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CHAPTER1
Introduction

This PhD project was proposed in the context of the Philips concept of Ambient
Intelligence (AmI). This concept was introduced by Philips Research as a new
paradigm in how people interact with technology. It pushes the wishes and promises
of ubiquitous computing (Weiser, 1991, 1993) a step further by introducing digital
environments that are sensitive, adaptive, and responsive to the presence of people
(Aarts, 2004; Aarts and Marzano, 2003; Aarts, Harwig, and Schuurmans, 2001;
Harwig and Aarts, 2002). Within such an environment, AmI “will improve the
quality of life of people by creating the desired atmosphere and functionality via
intelligent, personalized inter-connected systems and services” (Boekhorst, 2002).

In the Media Interaction group at Philip Research, AmI is being approached from
different directions through several projects. The HomeLab is a realistic environment
as laboratory for electronic in-home systems to explore feasibility and usability with
end users. In this environment many projects experiment with the concepts and
technologies within the paradigm of AmI. To mention two of them, “PHENOM”
created an environment that is aware of the identity, location and intention of people;
“Easy Access” developed multi-modal and personalized user interface concepts such
as voice control, query by humming, and hand writing recognition (Aarts and
Marzano, 2003).

Philips Research is not alone in this domain. Many other companies have
similar visions to AmI of Philips. Xerox started “ubiquitous computing” research
at Palo Alto Research Center (PARC) in the late 1980s. IBM called it “pervasive
computing” in a special issue of IBM System Journal in 1999 (Vol. 38, No. 4).
IBM has a living laboratory, called “Planet Blue”, which focuses on the integration
of existing technologies with a wireless infrastructure (IBM, 2005). Carnegie
Mellon University’s Human Computer Interaction Institute (HCII) is working on
“distraction-free ubiquitous computing” in their Project “Aura” (Sousa and Garlan,
2002), “to provide each user with an invisible halo of computing and information
services that persists regardless of location”(CMU, 2005). The Massachusetts
Institute of Technology (MIT) has a project called “Oxygen”, in a vision of the future
of “pervasive, human-centered computing”, freely available everywhere, like oxygen
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in the air we breathe (MIT, 2004). HP has a system called “Cooltown” to support
“web presence” for people, places and things, addressing the issues of “pervasive”,
“ubiquitous”, “nomadic” and “context-aware” computing (Kindberg et al., 2002).

Although these projects and research programs have different focuses and
emphases, they are aiming at AmI with the same three key technologies: Ubiquitous
Computing, Ubiquitous Communication and Intelligent User Interfaces. Ubiquitous
Computing means the integration of microprocessors into everyday objects like furni-
ture, clothing, toys, and even paint. Ubiquitous Communication enables these objects
to communicate with each other and the user by means of wireless networking. An
Intelligent User Interface enables the inhabitants of the AmI environment to control
and interact with the environment in a natural and personalized way.

Inspired by these ongoing research programs, this PhD project assumes that
AmI will soon come true and alive in people’s daily lifes instead of being visions
and concepts. Given an AmI environment, this project explores the challenge of
presenting interactive multimedia to such an environment.

AmI will change the way people use multimedia services. The environment
which includes many devices, will play interactive multimedia content to engage
people in a more immersive experience than just watching television shows. AmI
makes it possible that people interact with not only the environment itself, but
also the interactive multimedia via the environment. As Aarts (2004) points out,
“the requirements that ambient-intelligent multimedia applications impose on the
mechanisms users apply to interact with media call for paradigms substantially
different from contemporary interaction concepts”.

For many years, the research and development of multimedia technologies have
increasingly focused on models for distributed applications (Buford, 1994; Serpanos
and Bouloutas, 2000; Vogel et al., 1995). The term “distributed multimedia” refers
to the fact that the content sources of a media presentation are distributed over a
network. Now, in the context of AmI, not only are the sources of the multimedia
distributed, but the presentation and interaction will also be distributed over devices
in the environment. It provides the AmI with an integrated and intelligent user
interface, or distributed interfaces (figure 1.1 on the facing page).

“Distributed interfaces” refers to the fact that the multimedia content will be
distributed to the networked devices of the environment. These devices should
cooperate to give the user the feeling of interacting with one “integrated” interface
of the environment, not only the individual devices.

The concept of AmI even frustrates the current definition ofmultimedia. Everyday
devices such as lights, toys and electronic carpets together with traditional audiovisual
devices can constitute an immersive environment for a multimedia program. In this
environment, people will feel they are involved into the multimedia program instead
of sitting in front of a television. The brightness and color of lights, the behavior of
toy robots and the changing patterns of electronic carpets will be new types of media.
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Figure 1.1: Distributed content and distributed interfaces

This PhD project focuses on the structure of multimedia content and the
distributed interfaces in the context of AmI, with the following assumptions and
limitations:

1. The destination of the media content is an AmI environment, which is closed,
yet only open for content delivery and retrieval. An example of such an
environment is the home environment where the users consume the media
content. This PhD project does not investigate any issues related to the
communication and cooperation between two environments.

2. The media content is always available when it is needed, no matter whether it is
distributed over a network, or provided by a remote or local server. This means
this project does not work on content delivery.

3. The devices involved in the environment are always connected, no matter
whether it is wired or wireless connection. This project takes different connec-
tion bandwidths into account, but not the underlying network infrastructure.

4. The devices involved carry their own well-designed interfaces. This project does
not work on usability issues related to individual devices.

5. The user profiles and preferences are always known and any changes on them
will be notified or reported to the system. This project assumes the environment
has enough means to collect, save and retrieve the user data.
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1.1 Focus of this thesis

With the above assumptions, the hypothesis is formulated in short as follows:

In an AmI environment, user experience of multimedia can be enriched
by structuring both the media content at the production side and the
playback system architecture at the user side in a proper way. The struc-
ture should enable both the media presentation and the user interaction
to be distributed and synchronized over the networked devices in the
environment. The presentation and interaction should be adaptive to the
profiles and preferences of the users, and the dynamic configurations of
the environment.

Therefore, this PhD project therefore focuses on the architectural issues to
structure the media content and the system, to enrich the user experiences of
multimedia in a distributed environment. Many questions may arise:

1. What constitutes the user’s immersive experience of multimedia media?

2. Which basic factors of an AmI environment are important for immersive media
experience?

3. By what means will the content authors compose interactive media for many
different environments? The authors have to be able to specify the following in
their scripts with minimized knowledge of the user environments:

• Desired environment configurations.
• Interactive content specification for this environment.

4. Once the content is ready, how will the system playback the interactive media
with the cooperation of the user(s) in a way that:

• makes the best use of the physical environment to match the desired
environment on the fly.

• enables context dependent presentation and interaction. Here the term
“context” means the environment configuration, the application context,
the user preferences, and other presentation circumstances.

• synchronizes the media and interaction in the environment according to
the script.

• takes into account the differences among human perception channels
such as visual and acoustic perception.

Interpreting these questions as an invitation to design, the main focus is therefore
to develop a generic framework to enable presenting interactive media to a networked
environment. In particular:

• a media documentation method is to be designed to enable authoring interac-
tive media for a variety of destination environments – the users’ homes.
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• on top of existing networking technologies and platform architectures, a generic
system architecture is to be designed to enable playing the interactive media
in a networked environment, with user preferences and dynamic environment
configurations taken into account.

1.2 Approach

1.2.1 Spiral model

During the design, a spiral model (Boehm, 1988, see figure 1.2 for a simplified
version) was followed. The first spiral was needed to get some first-hand experience
and the preliminary requirements. It was concluded with the structure of Interactive
Story Markup Language (StoryML) and a demonstrator TOONS, which put the
requirements for the second iteration on a stable foundation. More user requirements
and technical challenges emerged in the second iteration, grounding the third
iteration towards the final design of the Interactive Play Markup Language (IPML)
system.

requirements design

implementationevaluation

Figure 1.2: Spiral design

Three iterations were completed during this project:

1. A demonstrator called TOONS was developed during the NexTV (2001) project
based on the preliminary requirements gathered from the users, which resulted
in an experimental software structure (see chapter 3).

2. The design and the development was continued in the ICE-CREAM (2003)
project, which resulted in a demonstrator called DeepSea in cooperation with
a project partner de Pinxi (2003). It finished with an architecture that is based
on the de Pinxi 3D movie engine acting as the central scheduler, and our IPML
(see chapter 4 and chapter 11) structure for interfacing devices. Examples were
a robotic toy submarine, a portable display, ambient lights and flashing lights.
This demonstrator was used for the user evaluation of the concept of interactive
movies in distributed environments.
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3. The design and development were brought forward after the ICE-CREAM
project based on the technical requirements and the experience that were
gained from this project. The design was completed with a full implementation
of the proposed architecture that was based on open standards and technologies
(see chapter 11). Three more demonstrators were built to validate the design,
one of which was used to test the effect of the user’s culture background on
their perception of presence.

More details about the NexTV project and the ICE-CREAM project will be available
in chapter 2 when the requirements are presented.

At the beginning of each iteration, after the requirements were clarified, an
architecture-based design approach was followed working towards the final technical
solutions.

1.2.2 Architecture-based design

An architecture describes the overall technical structure of a system. It consists
of software and hardware components in various configurations. An architecture
represents the manifestation of the earliest design decisions about a system and is
an opportunity for an early validation of the design decisions with respect to qualities
(Bass, Clements, and Kazman, 1998).

An architecture based design method is used during this project. The procedures
and steps are based on the Architecture Based Design (ABD) method developed by
Bachmann et al. (2000). This method is later revised and renamed to Attribute Driven
Design (ADD) to emphasize the quality attributes such as performance, modifiability,
security, reliability, availability and usability, instead of very specific requirements
(Bass, Klein, and Bachmann, 2002; Buchmann and Bass, 2001). This method
provides a series of steps for designing conceptual software architecture for complex
systems, especially when detailed requirements are not known in advance. The
ABD fulfills functional, quality and business requirements at a sufficiently abstract
level, based on an understanding of the architectural mechanisms used to achieve
the requirements (Bosch, 2000; Buschmann et al., 1996; Gamma, Helm, Johnson,
and Vlissides, 1995; Jacobson, Griss, and Jonsson, 1997). For example in multimedia
systems, an important class of requirements are the real-time constrains. They are
treated as functional requirements since timely presentation of content is an essential
function of the system.

The method begins when sufficient requirements are available, and ends when
commitments to classes, processes and operating system threads are being made. In
general, it provides organization of function, identification of synchronization points
for independent threads of control, and allocation of processes to processors.

The main steps of the ABD method are the following (Bachmann et al., 2000):

1. Choose architectural drivers: What combination of the functional, quality and
business requirements is most important?

2. Encapsulate functions: translate functional requirements into responsibilities
and group them.
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3. Determine architecture options: what are the general “styles” or “strategies” to
achieve the required qualities?

4. Choose Architectural style: find the collection of component types together
with a description of the pattern of interaction, based upon the most important
architectural drivers.

5. Allocate Functionality to style: map the responsibility groups onto the collection
of component types.

6. Identify/Refine templates: find and examine the common patterns, services or
policies in the collection of component types.

