials that are generally provided
to the Master’s program, which includes one laptop per student, which includes
a lap-top, flip-over’s, whiteboards, etc. and several large office-spaces and class
rooms. A wide variety of materials, including modelling foam, chairs, pieces of
wood were readily available as well and could be used as stage props when
desired.

A preliminary description of the Tamagochi Zoo requirements was handed
out at the beginning of the module. Students ware asked to design the object-
oriented structure of the system - Zoo of Tamagochi Animals.

Each team received the same task description, entitled ”Designing a Zoo of
Tamagochi Animals”, described by the following text:

— All animals live in a zoo.

— An animal has got a life after it is born. While the life goes on, the animal
moves and sleeps (if it is still alive), eats (if it moves and finds food), grows
(if it eats) until one day, it dies because of hunger, illness or age.



494 J. Hu et al.

— FEvery animal has got a body. Different animals look different because of their
different bodies. Every animal has got two eyes and one mouth on its body.
When eyes are pinched, animals scream and can be hurt.

— There are male and female animals. When grownup males and females meet,
they may fall into love and the love may result in baby animals.

— Some animals are pets. Pets have names and they wear their name plates
on their bodies. People (the users) take care of their pets and feed them with
food.

— People may play with their pets to keep their pets fit.

— Some baby animals will be selected by people and they become pets. The rest
are left free in the zoo and they have to strive for food and try to survive by
themselves.

— When a zoo is created, it is empty, until people get some animals from
somewhere else (from shops, for example).

— People may exchange their pet animals.

— Dogs and cats will be our favorite animals for the time being. Dogs woof and
cats meow. Cats are scared of dogs and can be bitten by dogs. When big dogs
bark, cats scream and start running away. When big dogs fall into sleep, cats
start getting together and partying.

— The zoo is open for other animals, including unknown ones.

2.4 Direct Results

An example of the acting-out itself is shown in Fig. 2 An example of a UML
state diagram is given in Fig.

2.5 Feedback Results

As mentioned before, during the second half of the project the teams swapped
their specifications for “acting-out”. They were not allowed to consult the teams
that made the specification about the design. The teams were only allowed to
read the specifications in order to understand the design. At the end of the
project, each team presented (acted out) the specification together as a theater
play (Fig.[)). After that students were asked to give feedback on the specifications
they got from other teams, their own specifications, and their implementations
(acting-out) for other teams. Here an example is included as follows:

Feedback of Team 4 on Team 2’s specification

The state diagram (Fig.[3) has an excellent division between sub- and superstates.
It can be mentioned, however, that some things could be improved. For instance,
you have to be able to return to the previous state. In this diagram, you could
not leave the shop without selecting a pet. Exchanging pets was not very clear
too. There should have been more conditions in this diagram. We did make a
misinterpretation of having a shop out of the zoo, while it was specified as being



UML in Action: Integrating Formal Methods in ID Education 495

(a) Implementing the Pet interface on a (b) Feeding a Croc only if it is a Pet
Dog

Fig. 2. Acting-out

in the zoo. As these formal methods are not yet very natural to us, it is apparently
hard not to make intuitive decisions, but stick to what is there in the diagram.

Team 2’s reaction on Team 4’s feedback and acting-out

In general, the implementation as acted out was helpful, even refreshing, in
showing us how our system would work. The comment was that a male as
well as a female animal can give birth. This was not our intention, but we
agree it was not specified clearly. We should have made an activity diagram
involving two animals who are about to mate, containing the condition which
animal is female. This animal would then have the method giveBirth() and
the attribute isPregnant. Because a male and female animal have different
behaviors, we should have also specified this in the class diagram, by introducing
the abstract classes Male and Female. Also, apparently the condition for the
Dance() method (an animal starts dancing if his stomach is full) was not clear
to the implementation team.

2.6 Reflection Results

Students evaluated the module and indicated what they felt were the advantages
and disadvantages of using acting-out in a design process that incorporates
structured or formal methods such as UML. We summarize a few points:

Acting-out as an evaluation technique. Two teams stressed the helpfulness of
acting-out in finding bugs in their system design.: ’...designers can better
imagine the working[s] of the system ’being’ it.’

Acting-out as a pleasurable learning technique. Two teams remarked that this
module was a pleasurable learning experience: And, of course, it is nice to
do and greatly spices up a design process’, on of the teams writes.



J. Hu et al.

496

®

007 aAeaT H

[eWIUe [euLou, Sawodaq 1ad ‘1ad dwng

[ewiue ue 199j9S

apow

doys auyy
Buismouq daay

doys

[ewiue 19919
[bis ur rewnue ji

pa1oales

~

Jaiddey s1eb 194
19d paad

[ewnuy

19d B )l el ‘BWeU B [ewWiue 9AID

pa103|as 1ad

Jaiddey s18b 194
19d yum Aeid

19d 1099
[ybis urad umo Ji

Buiniasqo daay

apow
EYYEN e}

007 8y} 8A18S40

S8WO09 Jod
[12d wouy Jlamsue J1]

1ad
|[e2 ‘palosles
aweN

3 pangdal 19d mau
‘Reme uanIb 194 UMO
Jod abueyoxg

apouw
uo119919s

urefe |ea
[1ad wouy semsue ou Ji|

sjad Jo
1s1| 9smolg

apow sy

12d mau e Jojy Buiddoys 09

007 8} Ul 18d B 193]9S 09

9poW dAIOE dABS

uonosjes on |

[t

00Z ayL

007 0} 09

Fig. 3. State diagram of the Zoo, designed by Team 4



UML in Action: Integrating Formal Methods in ID Education 497

Acting-out as a exploration technique. Three of four teams remarked that
acting-out also has potential as a generative technique, when it would be
applied earlier in the process.