7. Verify functionality: Can the use cases and scenarios be achieved?

8. Generate concurrency view: examine activities that may be performed in
parallel.

9. Generate deployment view: distribute the system over multiple processors and
identify the influences.

10. Verify quality scenarios: Can the quality requirements be achieved?

Detailed description and explanation of all decision to be made in each step can
be found in (Bachmann et al., 2000). These steps have to be taken at each level
of the decomposition process: from system level to conceptual sub-system level and
conceptual component level. Note that it is not the intention that all steps are taken
in the above-mentioned order; especially in steps 2 to 4, frequent back-and-forth
hopping will occur.

The ABD method was practiced when the pattern-oriented architecture was
designed (see part II). Architectural patterns were identified by following the ABD
steps, which helped the project to focus on high level structure problems during the
design phase without shifting too much to the implementation details.

1.3 Outline of this thesis

This thesis is divided into four parts:

Part I: Requirements and Concepts (chapters 2, 3, 4)

Part II: Architecture Design (chapters 5, 6, 7, 8)

Part III: Timing and Mapping (chapters 9, 10)

Part IV: Evaluation (chapters 11, 12, 13)

It is worthwhile mentioning that the design problem at hand is not just a
technical design for an existing product category. Neither the distributed content
nor the distributed home environments are readily available. Yet it is the ambition
of the project not only to design the architecture but also to bring it alive through
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demonstrations, using contents and environments that would be expected in the
future. Therefore, the requirements can not be a straightforward list of qualitative and
quantitative data. Part I is an exploration into the design of content and environments
for a variety of demonstrators.

Part II and part III are much more systematic. They deploy existing research
results such as patterns and formal specification methods to arrive at an innovative
architecture and finally at a concrete implementation.

The evaluation in part IV goes beyond checking implementation against specifi-
cation. In view of the innovative nature of distributed media presentations and in
view of the fact that AmI is a vision gradually becoming implemented, not yet an
established fact, there is hardly any other experience in using such distributed media
presentations. Therefore, it is a unique opportunity to use the architecture and the
demonstrators to explore several aspects of the user-system interaction. In particular,
part IV describes experiments regarding fun and presence in interacting with
distributed media content, and the relation between the user’s culture background
and their feeling of presence.



Part I

Requirements and Concepts
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CHAPTER2
Explorations and Requirements

Chapter 1 has briefly mentioned that this project went through three complete spiral
iterations, each starting from a study on user requirements or technical requirements.
Since every iteration was an exploration of future possibilities and new technologies,
a straightforward and extensive listing of qualitative and quantitative requirements
for all types of future systems is not feasible here. Instead, the requirements are
summarized as an exploration into the design of the content and environments for
the demonstrators.

Section 2.1 summarizes the requirements study and the results in the NexTV
project, aiming at building a demonstrator (TOONS) that presents interactive stories
in distributed environments. Section 2.2 presents the requirements for the DeepSea
application, focusing more on the needs of distributed interfaces and environments.
In section 2.3, a number of technical requirements are briefly summarized as the
starting point for the design of the final IPML system.

2.1 NexTV and TOONS

The NexTV (New media consumption in EXtended interactive TeleVision environ-
ment, IST-1999-11288) project was funded by the Information Society Technologies
programme of the European Commission. NexTV commenced in January 2000 and
finished in December 2001. It was consortium of twelve partners from all over
the world. Involved in the project were: Philips Research (The Netherlands), The
Imperial College of Science, Technology and Medicine (United Kingdom), T-Nova
Deutsche Telekom (Germany), FhG FOKUS (Germany), Optibase (Israel), TILAB
(Italy), Sony Service Center Europe N.V. (Belgium), KPN Research (The Netherlands),
Sun Microsystems (USA), ETRI (Korea), Nederlands Omroepproductie Bedrijf (NOB,
The Netherlands) and France Telecom (France).

The NexTV project was to investigate how the new interactive technologies such as
MPEG-4, ExtensibleMarkup Language (XML) andMultimedia Home Platform (DVB-
MHP) could influence the traditional television broadcasting. It focused on the design

11
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and the development of an interactive storytelling application, namely TOONS, for 8-
12 years old children. The goal of the application was to enable children to create
their own broadcasting programs and their interaction environments by exploration,
manipulation and creation of the content elements. A user-centered approach was
followed to get the first input from our target user group1.

2.1.1 Getting the user input

The preliminary user trials were meant to result in a collection of stories created by
children and based on their imaginations for how they would like to interact with
their story. As a result, an interactive storytelling application was to be built upon the
user input. Two meetings were arranged with eight children in total.

In order to elicit as much information as possible, support materials were
prepared beforehand, including: a short video sequence with the introduction to
the TOONS story created by NOB; a movie compiled out of the assets provided by
NOB and additional 2D hand drawings, enabling a limited amount of interaction
(figure 2.1(a)); Inspiration cards depicting various objects and representations of
emotions (figure 2.1(b)); color prints of the exemplary house interiors (rooms,
corridors); drawing paper; crayons, markers; post-it notes.

(a) Test movie (b) Inspiration cards

Figure 2.1: Materials used in the first meeting with children

The first meeting was to elicit from children ideas for an interactive story. The
children were shown the introduction to the NOB short video sequence and, after a
short discussion about the fragment they saw, were asked to write the continuation
of the story. They were given one week for this task, until the following Wednesday,
when they would gather again and visualize some of the story elements by sketching
one of the rooms, painting objects, making story boards, or whatever they choose to
do. The children came up with interesting ideas that could be used in the interactive
story, such as changing the mood of a room. They created a lot of paintings, drawings
and sketches that were later used in the animated movie.

The second meeting was to find out what kind of influence the children would
like to have over the interactive story and how. The meeting started with a general
introduction to the NexTV project and the interactive story concept. The children

1The work presented here was done closely together with Magdalena Bukowska (Bukowska, 2001): we
worked out the basic concepts together, she did all the user trials and I provided the working prototypes.
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had no problems to understand the idea of being able to influence a TV programme.
Next the prepared Macromedia Director movie was shown to them, presenting part
of the TOONS story and one possible interaction point (figure 2.2(a)). Afterwards a
discussion about possible interaction was conducted in a free talk style. Interesting
ideas came up from the conversations, for example highlighted door handles to
indicate story paths, apples to be picked up and bitten for story transitions etc.

(a) Interacting with the test movie (b) Found a PDA to be interesting

Figure 2.2: TOONS requirements elicitation sessions

The ideas of involving multiple devices for interaction were also brought up by
the children, for example the children found a PDA with a touch screen to be an
interesting interaction device (figure 2.2(b)) for influencing the story. The children
had an idea of using the touch screen to place their names on it, and to customize an
on-screen character. Using the touch screen, they would like to construct a character
from a set of predefined elements, such as eyes, noses, lips and haircuts. Further,
they would like to draw their own character directly on the touch screen, or to draw
the character first on a piece of paper and then scan it in using the same device.

Figure 2.3: Karolina’s robot

Another interesting idea was from Karolina, a 12 year old girl. Inspired by the
experimenter’s question about a physical way of selecting an object on screen, she
suggested a robot as the tangible interface device (figure 2.3):

“As I understand, there will be a special device sold together with the program
that can be used to make choice, right?” - Karolina
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She suggested some buttons on its hands or shoulders as the input channel, and
a touch screen in its “belly” as the output channel. The side of the robot would
correspond with the side of the screen, i.e. left side of the robot would be used to
do something in the left part of the screen, etc. The robot would have a display in its
“belly”, which could be the touch screen from the PDA, so that she can customize or
create her character using the “belly” display, and even scan her drawings by the robot
“walking” on her drawings.

They also liked the idea of being able to scan photographs of their faces in and use
them as a screen character’s face.

“Wow, that would be fun!” – Karolina

2.1.2 Requirements of TOONS

The inputs from the children, both the stories and the interaction concepts, were
taken into account for the design and the implementation. A storyboard was created
by Bukowska (2001) to communicate the ideas from children to the content creator
(NOB) for creating content assets and to the system designers for designing the
structures. Figure 2.4 on the next page shows part of the storyboard where the main
character in the story needs to make a decision in front of two doors.

Preliminary requirements were identified through themeetings with the children,
the elicitation of the content and the concepts, and the creation of the storyboard.

Two types of interaction

Depending on how the interaction is initialized, two types of interaction within the
application can be distinguished:

1. Interaction initialized by the application. The user can respond to the programme
in certain, pre-defined moments. The application invites the user to interact,
giving information about an interaction possibility (feed-forward information)
and, as soon as the input is given, generates feedback information. The
interaction will result in an immediate or delayed change in the programme
content, depending on the story scenario. In case of a delayed change, feedback
has to be given to the user to confirm the input has been received and
understood by the system. This user-system dialogue is often time-constrained.
If the user does not provide input within a certain (pre-defined) period, the
application will proceed following a default path.

2. Interaction initialized by the user. The user has a possibility to make changes
throughout the programme, without an explicit invitation from the system side.
In this case, the user needs to have prior knowledge about such a possibility. An
example of such interaction would be the insertion of the user’s own (or a pre-
defined) drawing in the story.

Tangible interaction

The children have tangible interaction tools in their possession to interact with the
on-screen objects and streams. These interaction devices will provide feed-forward
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The girl walks into the house. It is dark.
Old wooden doors with rust door handles are
closed, except for · · ·

The girl approaches one of the doors which
seems to be open.

She cautiously pushes the door open and
peeks into the room. As she does it, a strange
force draws her inside.

The girl is startled at first by the unusual
event but soon forgets about it. She is
standing in a colorful room with sets of
clothes hanging and lying around as if
waiting for someone to put them on. There
is an old key lying on the table · · ·

(Storyboard by Magdalena Bukowska)

Figure 2.4: TOONS Storyboard
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and feedback in order to facilitate the interaction with the story. Feed-forward can
be obtained for example through light or sound in the interface device to indicate
what can be activated, what actions can be undertaken, and how the actions can be
achieved. This information must be provided by the broadcaster along with the story:
what actions can be undertaken at what point in the story. To enhance its effect, the
story should also supply information needed for the interaction, for example, voice-
overs that tell the users that a decision point is at hand. The feedback provided by
the interface device should be given immediately after actions are undertaken by the
children, for immediate feedback is one of the most important and well-established
usability guidelines. The feedback can be in the interface device itself, through
sounds (‘click’ when a button is pressed) or light (an illuminated button that has been
activated). In any case, information about the result of the user action should always
be immediately presented, so that the users know that their actions did have some
effect.

Four types of decision points

In the TOONS application there are four different types of decision points. These de-
cision points are derived from enabling features of the MPEG-4 object representation.
These decision points are 2:

1. Influencing the storyline by choosing an object. The story line depends on the object
that is chosen by the user, for example a key or a shovel. If the user, for example,
chooses the key, the character in the story moves into the secret room through
the door with the large lock that the user is now able to open. It is assumed that
this type of decision point will support children that are interested in action and
adventure in the plot of a story.

2. Influencing the storyline by choosing an emotional mood or changing a property of an
object. The user can select an emotion for a specific character in the story. This
emotion can be a happy or a sad mood. Depending on this mood a different
story line will be followed. The moods can be attached to characters but also
to objects, rooms and so on. It is assumed that this type of decision point will
support children that are interested in the social and emotional developments
of characters in a story.

3. Adding characters or objects to the scene. The user can add a character to the story.
This character will appear in the story, but does not influence the story line. It is
assumed that this type of decision point will support children’s fantasy and the
ability to create one’s own story in the context that is provided by the broadcast
story.

4. Influencing the storyline by forming a team or changing the relation between objects.
The user can form a team of two characters from a number of characters.
Depending on which characters are in a team, a different story line will be
shown. It is assumed that this type of decision point will support children that
are interested in the social and emotional development of characters in a story.

2The description of these four decision points are edited from Marcelle Stienstra’s contributions in the
NexTV deliverable Application Version 1.
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(a) Choosing an object (b) Choosing an emotion

(c) Adding characters or objects (d) Forming a team

(Sketches by Marcelle Stienstra)

Figure 2.5: Four types of decision points in TOONS

Technical requirements

The user requirements are collected from the users with limited knowledge about
the technical feasibility and possibility. These requirements are about the content
(the story), interactivity (decision points) or a specific interface device (Karolina’s
robot, for example). To develop an application that is based on a generic architecture,
these user requirements need to be generalized, with technical feasibility taken into
account. Based on the user requirements, the system architecture should support the
following:

1. Distributed interfaces. In the TOONS application, several different components
can be distinguished. Full screen audiovisual scenes entertain the users with the
story. Interactive objects are present in the scenes, which can listen and react to the
user input to personalize their storylines. Graphic user interfaces can be present as
overlays on top of the scene, which can be menus, buttons, icons and arbitrary-shaped
video clips, or a combination of them.

Different input and output devices can be used to interact with the content. Simple
selections and choices can be made with a remote control, while mass data input and
complex GUI operations can be done with a remote keyboard and a mouse. A smart
card can be used to identify user profiles and to feed the application with predefined
configurations. The LED display on the front panel of a set-top box can present extra
text information with regard to the real-time streamed content.

The application can also play part of the content and get user responses from
some networked devices in the home environment. These devices could be as
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simple as a bi-directional interface device that can play feed-forward and feedback
information that is given by the application, e.g., an interactive toy with touch sensors
and sound output. They can also be as sophisticated as robots that have their own
behaviors and intelligence. Furthermore, a second screen may be used to present
extra media information; for off-line configuration and entertainment, a PC system
can be connected.

2. Context dependent interaction. Here the term “context” means the environment
configuration, application context, and the user preferences.

The target system platform can vary from a simple TV set with a set-top box, to a
complicated home network environment. The configuration of such an environment
is dynamic in both space and time dimensions. The user may activate or introduce
new interface devices during the program. The application has to know what kind of
environment it is running on at every moment and adjust itself on the fly.

The way of interaction may also depend on the application context. For example,
in order to illuminate a dark room in the virtual world, a user can simply switch on a
real light instead of pressing up or down buttons on a remote control.

However, the user may still choose the remote control because he/she doesn’t like
to turn the light on, even though there is such a light available. The user, not the
system, decides which way of interaction is preferred throughout the program.

3. Synchronized media and interaction. In an interactive media application, not
only the media, but also the interactions are timed and should be synchronized with
each other, in an environment which consists of many interface devices. Multiple
representations of the content or its parts should be distributed and synchronized
on these devices according to their nature and the application semantics. A time
dependent change-propagation mechanism is needed for the user-system interaction
to ensure that all concerned system components are notified of changes to the content
or the configuration, at the right moments in time.

2.1.3 Three versions of TOONS

The TOONS application has three versions of the implementation, based on the same
user input and the same content assets created by NOB, each with a different focus:

1. FhG FOKUS version: Focus on the interactions initialized by the users and
the decision points where the user can influence the storyline choosing an
emotion or changing a property of an object. The final implementation allows
the children to scan their sketches offline using a scanner, or to take portrait
pictures online using a webcam. The scanned images are used to render the
objects (for example, as the dressing patterns of the characters), and their own
portrait to appear as portraits in the virtual story space.

2. iPAQ version by Philips: Focus on the interactions initialized by both the system
and the users, and the decision points where the user can influence the story
line by choosing an object, and adding characters and objects to the scene using
a touch screen Graphical User Interface (GUI) implemented on an iPAQ PDA.
The GUI presents the options that the user may choose from, and the objects
that the user can add to and remove from the scene.
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3. StoryML version: Focus on the technical requirements on distribution, context
dependency and synchronization. The children can make decisions by interac-
tion with the tangible interface of a toy robot, and the behaviors of the robot are
synchronized with the story.

The StoryML version was designed as the first step of this PhD project, towards the
design of the architecture for interactive media in distributed environments. The final
demonstrator implemented the following story scenario, in an environment which
had two presentation devices, a movie player presenting the video content and a toy
robot presenting the synchronized behavior and taking the user input:

It is 6:00pm in the afternoon. Mark, a 12-year old boy, is watching a storytelling
program TOONS showing on a wall in the living room, together with his little toy
robot Tony. The lights in the room are changing the brightness following the story.
Now in the story, a little girl enters a dark room. The living room becomes dark too.
Mark can’t see clearly what’s happening in that room and he doesn’t like the darkness,
so he adjusts the light besides him. Both the living room and the room in the story
now are illuminated. In the story, the girl is wandering in front of two doors.

“Mark, Should I help that lonely girl?” Sleepy Tony is woken up by the lights and
seems attracted.

“Yes, go ahead.” Tony approaches the wall and disappears from the living room.
Suddenly he appears in the story. “Hi, Can I help you?” Tony asks the girl.

“Yes. I can’t decide which door to open.”

“Left one, Tony!” Mark doesn’t know either, but the left door looks nicer. “Mark wants
us to go left.” Tony opens the left door for the girl.

Behind the door there is a beautiful garden with colorful trees and puffy bushes. The
sunset beams through the leaves and drops motley shadow into the garden and the
living room as well. Mark is surrounded by nice background music. He can hear
birds singing their happiness around him.

“What a nice garden!” Mark says.

· · ·

2.2 ICE-CREAM and DeepSea

ICE-CREAM stands for “Interactive Consumption of Entertainment in Consumer
Responsive, Engaging & ActiveMedia”. The ICE-CREAMproject was about designing
compelling experiences for end-users based on enabling technologies for interactive
media and by extending the notion of interaction, exploiting domestic activities and
familiar settings, and by making the user environment part of the visual experience.

The ICE-CREAM project was set up as a follow-up of NexTV. It was also funded
by the Information Society Technologies programme of the European Commission
(IST-2000-28298). ICE-CREAM started in January 2001 and finished in December
2003. It was a consortium of twelve partners: Philips Research (The Netherlands),
de Pinxi (Belgium), Nederlands Omroepproductie Bedrijf (NOB, The Netherlands),
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The Imperial College of Science, Technology and Medicine (United Kingdom),
Philips Research France, Tomorrow Focus AG (Germany), FhG FOKUS (Germany),
Bitmanagement Software GmbH (Germany), Symah Vision (France), and EusKaltel
(Spain).

One of the goals of ICE-CREAM project was to continue the exploration of the
new technologies in the area of interactive media in distributed AmI environments.
Rather than starting a new design cycle from scratch, the exploration took not only
the requirements gathered from the NexTV project ahead, but also the experience
and lessons learnt from the NexTV project as input, especially those from the design
and development of the TOONS application. The following aspects were considered
important for the next design cycle:

1. More different types of distributed interface devices should be included in the
environment for interactive media. In TOONS, although different interface
devices were introduced, they were used in separate demonstrator implemen-
tations. Integration of these distributed interfaces needed to be done.

2. TOONS focused on a storytelling application, and the designs of the demon-
strators and their architectures was influenced by the structure of this particular
type of content. The new design should broaden its application area.

3. A linear narrative structure was used in all TOONS implementations. The new
design should also incorporate non-linear structures.

4. The interactive media application should target not only individual users as in
TOONS, but also more the multiple users cooperating in a family setting.

5. User evaluation needed to be done based on an integrated implementation to
investigate the effects of the distribution on the end user’s experience.

2.2.1 DeepSea scenario

The carrier of this cycle of exploration was the DeepSea application. DeepSea is a
prototype of an interactive multimedia application. Its scenario characterizes the
future of interactive content broadcasting: “it combines video streams, computer
graphics, texts, still pictures, sound tracks and multilingual options; it proposes a
social approach to content consumption, a new intuitive user interface deployment,
and opens the doors to new narrative business models.” (ICE-CREAM, 2003)

This application is about enhancing a video broadcast with fictional content, where
3D-graphics and animation are used to realize the fictional effects. The focus of this
application is on the application structure and the complexity of the interaction. In
this application the content is presented in a non-linear fashion, in such a way that
multiple users can watch different facets of the story depending on their different
interests. The advantages of such an approach are that content can be re-used within
the same program and that users with different interests (for example, a group of
friends, the members of a family) can watch the program together at the same time,
while each gets their personal flavor. Such programs can provide adventure, education
and entertainment at the same time. The content of the story is about deep-sea nature.

A storyboard based scenario was developed by de Pinxi at the beginning of the
design of the DeepSea demonstrator as the content requirement (see figure 2.6).
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The program starts with the approach to
the archaeological site: the shipwreck of the
famous Batavia. The camera follows the
track made of buoys.

During the navigation, the audience can
access additional information on the objects:
animals, ship, shells etc. They select them,
and get relevant visual (video, stills, texts) or
audio information.

The audience can switch to the game mode,
and control the navigation of the submarine.
They have to follow the color indication of the
buoys (red for left, green for right), and avoid
the submarine mines.

The audience can switch to the discovery
mode, with a view of the inside of the sub
(one actor). They discover the site. They
launch their robot to go inside the wreck; they
follow the robot.

The audience can switch to the game mode,
they have to use the robot to pick up an
object, and they have to avoid the enemies
and obstacles.

The submarine collects the treasure and is
brought to the surface by the crane.

Figure 2.6: DeepSea Storyboard
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Figure 2.7: DeepSea Setup

2.2.2 Functional requirements

Structure

Using various user interfaces, the audience should be able to interact with the
program triggering different facets of the story, hot spots or special effects. The fiction
should not be a linear video stream, but should be designed to give the audience a
choice between three ways of enjoying the story, depending on their moods or desires:

• The automated mode is linear and resembles “classical” video fiction, but
providing all the enhancements of the home theater to the story (toy robots,
multiple displays, ambience lighting . . .)

• The discovery mode presents cultural or scientific information about the fictional
world;

• The game mode allows the audience to play an immersive adventure game.

Users

The prototype should provide as much as possible the functionality that a full scale of
MPEG-4 setup should contain. The application should be designed for small groups
like a family unit or a group of friends.

Distribution

The setup should not only encompass the “technical devices” or “the TV” but all the
ambience and accessories of a cosy and immersive room: a home theater. This should
be a living room or a home theater with all comfort: sofas, ambient lights, big screen
and special user interface devices to access the functions (figure 2.7).

2.2.3 Levels of interaction

There are different levels of interactivity in this scenario that should be implemented:
1. Composition of viewing experience (navigating). The users should be able to

switch between different parts of the presented material, therefore depending
on the choices they will receive their own personalized flow of the content.
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2. Influencing the scene composition (interacting with objects). During watching
the main documentary program the user should be able to access additional
information about the presented objects. Depending on the devices in use as
well as on the user’s choice, additional information related to the presented
objects would be displayed on the TV screen or on the secondary display, for
example, the screen on the bi-directional remote control.

3. Cooperative interaction. In the game mode the users should be able to interact
with the content, navigating the submarine or the robot in the underwater
world. Multiple users should be able to navigate the vehicle at the same time
using their own interaction devices. They have to cooperate in order to achieve
their common goal.