Acting-out as a communication technique. One team remarked that acting-out
was primarily a communication technique for them: 'We discovered most
flaws by reasoning, but acting-out was a good way to communicate flaws in
a diagram to the audience.’

3 Discussion and Conclusion

Using acting-out as a prototyping or verification technique, students learned to
understand and apply object-oriented design principles and the formal software
specification methods, up to a level sufficient for basic communication with
experts, in just three days. Without involving the students in heavy programming
activities, this module gives more time and space for the students to concentrate
on the essential issues and disciplines.

Students found learning and applying formal specification methods in this
module a pleasurable learning experience. We think this pleasurability is an
important aspect of our module, since it may enhance the learning experience
overall.

Students stressed different advantages of using acting-out in a design process
incorporating a formal specification method. The evaluation and communication
aspect was experienced by the students and they were optimistic about a possible
use of acting-out in the exploration phase. We can not say at this point whether
acting-out could actually be beneficial as a generative tool in the context of
formal methods in industrial design, but it seems worthwhile to explore this
aspect of acting-out.

Furthermore, we are looking for methods to integrate industrial design
processes with software design processes in designing “intelligent products and
services”, and we speculate the acting-out design approach may provide a good
bridge that helps make the transition from a general concept to an engineering
level smoother. However, establishing an acting-out based method for this
bridging purpose, requires more research and experiences in intelligent product
and systems design practice.

References

1. Grudin, J., Pruitt, J.: Personas, participatory design and product development:
An infrastructure for engagement. In: Proceedings PDC. (2002) 144-161

2. van Welie, M., van der Veer, G.: Structured methods and creativity - a happy
dutch marriage. In: Co-Designing 200, Coventry, England (2000) 11-13

3. Hu, J., Feijs, L.: IPML: Structuring distributed multimedia presentations in
ambient intelligent environments. International Journal of Cognitive Informatics
and Natural Intelligence, Special Issue on Ambient Intelligence and Art (to
appear) (2007)



498

4.

5.

10.

11.

12.

13.

14.

J. Hu et al.

Hu, J.: Design of a Distributed Architecture for Enriching Media Experience in
Home Theaters. Technische Universiteit Eindhoven (2006) ISBN:90-386-2678-8.
Feijs, L., Hu, J. Component-wise mapping of media-needs to a dis-
tributed presentation environment. In: The 28th Annual International
Computer Software and Applications Conference (COMPSAC 2004), Hong
Kong, China, IEEE Computer Society (2004) 250-257 ISBN:0-7695-2209-2,
DOI:10.1109/CMPSAC.2004.1342840.

. Feijs, L.M.G., Qian, Y.: Component algebra. Science of Computer Programming

42(2-3) (2002) 173-228

. Booch, G., Rumbaugh, J., Jacobson, L.: Unified Modeling Language for

Object-Oriented Development (Version 0.9a Addendum). RATIONAL Software
Corporation (1996)

. Taylor, D.: Object-Oriented Technology: A Manager’s Guide. Addison Wesley

(1990)

. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices.

Prentice Hall (2002)

Buchenau, M., Fulton Suri, J.: Experience prototyping. In: Designing interactive
systems: processes, practices, methods, and techniques., New York, ACM Press
(2000) 424-433

Burns, C., Dishman, E., W., V., Lassiter, B.: Actors, hairdos & videotape-
informance design. In: CHI, New York, ACM Press (1994) 119-120

Buur, J., Vedel Jensen, M., Djajadiningrat, T.: Hands-only scenarios and video
action walls: novel methods for tangible user interaction design. In: DIS, New York,
ACM Press (2004) 185-192

Klooster, S., Overbeeke, C.: Designing products as an integral part of choreography
of interaction : The product’s form as an integral part of movement. In: the 1st
European workshop on Design and Semantics of Form and Movement, Newcastle,
UK (2005) 23-55

Ross, P., Keyson, D.V.: The case of sculpting atmospheres: towards design
principles for expressive tangible interaction in control of ambient systems. Personal
and Ubiquitous Computing 11(2) (2007) 69-79



	UML in Action: Integrating Formal Methods in Industrial Design Education
	Introduction
	UML in Industrial Design Teaching
	Acting-Out as a Design Technique

	Zoo of Tamagotchi Animals
	Participants
	Procedure
	Materials
	Direct Results
	Feedback Results
	Reflection Results

	Discussion and Conclusion