2.3 Requirements after DeepSea

The design and the development of the DeepSea application were a cooperative effort
between Philips and de Pinxi, and successively resulted in a working demonstrator
that implemented the concepts of distributed and interactive content in a home
theater setting. De Pinxi as an interactive 3D movie provider not only contributed
to the project with the content and a 3D movie engine to render the content,
but also brought in their expertise in interactive and immersive theaters to create
impressive lighting and sound effects. This PhD project, as part of the contribution
from the Philips side, focused on the architectural design and also took part in the
implementation to carry out the design concepts in practice.

Most of the architectural design concepts presented later in part II, that is, the
structure of actors, actions and communication channels, were brought into practice
by implementing several distributed interface devices (actors) to render (to perform)
the content elements (actions). These devices included a lighting controller for
ambient lighting effects, a software component on Philips iPronto for graphical user
interfaces, and a robotic submarine for robotic behaviors and navigation control
(see section 11.1 for details). The communication channels were used to send
synchronization commands to and detect the user interaction from these actors.

Due to limited time, the timing and mapping concepts (presented later in part III)
was not implemented for DeepSea. De Pinxi did a great job to embed the scheduling
tasks in their proprietary 3D movie engine for these distributed interface devices.
Within the time frame of the ICE-CREAM project user evaluations were carried out
to investigate the effects of distributed interactive media on the user’s experience (see
chapter 12 on page 171 for the details about the user evaluation).

After the ICE-CREAM project, it was decided to undertake another design cycle
to complete the design with a scripting language that can be used to compose an
interactive presentation without knowing the configuration of an environment, with
a timing engine that synchronizes the presentation and the user interaction, and
with a mapping engine that assigns presentation tasks to the devices that are actually
available in the environment. Although the design of these components had already
started during the ICE-CREAM project, it had not been completed the design and put
into practice at the end of the ICE-CREAM project.
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There was another motivation to continue the project with a complete design.
In the DeepSea evaluation, variations in user’s fun and presence experience were
observed, and it was suspected that the characteristics of the users themselves would
have an effect on the experience in a distributed environment. For example, there
was a long time believe that the user’s culture background would have an effect
on the user’s feeling of presence. However no empirical study had been done to
confirm this conjecture, especially in distributed AmI environments. To investigate
this interesting topic, it was necessary to complete design and implementation so
that an interactive movie could be made and the factors for the experiment could be
manipulated.

To summarize, the requirements for the third design cycle were:
1. Complete the design of the scripting language, the timing and mapping

engines.
2. Implement at least one demonstrator to visualize the design.
3. Use the demonstrator to investigate the effect of the user’s culture background

on the feeling of presence, in a distributed setting.

2.4 Rapid Robotic Prototyping

Throughout the project, several types of interface devices for distributed presentation
and interaction were designed and implemented. In chapter 1, a generic design
question was formulated, which is parameterized over the nature of the devices that
will deliver the content. But how can such an abstraction of all possible future
devices can be dealt with? This is barely usable in discussions or experiments
with users. Of course one can work with displays, like present-day home theaters
with handheld devices such as remote controls and PDAs. But in future there
will be more. Here a working hypothesis is taken, that robots will be a feasible
option to appear among the home devices, and if future users prefer not to have
robots at home, from a technical and behavioral viewpoint, many future products
certainly do share important characteristics with robots: embodiment, autonomy, and
interactivity. Therefore background material A contains an exposé about rapid robotic
prototyping, a method that was used during the project to define the requirements of
robotic interaction devices.

Rapid prototyping is a powerful method for defining the user requirements for
interactive robots, as it is in software engineering. Many prototyping techniques
from software engineering are still valid, but need to be adjusted for the nature of
robots and the tactile human-robot interaction. In our experience, using robotic kits
simplifies and accelerates the prototyping process.

2.5 Concluding remarks

In this chapter the user requirements and the technical requirements were explored
for every design cycle. Next the first attempt of the distributed architecture design
for interactive media is presented: the StoryML implementation of TOONS, which is
based on the requirements described in section 2.1.2 of this chapter.



CHAPTER3
StoryML1

Based on the requirements presented in section 2.1.2, a conceptual design of the
interactive story was first developed as the input for system design, and existing
technologies and architectures were also evaluated to see if there was a solution that
can be taken from the shelf. The design and implementation of the system followed
the Object-oriented methodology. The system was implemented using a specific set
of technologies, i.e., XML and Java based technologies.

StoryML refers to not only the scripting language designed during the NexTV
project for creating interactive stories, but also the player for presenting the created
story. It was the first attempt towards a design for a distributed architecture for
immersive media. The resulted architecture design and demonstrator had provided
with more experiences and insights on the issue than a generic and flexible solution.
Nevertheless, the design and implementation StoryML has contributed significantly
to the final IPML design, by both providing these experiences and insights, and
generating more detailed technical requirements.

3.1 Conceptual model of TOONS

Figure 3.1 on the following page shows the conceptual model of TOONS derived from
the requirements collected from the user study. This model consists of storylines and
dialogs. The storylines comprise the non-interactive parts in the video stream. The
dialogs comprise the parts in which the user can interact with objects in the stream to
make decisions. A dialog consists of a feed-forward and a feedback part and a decision
point. The story starts with an introduction or opening sequence, followed by a set-
up sequence in which the user can customize the objects, by for example choosing
different appearances for the main character. In the middle of the sequence there are
several decision points where the user can choose from different options in the story.
For example, to open one of the two doors presented in the scene, the user can knock

1This chapter is based on a paper published in the proceeding of the 21st IASTED International
Conference on Applied Informatics (Hu and Feijs, 2003a, AI 2003).
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switching storylines

Figure 3.1: Conceptual model of TOONS

on corresponding buttons on a console. Different decisions at the decision points will
lead to different storylines. The story ends with a finishing sequence that promises
more episodes to come or that the whole story has just finished.

This conceptual model needs to be implemented in distributed settings, with
multiple devices as presentation terminals and controlling interfaces (see section 2.1).
To meet these requirements, the first question to be answered is how to describe
such an interactive story so that it can be interacted with and played back in a
distributed environment, and the second question is how to play back the story in
a distributed environment with dynamic configurations. To answer the first question,
this project first looked at existing open standards, notably Synchronized Multimedia
Integration Language (SMIL) and MPEG-4, to see whether there had been a solution
for distributed interactive storytelling. For the second question, this project also
started from exploring existing architectures, especially in the domain of interactive
television (TOONS was aimed at an application in this domain). Next the findings are
summarized.

3.2 When technologies meet the requirements

3.2.1 Open standards for synchronized multimedia

SMIL and MPEG-4 are contemporary technologies in the area of synchronized
multimedia (Battista, Casalino, and Lande, 1999, 2000). SMIL focuses on Internet
applications and enables simple authoring of interactive audiovisual presentations,
whereas MPEG-4 is a superset of technologies building on the proven success in
digital television, interactive graphics applications and also interactive multimedia
for the Web. Both were the most versatile open standards available at the time this
project looked for a technology to compose the distributed interactive story.

But both were challenged by the requirement for distributed interactions. It
requires that the technology is first of all able to describe the distribution of the
interaction and the media objects over multiple devices in an integrated environment.
The Binary Format for Scenes (BIFS) in MPEG-4 emphasizes the composition of
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Set-top Boxes

Graphical User Interface Broadcasting Content

Graphics (Look) User Input (Feel) Audio/Video TeletextSubtitles Data

Java User Interface

Figure 3.2: Structure of the user interface in digital TV

media objects on one rendering device. It doesn’t take multiple devices into account,
nor does it have a notation for distributed interfaces.

SMIL 2.0 introduces the MultiWindowLayoutmodule, which contains elements and
attributes providing for creation and control of multiple top level windows (Rutledge,
2001). This is very promising and comes closer to the requirements of distributed
content interaction. Although these top level windows are supposed to be on the
same rendering device, they can to some extent, be recognized as software interface
components which have the same capability.

TOONS intends to make use of multiple interface devices with different capabili-
ties, i.e., an audiovisual device and a tangible interface device. In this sense, neither
MPEG-4 nor SMIL can fully meet the requirements if directly taken from the shelf.

3.2.2 Architectures for interactive television

Since TOONS was intended to be an application for interactive digital television, this
project also looked at up-to-date digital TV interfaces and system architectures.

Future TV

In Future TV (1999), a typical user interface structure for digital TV applications is
introduced. It includes not only graphics but also timed media. Figure 3.2 illustrates
this basic user interface structure for interactive television services or applications on
a set-top box (Eronen and Vuorimaa, 2000; Koenen, 1999; Vuorimaa, 2000). The
user interface is composed of a Graphical User Interface (GUI) and broadcasting
content. The GUI includes graphics and user input as the so called Look & Feel.

In this structure, however, the GUI is not part of the content. The user may
select different content by manipulating GUI widgets. This interaction does not
enable direct manipulation of anything inside the content. What the interface should
look like and how the user can operate it depend on the implementation of the local
platform.

This structure has no possibilities whatsoever for content presentation on dis-
tributed interfaces, nor for synchronization between the media and the interaction.



28 StoryML

Immersive broadcast

Immersive broadcast is a generic term for interactive multimedia applications mainly
targeting enhanced digital television programs, introduced in a white paper from
Philips Research (Mallart, 1999). An immersive broadcast application for sports
events is presented by Herrmann (2000). In this application, the consumer can
compose his own personal program from a variety of streams of audiovisual and
graphics data. Conceptually, video clips, text and graphics are overlaid on top of the
TV program to provide a richer and more compelling experience for the viewer.

The components of an immersive broadcast application can be categorized into
content presentation components (views, highlights and the overlay) and content
navigation components (figure 3.3). Compared to the structure shown in figure 3.2 on
the previous page, here the user interface components are a part of the broadcasting
content. The user interaction will influence the presentation of the live or stored
content, or content related information.

Content Navigation Content Presentation

Immersive Broadcast Content

Views Highlights OverlayNavigation Widgets Alerts

Figure 3.3: “Immersive broadcast” components

This structure does not take into account the distributed presentation and
interaction. The user interaction remains at the level of content navigation, which
can not change directly what is in the content.

In short, the current technologies described above can hardly satisfy the require-
ments for the distributed media. A different approach was needed.

3.3 Design of StoryML

As already mentioned, the SMIL approach comes close to the requirements. Its
concept of separating the layout concerns of the media objects from their timing
and synchronization behavior fits very well to the needs of distributing media
objects to multiple devices and synchronizing the presentations across these devices.
However SMIL as it is does not allow multiple presentation devices to be included
in one integrated presentation. Further, it is designed for presentations that have a
predefined layout. This is too concrete for the dynamic layout settings, in this case,
for the dynamic environment configurations. Hence it was decided to design a new
scripting language based on XML, with a more abstract representation for storytelling
applications.
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3.3.1 Why XML

Based on the object-oriented story model, an XML based specification language, i.e.,
StoryML, is developed for authoring, serving, delivering and presenting an interactive
story. The common markup languages currently in use are Standard Generalized
Markup Language (SGML) and HyperText Markup Language (HTML). SGML is a
standard system for defining and using document formats (ISO, 1986) andHTML is a
language used for hypertext linking, multimedia and displaying of simple documents
on the Web (Raggett, Le Hors, and Jacobs, 1999).

Extensible Markup Language (XML) is designed to provide an easy-to-write, easy-
to-interpret, and easy-to-implement subset of SGML (Yergeau et al., 2004). It is not
a fixed format like HTML. XML is a meta-language used to define other markup
languages for structured documents. Structured documents are those that contain
content stored hierarchically, in a specified format. In this sense, HTML is just one
of the SGML or XML applications. XML is designed so that a particular markup
language, such as StoryML, meets the application needs more quickly, efficiently and
logically.

To summarize, XML is used because of the following features:

Extensible: XML provides the ability to extend a language with custom markup tags.

Data and information exchange: XML provides a common language for people and
systems to exchange data, because it’s human-readable and independent of
programming languages and computer platforms.

Describes data: XML describes data with markup, making it easier to process.

Separation of content and format: Authors of XML don’t need to be concerned with
formatting. Yet XML can be presented in different formats with stylesheets.

Easy to read and process: XML is plain text and is very structured and hierarchical,
making it easy to access and process.

3.3.2 Simplified model of interactive story

Figure 3.4 shows the simplified interactive story model which is directly derived from
the conceptual model (figure 3.1 on page 26), based on the idea of simplifying the
user interaction as switching between storylines. The switching concept was a design
decision made by all NexTV partners at the early stage of the project.

An interactive story consists of multiple storylines and the user can influence these
storylines by switching among them. Multiple linear dialogs compose the interaction
between the user and the story. A dialog always starts with the system giving feed-
forward information. The user makes decisions or choices and then the system shows
immediate feedback information to the user. The dialog results in switching among
the storylines, or changes in one or more storylines. Comparing to the conceptual
model, this model simplifies the structure of the interactive story.

This model explicitly defines the storyline as a primitive story component which
has the same temporal dimension as the story has, that is, starting or stopping a story
means starting or stopping these storylines altogether at the same time.
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Figure 3.4: Simplified model of interactive story

The feed-forward and feedback components are separated from the storyline as dif-
ferent types of primitive components because they have different temporal behavior.
Different from the storylines, when to start a feedback component or when to stop a
feedback component depend on when the user will respond during a dialog.

3.3.3 Environment and actors

The interactive story will be played in an environment which consists of multiple
networked devices, such as audiovisual screens, surrounding audio systems, ambient
lights, and robotic toys. These devices are abstracted as actors2.

An actor is a self-contained entity which has capabilities of data processing
and user interaction. Its input and output facilities form an interface that a user
can interact with. An actor is able to abstract the user inputs as events and to
communicate with other actors. An actor can be present in an environment as a
software entity, alive in a computer system or embodied in a hardware device.

An environment is where these actors reside. It defines the preferred configuration
of actors. However the physical environment may change during the runtime. The
StoryML must map the prescribed environment to the physical one, and send tasks
assigned to the actors to the devices in the physical environment. These tasks are, for
example, rendering media objects, or reporting the user responses during the dialogs.

3.3.4 Media Objects

Storylines, feed-forward and feedback components are all media objects. A media
object is defined as a data stream which can be rendered by the actors in the
environment, and can be perceived by the user via any or multiple channels of
perception.

2They were called interactors in earlier versions of StoryML.
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Figure 3.5: StoryML Object Model

Traditional media objects are audiovisual objects, such as audio, video, text, and
2D/3D graphic objects. Some new standards for example MPEG-4 have introduced
new media objects that have a higher level of abstraction, e.g., face and body
animations (Eronen and Vuorimaa, 2000; Koenen, 1999; Vuorimaa, 2000). Here
goes one step further: in StoryML, a media object can be even more abstract. Facial
expressions, robotic behaviors, and even emotional modes, can be defined as a media
object as long as they can be interpreted and rendered by an actor.

The abstraction of media objects provides with possibilities for content producers
to describe a story at a high level without knowing the details of the environment,
e.g., the content producers can specify a robot to show a ‘happy’ behavior without the
need to know how the actual robot will render the ‘happiness’. It solely depends on
the configuration of the environment and the implementation of the robot.

Figure 3.5 shows the object-oriented model of StoryML. It reflects many concepts
directly from the conceptual model (see figure 3.1) and its simplified version (see
figure 3.4 on the facing page). The major objective of doing so is to make StoryML
an easy authoring language for content producers. The Document Type Definition
(DTD) of StoryML documents can be found in background material B.

An example is given in background material C. It describes a TV show to be
presented in an environment with two actors involved, i.e., an audiovisual screen and
the toy robot Tony. Tony will be ‘woken up’ shortly after the show has started. The
user will be invited to help the main character in the show to make a decision (for
example “left” or “right”) at a certain period of time by playing with Tony.
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3.3.5 Timeline

In StoryML, media objects and interaction dialogs refer to an implicit timeline by
specifying their starting and stopping point in time. The metaphor behind it can
be easily understood by comparing with the conceptual model of the interactive story.
Synchronizing objects by means of a timeline can be easily understood by the authors
because it reflects very well our one dimensional perception of time. Defining the
beginning of a video presentation to an audiovisual actor in a story requires no
knowledge of the related video frames. The timeline approach is therefore intuitive
and easy to use in authoring situations.

3.4 Implementation of StoryML Player

StoryML has been defined as a solution for writing interactive stories. Now the task is
to design an appropriate software architecture for the StoryML player. A Presentation-
Abstraction-Control (PAC) based architecture (Coutaz, 1997) is chosen.

3.4.1 PAC based architecture

Many interactive architectures have been developed along the lines of the object-
oriented and the event driven paradigms. Model-View-Controller (MVC) and PAC
are the most popular and often used ones. Later chapter 8 will provide a detailed
comparison. Here let’s take a brief look at why PAC is chosen.

The MVC model divides an interactive agent into three components: model,
view and controller, which respectively denotes processing, output and input. The
model component encapsulates core data and functionality. View components display
information to the user. A View obtains the data from the model. There can be
multiple views, each of which has an associated controller component. Controllers
receive input, usually as events that encode hardware signals from input devices.

In the PAC architecture, an agent has a presentation component for its perceivable
input and output behavior, an abstraction component for its function core, and a
control to build dependencies among PAC agents. The control of an agent is in
charge of the communication with other agents and between the abstract and the
presentation in the agent itself. In PAC, the abstraction and presentation components
of the agents are not authorized to directly communicate with each other or with
other agents. An interactive application is modeled as a set of PAC agents whose
communication scheme forms a hierarchy (see figure 3.6 on the next page).

The PAC based architecture is considered more suitable for the StoryML player
than MVC, because of the following reasons:

1. StoryML involves independent devices as actors. It should be able to adapt
to the changing configuration. PAC can meet this requirement by separating
self-reliant subtasks of a system into cooperating but loosely-coupled agents.
Individual PAC agents provide their own human-computer interaction. This
allows the development of a dedicated data model and user interface for each
semantically independent components within the system. PAC agents can be
distributed easily to different threads, processes or machines.
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Figure 3.6: Hierarchy of PAC agents

2. The PAC based architecture emphasizes the communication and cooperation
among agents and inside an agent with a mediating control component. It is
crucial to have such a mechanism for a distributed application like the StoryML
player. All agents communicate with each other via their control component
with a pre-defined interface such that existing agents can dynamically register
new PAC agents to the system to ensure communication and cooperation.

3. The input and output channels of the individual actors are often coupled. In
MVC, controller and view are separate but closely-related components. In the
PAC architecture this intimate relationship between the input and output is
taken into account. It considers the user accessible part of the system as one
presentation component.

4. The StoryML player has to facilitate content based interaction, which means
that the user can interact with interactive media objects in the content. Possible
user controls are often embedded in the media objects and together they form
an entity, which will be rendered by one of the actors. At a conceptual level, this
request can be easily assigned to the presentation component. Separating the
attached operation from the media object would increase the complexity.

3.4.2 Extending PAC for timed media

However the overhead in the communication between PAC agents may impact
the efficiency. For example, if a bottom-level agent retrieves data from the top-
level agent, all the intermediate-level agents along the path from the bottom to
the top of the PAC hierarchy are involved in this data transportation. If agents
are distributed, data transfer requires inter-process communication, together with
marshaling, un-marshaling, fragmentation and re-assembling of data (Buschmann
et al., 1996).
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Figure 3.7: PAC extended for timed media

To overcome this potential pitfall, the StoryML player extends the abstraction
component. For timed media, each abstraction component is considered as a media
processor, which takes a DataSource as input, processing the media data, and then
outputs the processed media data to a presentation component or to its DateSink
(figure 3.7). DataSink and DateSource are connected through streaming channels.

Regarding the PAC hierarchy as a network, an agent with a DataSink can be
viewed as a streaming media server and those with a DateSource can be viewed
as streaming media clients. A direct streaming channel can be built between a
DataSink and a DateSource and the media data can be streamed through the channel
with real-time streaming protocols. The streaming channel between the abstraction
and the presentation components can also be built inside a PAC agent but only
when the agent needs to present the media, and in this case, the presentation
component directly renders the media onto the physical interface without much
media processing. Streaming channels can be built and cut off only by the control
components. Thus, the control hierarchy remains intact. A detailed description about
how this can be done is presented later in section 7.4 of chapter 7.

The idea is to separate the overloaded media streaming tasks from the PAC
control hierarchy. In figure 3.9 on page 36, streaming channels are built among the
content prefetcher, the virtual audiovisual actor and the physical audiovisual device
to stream the massive data and allocate the data processing, under the supervision of
the hierarchy. As an example shown in figure 3.8 on the facing page, the content
pre-fetcher caches enough raw MPEG-4 data to ensure the presentation can be
immediately started at a certain point in time, and keeps the data fetching a smooth
and stable streamline. The prefetcher establishes a DateSource for each Media Object.
When the audiovisual actor needs to present the content, the upper layer agents
connect the related DataSink with a DateSource of the virtual audiovisual actor, thus
a streaming channel is built and the streaming task is later carried out among only
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Figure 3.8: Video streaming along the agents

the related agents. The virtual audiovisual actor undertakes the MPEG-4 decoding
and then passes the decoded data to the real actor. The real actor connects the video
frames to its presentation component, and finally presents the media to the user.

3.4.3 Architecture of the StoryML Player

Figure 3.9 on the next page shows the hierarchical structure of the StoryML player.
The content portal sets up the connection to content servers and provides the system
with the content. The content prefetcher overcomes the start latency by prefetching
a certain amount of data and ensures that the media objects are ready to start at
specified moments.

An XML parser first parses the StoryML document into Document Object Model
(DOM) objects and then the StoryML parser translates the DOM objects into internal
representations. The StoryML player also maintains a timeline controller, which plays
an important role in synchronization.

The bottom level agents indicate different physical interface devices. These
physical devices are often equipped with embedded processors, memory, and possibly
with some input and output accessories. An arbitrary number of physical agents can
be added to the architecture at this level.
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For each physical agent, there is a virtual actor connected as its software counter-
part. Provided with this layer of virtual actors, the system can achieve the following:

1. Decoupling of media processing from the physical interface devices and
enabling process distribution. It is possible to assign media processing tasks
of a physical agent, for example decoding a stream or composing a scene, to
another more capable device in the network, by moving the virtual actor to
that device. The processed result can then be transferred back to the physical
presentation component of the physical agent for direct rendering. The media
processing, therefore, can also be distributed to the network.

2. Easy switching of the user interaction from the physical device to its virtual
counterpart or vice versa. The virtual actors observe and verify the availability of
interface devices. If the physical environment can not satisfy the story with
the preferred interface devices, the system can always provide alternatives.
If a physical device is not available in the environment or the user prefers
interacting with the virtual actors, then the virtual actor functions as the
alternative.

3. Satisfying the requirements for the variety of the interface devices. These virtual
actors can be viewed as software drivers for physical devices, which hide the
differences between these devices, and provide the higher level agents with the
same interface.

4. The actormanager coordinates the virtual actors by creating software agents and
transferring user-events between these agents and keeps them synchronized.
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3.4.4 Media and Interaction Synchronization

The XML parser analyzes a StoryML script to build a structural object representation,
transferring the StoryML structure to a scheduling scheme for the presentation. This
scheme is managed by a global timeline controller (figure 3.9 on the facing page) for
synchronizing media objects and interactions, which can be distributed over several
actors.

In StoryML, user interactions are specified by defining dialogs. These dialogs are
registered to the timeline controller. At the specifiedmoments, the timeline controller
initializes a dialog by starting feed-forward media objects on target actors.

The dialog then requests the actors to listen to the user input. Unlike MPEG-4 or
SMIL, StoryML does not associate any user input to a specific media object, but to an
actor instead. If the user reacts, the actor will abstract the user response as an event
and this event will trigger the feedback objects. If the user event results in a change
in a future time, the change is registered to the timeline controller. In this way, the
user interaction is synchronized.

3.5 Lessons learned from StoryML

3.5.1 Pros

The following experiences have contributed to meet the requirements (section 2.1.2)
and are considered valuable to carry on to the next design cycle:

1. The StoryML player makes use of the PAC-based architecture, which empha-
sizes the independence of devices and the communication between the system
components.

2. The abstraction component of a PAC agent is extended with DataSource and
DataSink ports. A streaming channel can be built between a DataSource and
a DataSink to improve the efficiency of the communication between these
distributed agents while the control hierarchy of the system remains intact.

3. The StoryML player always first satisfies the desired environment described in
a StoryML script with virtual software actors, which is designed as an obligatory
layer in its architecture so that software actors can take places of the physical
devices if they are not available. This makes mapping between the desired
configuration and the actual configuration not only easier but also possible to be
done on the fly if the actual configuration changes during the run time. During
this mapping process, the user’s preference of the configuration can also be
taken into account easily.

4. An object-oriented design approach is followed, with the focus on high level
structural patterns such as PAC and Streaming Channel. This approach helped
the project to focus on the architectural design issues other than low-level
multimedia technologies.
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5. Many strengths of the StoryML system come with open technologies. The
StoryML system is based on XML and Java technologies. Together, XML and
Java technologies provide the StoryML system with strengths of simplicity,
portability, and flexibility. XML based scripting seems to be good a direction.

3.5.2 Cons

Having said the positive things, it should also be noticed that the StoryML framework
is not there yet as a generic and powerful solution for distributed and interactive
media application:

1. More types of distributed interface devices should have been included for
the experiment. In TOONS, although many interface devices are introduced,
they were used in separate demonstrator implementations and the StoryML
implementation only included two of them. Integration of these distributed
interfaces needs to be done.

2. StoryML focuses on a storytelling application, and the designs of the demon-
strators and their architectures are influenced by the structure of this particular
type of content. For example, switching between storylines might be a good
abstraction for interactive storytelling, it is certainly too limited for more
complex interaction scenarios.

3. A linear narrative structure is implemented. However the design can not cover
non-linear cases. An example of such non-linear structures is conditional of
infinite repeating of a piece of content.

4. A timeline model is used for timing and synchronization, which requires the
author to specify the exact time of every interaction dialogue. It is intuitive to
use, but can be difficult if the duration of the media objects is not known in
advance and if the author wants to specify timing relations such as “one after
another being finished”.

5. Several concepts have been introduced, such as dialogs, media objects, actors,
and environments. These concepts seem not well fit in one single metaphor so
that they can easily be understood by the script authors.

Nevertheless, what has been done so far not only can serve as a good starting
point, but also paves the way for the final design.



CHAPTER4
Interactive Play Markup Language

One problem of the StoryML is that it uses a mixed set of terms. “Story” and
“storylines” are from narratives, “media objects” are from computer science, whereas
“interactive agents” are from human computer interaction. Scripting an interactive
story requires various types of background knowledge to some extent. It is question-
able whether StoryML has succeeded in both keeping the scripting language at a high
level and let the users, in this case the script writers, only focus on the interactive
content. “Movies did not flourish until the engineers lost control to artists – or more
precisely, to the communications craftsmen.” (Heckel, 1991)

StoryML uses storytelling as a metaphor for weaving the interactive media objects
together to present the content as an “interactive story”. This metaphor made it
difficult to apply StoryML to other applications when there are no explicit storylines or
narratives. Moreover, StoryML can only deal with linear content structure and there
is nothing but a storyline switching mechanism for interacting with the content.

Instead of StoryML, a new scripting language is needed, that has a more generic
metaphor, and supports both linear and nonlinear content structures and that can
deal with complex synchronization and interaction scenarios.

4.1 Play

Instead of storytelling, Interactive Play Markup Language (IPML) uses a more
powerful metaphor of play. A play is a common literary form, refering both to
the written works of dramatists and to the complete theatrical performance of such.
Plays are generally performed in a theater by actors. To better communicate a unified
interpretation of the text in question, productions are usually overseen by a director,
who often puts his or her own unique interpretation on the production, by providing
the actors and other stage people with a script. A script is a written set of directions
that tell each actor what to say (lines) or do (actions) and when to say or do it (timing).
If a play is to be performed by the actors without a director and a script from the
director, the results would be unpredictable, if not chaotic.

39
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4.1.1 Timing in a play

Timing in a play is very important whether it be when an actor delivers a specific line,
or when a certain character enters or exits a scene. It is important for the playwright
to take all of these things into consideration. The following is an example taken from
Alice in Wonderland (Carroll and Chorpenning, 1958, p.14):

· · ·
ALICE Please! Mind what you’re doing!
DUCHESS (tossing ALICE the baby). Here . . . you may nurse it if you like.

I’ve got to get ready to play croquet with the Queen in the garden.
(She turns at the door.) Bring in the soup. The house will be going
any minute! (As the DUCHESS speaks, the house starts moving. The
COOK snatches up her pot and dashes into the house.)

COOK (to the FROG). Tidy up, and catch us! (The FROG leaps about,
picking up the vegetables, plate, etc.)

ALICE (as the FROG works). She said “in the garden.” Will you please tell
me –

FROG There’s no sort of use asking me. I’m not in the mood to talk
about gardens.

ALICE I must ask some one. What sort of people live around here?
· · ·

A few roles are involved in this part of the play. Their lines and actions are
presented by the playwright in a sequential manner, and these lines and actions are
by default to be played in sequence. However, these sequential lines and actions are
often not necessarily to happen immediately one after another. For example, it is not
clear in the written play how much of time the duchess should take to perform the
action “tossing Alice the baby” after Alice says “Mind what your’re doing” and before the
duchess says “Here . . . you may nurse it if you like”. The director must supervise the
timing of these lines and actions for the actors to ensure the performance is right in
rhythm and pace. Furthermore, things may happen in parallel – For example, the
house starts moving as the duchess speaks, and Alice talks as the frog works. Parallel
behaviors are often described without precise timing for performing. It is up to the
directors to decide the exact timing based on their interpretation of the play. For
example, the director may interpret “As the DUCHESS speaks, the house starts moving”
as “at the moment of the duchess start saying ‘The house will be going in any minute’, the
house starts moving”.

4.1.2 Mapping: Assigning roles to actors

Actors play the roles that are described in the script. One of the important task of
the director is to define the cast – assign the roles to actors. This is often done by
studying the type of a role and the type of an actor, and finding a good match between
them. This is also exactly the problem in this project for distributed presentations:
determining which device or component to present certain type of media objects. It
can be very hard for a computer to carry out this task, unless these types are indicated
in some way otherwise.
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(a) Sheng(male) (b) Dan(female)

(c) Jing (face painted) (d) Chou(clown)

Figure 4.1: Role types in Beijing opera
(Pictures from public domain)

In some traditional art of play, these types are even formalized so that a play can
be easily performed with a different cast. For example, The character roles in Beijing
Opera are divided into four main types according to the sex, age, social status, and
profession of the character: male roles (Shēng ), figure 4.1(a)); female roles (Dàn
�, figure 4.1(b)); the roles with painted faces (JìngÀ, figure 4.1(c)) who are usually
warriors, heroes, statesmen, or even demons; and clown (Chǒu Î, figure 4.1(d)), a
comic character that can be recognized at first sight for his special make-up (a patch
of white paint on his nose). These types are then divided into more delicate subtypes,
for example Dàn is divided into the following subtypes: Qı̄ng Yı̄(��) is a woman
with a strict moral code; Huā Dàn (s�) is a vivacious young woman; Wǔ Dàn (É�)
is a woman with martial skills and Lǎo Dàn (P�) is an elderly woman. In a script of
Beijing Opera, roles are defined according to these types. An actor of Beijing Opera is
often only specialized in very few subtypes. Given the types of the roles and the types
of the actors, the task of assigning roles to actors becomes an easy matching game.
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4.1.3 Interactive play

Plays can be interactive in many ways. The actors may decide their form of speech,
gestures and movements according to the responses from the audience. Again with
the example of Beijing opera, plays in early days, which sometimes can still be been
seen today, may be performed in the street (figure 4.2) or in a tea house, where the
actors and the audience are mixed – the actors and the audience share the stage. The
movements of the actors must be adapted to the locations of the audience, and the
close distance between the audience and the actors stimulates the interaction. An
example of such interaction is that the characters often strike a pose on the stage, and
the audience is supposed to cheer with enthusiasm. The time span of such a pose
depends on the reactions of the audience. Although this is not written in the script,
such an interactive behavior is by default incorporated in every play of Beijing opera.

Figure 4.2: 19th century drawing of Beijing opera, public domain

Other interactive plays allow the audience to modify the course of actions in the
performance of the play, and even allow the audience to participate in the performance
as actors. Thus in these plays the audience has an active role. However, this does not
mean that the reader of a novel, the member of audience in the theater are passive:
they are quite active, but this activity remains internal.

The written text of the play is much less than the event of the play. It contains
only the dialog (the words that the characters actually say), and some stage directions
(the actions performed by the characters). The play as written by the playwright
is merely a scenario which guides the director and actors. The phenomenon of
theater is experienced in real-time. It is alive and ephemeral – unlike reading a play,
experiencing a play in action is of the moment – here today, and gone tomorrow.

To clarify the discussions, the word performance is used to refer to the artifact the
audience and the participants experience during the course of performing a script by
preferred actors, monitored and instructed by a director. The script is the underlying
content representation perceived by the authors as a composite unit, defining the
temporal aspects of the performance, and containing the actions which are depicted
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Table 4.1: Comparing theater play terms with multimedia

Theater Performance Multimedia Presentation
Performance Presentation
Script Document
Content element Media object/Media element
Action Playback of an object/element
Actor Player/Decoder
Director Scheduler

by the content elements or the references to these elements. Traditional multimedia
systems use a different set of terms which are comparable to the terms above; they
are in many cases similar, but should not be confused (table 4.1).

Now that a clear view on the ingredients of script is gained, the next section first
presents the basic structure of the SMIL scripting language (Ayars et al., 2005). Using
the structure of SMIL and taking the extra requirements into account, the Interactive
Play Markup Language (IPML) is then proposed.

4.2 SMIL

Synchronized Multimedia Integration Language (SMIL) is an XML-based language
for writing interactive multimedia presentations (Ayars et al., 2005). It has easy to
use timing modules for synchronizing many different media types in a presentation.
SMIL 2.0 has a set of markup modules. All these modules are associated with the
SMIL 2.0 namespace:

SMIL 2.0 language profile contains most of the modules in SMIL 2.0. A clear
distinction between this profile and the complete set is not made.

SMIL 2.0 basic language profile is a smaller subset intended for mobile phones and
other devices where computer resources are limited.

XHTML+SMIL W3C note incorporates modules from the SMIL namespace and the
eXtensible HyperText Markup Language (XHTML) namespace.

These modules in SMIL 2.0 are: 1. timing and synchronization; 2. time
manipulations; 3. animation; 4. content control; 5. layout; 6. linking; 7. media
objects; 8. metainformation; 9. structure; 10. transitions. Not attempting to list all the
elements in these modules, figure 4.3 on the next page shows an object-oriented view1

of some basic elements: Par, and Seq from the timing and synchronization module,
Layout, RootLayout, TopLayout and Region from the layout module, Area from the linking
module, MediaObject from the media object module, Meta from the metainformation

1Note that this Unified Modeling Language (UML) model only provides a rough structure overview of
the selected elements and it is not intended to replace, nor to be equivalent to, the formal DTD specification
from W3C by Ayars et al. (2005).
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Figure 4.3: SMIL in UML

modules and Head, Body from the structure module. Details about the corresponding
language elements can be found in SMIL 2.0 specification (Ayars et al., 2005),
including other modules and elements that are not illustrated here.

The Region element and its attributes for two dimensional layout provide the
basics for screen placement of visual media objects. The specific region element that
refers to the whole presentation is the RootLayout. Common attributes, methods and
relations for these two elements are placed in the superclass named the Layout.

SMIL 2.0 introduced a MultiWindowLayout module over SMIL 1.0, with which the
top level presentation region can also be declared with the TopLayout element in a
manner similar to the SMIL 1.0 root-layout window, except that multiple instances
of the TopLayout element may occur within a single Layout element. It contains the
attributes providing for creation and control of multiple top level windows on the
rendering device.

Each presentation can have Head and Body elements. In the Head element one can
describe common data for the presentation as whole, such as: Meta data, and Layout.
All Region elements are connected to the Head. The Region elements can be connected
to the Head element directly.

The Mediaobject is the basic building block of a presentation. It can have its own
intrinsic duration, for example if it is a video clip or an audio fragment. The media
element needs not refer to a complete video file, but may be a part of it. This is
expressed in SMIL as clip-begin and clip-end attributes of the Mediaobject element.
Some types of Mediaobject that have a visual component can be connected with
a Region element. The lower cardinality bound for this connection on the Region
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side is 0 because other types of the Mediaobject may have no visual components
for presentation. The connection between the Mediaobject and Region is used for
describing spatial constraints in multimedia presentation. This connection gives the
Mediaobject the space coordinates.

The Content, Container, and Synchronization elements are classes introduced solely
for a more detail explanation of the semantics of the Par, Seq, Switch and Mediaobject,
and their mutual relations.

Par and Seq are synchronization elements for grouping more than one Content.
If the synchronization container is Par, it means that direct subelements can be
presented simultaneously. If synchronization container is Seq, it means that direct
subelements can be presented only in sequence, one at a time. The Body element is
also a Seq container.

The connection between Content and Container viewed as an aggregation has a
different meaning for the Synchronization element and for the Switch element. If
the Container element is Switch, that means that only one subelement from a set
of alternative elements should be chosen at the presentation time depending on
the settings of the player. Such settings may be determined statically based on
configuration settings, or they may be determined (and re-evaluated) dynamically,
depending on the player implementation. If the Container is the Synchronization
element, the aggregation describes subelement’s timing relations.

The Mediaobject can be divided in two subclasses: TimeBasedMedia, and Static-
Media, which is not shown in figure 4.3 on the facing page. The most important
difference between these two classes is time clipping. The Ref, Audio, Video, Animation,
and Textstream can have time clip attributes. For example, one can decide to present
only two minutes starting from the second minute in a video. The Text and Img are
media objects that are still.

The Area element can specify that a spatial portion of a visual object can be selected
to trigger the appearance of the link’s destination. The coords attribute specifies this
spatial portion. In contrast, if an element is applied to a visual object, then it specifies
that any visual portion of that object can be selected to trigger the link traversal. The
Area element also provides for linking from non-spatial portions of the media object’s
display. It allows breaking up an object into temporal subparts, using attributes
such as begin and end. The values of the begin and end attributes are relative to the
beginning of the containing media object. The Area element can allowmake a subpart
of the media object the destination of a link, using these timing attributes and the id
attribute (Ayars et al., 2005).

4.3 IPML

As discussed earlier in section 3.2 in chapter 3 and the previous section in this chapter,
SMIL seems to have the ingredients for mapping and timing:

• Its timing and synchronization module provides versatile means to describe
time dependencies (later chapter 9 will discuss timing models and compare
them ), which can be directly used in the IPML design without any change.
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• The SMIL linking module enables non-linear structures by linking to another
part in the same script or to another script. Although the Area element can only
be attached to visual objects, this can be easily solved by lifting this concept up
to a level that covers all the elements that need to have a linking mechanism.

• The SMIL layout module seems to be very close to the need of distribution
and mapping, although it only distributes media objects among regions on the
same device. But the concept of separating mapping and timing issues into
two different parts, i.e. Head and Body, makes SMIL very flexible for different
layouts – if a presentation need to be presented to a different layout setting,
only the layout part need to be adapted and the timing relations remain intact,
no matter whether this change happens before the presentation in authoring
time, or during the presentation in run time.

The arguments in chapter 3 have not yet been forgotten, where SMIL is considered
not directly applicable out of the shelf for the distributed and interactive storytelling: it
does not support a notion of multiple devices. However later it was also found that the
design went one step too far – the StoryML does incorporate the concept of multiple
actors, but its linear timing model and narrative structure limited its applicability.

So what is needed to be done is to pick up SMIL again as the basis for the design
of the scripting language, extending it with the metaphor of theater play, bringing in
the lessons learnt from StoryML. Figure 4.4 on the next page shows the final IPML
extension to SMIL. The extensions are marked gray. The Document Type Definition
(DTD) of IPML can be found in background material D.

Note that in figure 4.4 on the facing page, if all gray extensions are removed, the
remaining structure is exactly the same as the SMIL structure (figure 4.4 on the next
page). This in an intentional design decision: IPML is designed as an extension of
SMIL without overriding any original SMIL components and features, so that the
compatibility is maximized. Any SMIL script should be able to be presented by a
IPML player without any change. An IPML script can also be presented by a SMIL
player, although the extended elements will be silently ignored. The compatibility is
important, because it can reduce the cost of designing and implementing a new IPML
player – the industry may pick up the IPML design and build an IPML player on top
of a existing SMIL player so that most of the technologies and implementations in the
SMIL player can be reused.

4.3.1 Actor

The Head part of an IPML script may contain multiple Actor elements which describe
the preferred cast of actors. Each Actor element has a type attribute which defines the
requirements of what this actor should be able to perform. The type attribute has
a value of Uniform Resource Identifier (URI), which points to the definition of the
actor type. Such a definition can be specified using for example Resource Description
Framework (RDF) (McBride, 2004) and its extensionWebOntology Language (OWL).
RDF is a language for representing information about resources in the World Wide
Web. It is particularly intended for representing metadata about Web resources.
However, by generalizing the concept of a “Web resource”, RDF can also be used to
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represent information about things that can be identified on the Web, even when they
cannot be directly retrieved on the Web. OWL adds more vocabulary for describing
properties and classes: among others, relations between classes (e.g. disjointness),
cardinality (e.g. “exactly one”), equality, richer typing of properties, characteristics of
properties (e.g. symmetry), and enumerated classes. The “thing” to be described here
is the type of the actor.

During the performance time, the real actors present to the theater to form a real
cast. Each actor then needs to report to the director about what he can perform, i.e.
his actor “type”. The “type” of a real actor is defined by the actor manufacturers (well,
if an actor can be manufactured). The real actor’s type can again be described using
an RDF or OWL specification. The director then needs to find out which real actor
fits the preferred type best. The mapping game becomes a task of reasoning about
these two RDF or OWL described “types”. First of all the user’s preferences should
be considered, even if the user prefers a “naughty boy” to perform a “gentleman”.
Otherwise, a reasoning process should be conducted by the director, to see whether
there is exactly an actor has a type that “equals to” the “gentleman”, or to find an
“English man” that indeed always “is a” “gentleman”, or at least to find a “polite man”
that “can be” a “gentleman” and that matches “better than” a “naughty boy”, etc. This
reasoning process can be supported by a variety of Semantic Web (Berners-Lee and
Fischetti, 1999) tools, such as Python based Closed World Machine (CWM) (Berners-
Lee, Hawke, and Connolly, 2004) , Java based Jena (2004) just for example. How
exactly this can be done goes beyond the scope of this thesis.
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4.3.2 Action

The Action element is similar to the MediaObject element in SMIL. However, Action
can be applied to any type of content element which is not explicitly defined using
different media objects such as Img, Video and Animation in SMIL. The Action element
has an attribute src giving the URI of the content element and its type either implicitly
defined by the file name extension in the URI if there is one, or explicitly defined in
another attribute type. The type attribute defines the type of a content element as the
type attribute of Actor defines the actor type, using a URI referring to a definition.

Action may have an attribute actor to specify the preferred actor to perform this
action. If it is not specified, the type of the content element may also influence
the actor mapping process: the director needs to decide which actor is the best
candidate to perform this “type” of action. Again, the user preference should be taken
into account first, otherwise a reasoning process should be conducted to find the
“gentleman” who can nicely “open the door for the ladies”.

In addition, the Action element may have an observe attribute that specifies the
interested events. This attribute is designed for an actor to observe the events that
are of interest during the course of performing a specific action. For example, when
an actor is performing an action to present a 3D MPEG-4 object, it may be interested
in the controlling events for rotating the object. This actor can then “observe” these
events and react on it. Note that these observed events have no influence on the
timing behavior: it will neither start nor stop presenting this 3D object, unless they
are included in timing attributes, i.e, begin and end. Events that are not listed in
observe will not be passed by the director to the actor during this action, therefore the
event propagation overhead in a distributed network setting will be reduced.

However, actors may be interested in the events not related to any actions. To
accommodate this without changing the original SMIL structure, these Actors are
required to perform an action of the type null, specified using a special URI scheme
“null:”, which allows events to be “observed” during an action of “doing nothing”.

4.3.3 Event

The third extension of IPML to SMIL is event based linking using Event elements.
Event elements in an Action element are similar to Area elements in a visualMediaObject
element in SMIL, with the exceptions that the parent Action element is not required to
have a visual content to present, and that the events are not limited to the activation
events (clicking on an image, for example). An Event has an attribute enable to
include all interested events during an action, including all possible timing events
and user interaction events. Once one of the specified event happens, the linking
target, specified using the attribute href is triggered. Similar to the Area element,
the Event element may also have begin, end and dur attributes to activate the Event
only during a specified interval. Event based linking makes IPML very flexible and
powerful in constructing non-linear narratives, especially for the situations where the
user interaction decides the narrative directions during the performance.
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4.4 Conclude with Alice in Wonderland

To show what a IPML would look like in practice, let’s use the example from Alice in
Wonderland in section 4.1.1 on page 40 again. It is impossible to embed multimedia
content elements in this printed thesis, therefore two exotic URI schemes: “say:” are
introduced for the lines and “do:” for the action instructions, just for the fun of it:

<ipml >
<head>

<actor id="ALICE" type="http ://alice@wonderland.eu/ lovelygir l " />
<actor id="DUCHESS" type="http ://alice@wonderland.eu/seriouswoman" />
<actor id="COOK" type="http ://alice@wonderland.eu/cook" />
<actor id="FROG" type="http ://alice@wonderland.eu/frog" />
<actor id="HOUSE" type="http ://alice@wonderland.eu/woodenhouse" />

</head>
<body>

<action actor="ALICE" src="say:Please ! Mind what you’ re doing ! " />
<par >

<action actor="DUCHESS" src="do: tossing Alice the baby"
id="DuchessTossingBaby"/>

<action actor="DUCHESS"
src="say:Here . . . you may nurse i t i f you like , I ’ ve got to get

ready to play croquet with the Queen in the garden. " />
<action actor="ALICE" src="do: receiving the baby"

begin="DuchessTossingBaby.babytossed"/>
</par >
<action actor="DUCHESS" src="do: turns at the door" />
<action actor="DUCHESS" src="say:Bring in the soup. " />
<par >

<action actor="HOUSE" src="do:moving" />
<seq>

<par >
<action actor="DUCHESS" src="say:The house wil l be going

any minute ! " />
<action actor="COOK" src="do:snatches up her pot and

dashes into the house" />
</par >
<action actor="COOK" src="do: turns to the FROG" />
<action actor="COOK" src="say: Tidy up, and catch us! "
<par >

<action actor="FROG" src="do: leaps about" />
<action actor="FROG" src="do: picking up the vegetables ,

plates , etc . " />
<action actor="ALICE" src="say:She said ’ in the garden ’ ,

wi l l you please te l l me−" />
</par >
<action actor="FROG" src="say:There ’ s no sort of reason asking me, I ’m

not in the mood to talk about gardens. " />
<action actor="ALICE" src="say: I must ask some one. What sort

of people l ive around here?" />
</seq>

</par >
</body>
</ipml >
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This then concludes the investigation into the requirements, since at this point
the main architectural requirement can be summarized as:

On top of existing network technologies and platform architectures, a
generic interface architecture is to be designed to enable performing
an IPML script in a networked environment with user preference and
dynamic environment configurations taken into account.

The mission is clear. Now let’s move on to the next part.
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CHAPTER5
Pattern Oriented Architecture Design

The previous chapter introduced a language that is designed for interactive media
authoring and that is in a set of terms of theater play. A play in such a language
is basically a script with performance instructions, again, about who and when to do
what. A software programmer would find it familiar to a computer program in source
code – it stays static and does nothing until it is executed by the targeted system. To
bring such a play alive as a performance, a director is needed to lead real actors to act
the script out following these instructions, that is, a distributed system to perform the
play and allowing users to interact with the play.

This chapter presents the design of the overall architecture of such a distributed
system. The architecture is shaped by a collection of cooperative software design
patterns, from the lower level mechanisms that cope with problems in multimedia
presentation and synchronization, to the higher level structure that handles distribu-
tion, communication and user interaction issues. In this design, patterns are reusable
architectural constructs that contribute to the overall architecture.

This chapter introduces the basic concepts of patterns, arguing why the “pattern
language” and the Unified Modeling Language (UML) as such are insufficient for
pattern specification, especially when they are applied as architectural constructs.
A formal and object-oriented specification language, Object-Z, is then used to
compensate the insufficiency. The discussion will also show how a general-purpose
design pattern can be used as an architectural construct by presenting the Observer
pattern that is frequently used at a lower level of the architecture. In the next chapters,
roughly following a bottom-up approach, the patterns that contribute to the system
architecture at higher levels are introduced, till an overview of the entire system
architecture is reached.

5.1 Design Patterns

A common problem (or decision) in a design process, together with its best solution,
is a single design pattern. The idea of capturing design ideas as a “pattern” is usually
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(a) Patterns of events (b) Patterns of space

Figure 5.1: Alexander’s Patterns

attributed to Christopher Alexander, an American architect. Alexander’s patterns
seek to provide a source of proven ideas for individuals and communities to use in
constructing their living and working environments. A pattern records the design
decisions taken by many builders in many places over many years in order to resolve
a particular problem. Figure 5.1 shows two patterns in events and space, from his
book A Timeless Way of Building (Alexander, 1979).

5.1.1 Software design patterns

Alexander’s idea of design patterns as a problem-solving discipline had been picked
up by the software architecture and design community with rapidly growing accep-
tance, especially after the phrase was introduced to computer science in 1995 by
Gamma, Helm, Johnson, and Vlissides (“Gang of Four” or GoF in short) in their
book Design Patterns: Elements of Reusable Object-Oriented Software. The scope of the
term remained a matter of dispute into the next decade. Algorithms are not thought
of as design patterns, since they solve computational problems rather than design
problems. Typically, a design pattern is thought to encompass a tight interaction of a
few classes and objects.

Although many of the problems frequently encountered in software design have
existing solutions, the solutions can be difficult to be applied due to the need of
understanding their details. Design patterns address this problem by being general;
a solution documented in the format of a design pattern can be understood without
involving the knowledge of the specific details. It captures key design constructs,
practices and mechanisms of core competencies such as object-oriented development
or fault-tolerant system design. It can speed up development processes by providing
almost ready-made general-purpose solutions that have been used earlier and proven
to be effective. Just like a costume sewing pattern that can be used to cut out many
costumes of slightly different style, size and trim, a software design pattern is a
general solution that can be tailored to fit. For example, the Observer pattern from
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the GoF book describes a dependency registration structure to assure consistency
between objects when changes take places in one of them, by providing the core
elements of a working solution, but still leaving implementation details to a particular
platform and the discretion of a developer. Patterns tell the developer what to do
without specifying much about how to do it. They should be abstract, yet not be
vague.

5.1.2 Pattern language

To describe these general solutions in an abstract but not vague way, it is important
to formalize the design decisions and the rationales behind these decisions. These
decisions and rationales are often obvious with experience but difficult to document
and pass on to novices. Therefore a structured method of describing good design
practices within a particular domain is needed.

The pattern language is such a method. Alexander, Ishikawa, and Silverstein (1977)
coined the term pattern language in the book A Pattern Language: Towns, Buildings,
Construction. Later in his book A Timeless Way of Building Alexander describes what
he means by pattern language and how it applies to the design and construction of
buildings and towns. According to Alexander, a single entry in a pattern language
should have a simple name, a concise description of the problem being addressed and
the context in which it arises, the design tradeoffs (called forces) and a clear solution.
Closely related patterns form a vocabulary, therefore serve as a language that applies
to the domain of the problems they solve.

The software patterns community adopted the term pattern language and uses the
meta language for documenting patterns. Several popular pattern languages exist, all
of which have these basic elements defined by Alexander, but each of which adds
other elements, for example intent and consequences in GoF patterns, to emphasize
specific design concerns. Typically, software design patterns often include a section
of structure, graphically illustrate the structure of the pattern. UML class diagrams
and sequence diagrams are often used for this purpose, together with code fragments
to illustrate how this pattern can be used in a particular programming language.

To briefly show the use of the pattern language, let’s first have a close look at the
Observer pattern that is frequently used in the IPML system architecture.

5.1.3 Observer pattern in pattern language

Intent

“Define a one-to-many dependency between objects so that when one object changes
state, all its dependents are notified and updated automatically” (Gamma et al., 1995).

Context

In an IPML performance, an actor needs to be aware of the action states of other
actors in order to synchronize their behaviors, for example when another actor has
just started or stopped an action. Actors also have to adapt their actions in real-time
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according to the reactions from the audience. In other words, when there is a state
update, the actors who are interested in this update should be notified.

An actor also has to schedule the actions as soon as the timing constraints have
been resolved by the director. If the actions are not to be taken immediately, they need
to be planned to start or stop at a specific time. In the IPML system architecture, every
actor owns, or shares with others a timer. The actor may register the actions together
with the planned time and an action command (start or stop) to the timer. Once the
planned time is reached, the observable timer notifies the observing actions with the
registered command. A registered action may also be canceled or rescheduled if the
timing constraints have been changed by user interaction or other actions.

The actors need to monitor the presenting media objects all the time. A media
object first has to be prefetched to a cache so that it is ready to be started immediately.
Only after it has been started, the actor may then decide to stop or pause the action
at any time. The actor also should be notified when the content reaches its end.
Especially when the media object is a live stream, the end time can not be predicted
in advance. Obviously, the media object has state transitions of its own and these
transitions are certainly interesting for the presenting actors. This is often a one-to-
one relationship, but still, there is a need to separate the concerns – the actors do not
know what to present beforehand and the media objects are not fixed to any actor.

Solution

The Observer design pattern has two parts and they are an Observable (called Subject
in the GoF book) object and a collection of Observer objects. The relationship between
Observable and Observer is one-to-many. In order to reuse Observable and Observer
independently, their relationship should not be tightly coupled. The Observer pattern
can be used in any of the following situations: 1. when the abstraction has two aspects
with one dependent on the other. Encapsulating these aspects in separate objects
increases the chance to reuse them. 2. when the observable object doesn’t know in
advance how many observer objects it has. 3. when the observable object should be
able to notify its observer objects without knowing who these objects are.

1. Structure
Figure 5.2 is the UML class diagram of an observer pattern:

Observable 1. keeps track of its observers; 2. may have any number of observers;
3. provides an interface to subscribe and unsubscribe an observer object at run
time; 4. sends change notifications to all the observers.

Observer provides an update operation to receive the notification signals from the
observable object.

ObservableImpl 1. stores the observable state that is interesting for the observers;
2. serves the observers with the observable state if there is a query request.

ObserverImpl 1. maintains reference to a ObservableImpl object, if queries to the
observable’s state are to be done after the update; 2. maintains observer state;
3. implements update operation.
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obs

0..*

+subscribe(o:Observer)
+unsubscribe(o:Observer)
+notify( )

Observable

+update(obl:Observable)

for all o in obs 
    o.update(this)

+getState( )

-observableState

ObservableImpl

+update(obl:Observabe)

-observerState

ObserverImpl

return observableState observerState = 
      obl.getState( )

Figure 5.2: The Observer pattern

2. Collaborations
AUML sequence diagram or a collaboration diagram can be used here to illustrate

the messaging events between theObservableImpl and theObserverImpl objects, which
is omitted here. Nevertheless, a description is always needed to explain what is
exactly happening: 1. ObservableImpl notifies its observers simultaneously in case of a
change that could make its state inconsistent with observers. 2. after aObserverImpl is
notified, it queries the observable state using the getState function. ObserverImpl uses
this information to change it’s internal state.

Consequences

Further benefits and drawbacks of the Observer pattern include:

• Abstract coupling between the observable object and the observer objects;

• Support for broadcast communication. The notification is broadcast automati-
cally to all interested objects that subscribed to it;

• Unexpected updates. There is a potential disadvantage of successive or repeated
updates to the observers when there are series of incremental changes. If
the cost of these updates is high, it may be necessary to introduce change
management, so that the observers are not notified too soon or too frequently.

Code example

First an example of Java implementations of Observable and Observer is show as
follows:
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public class Observable {
private Vector obs = new Vector ( ) ;
public synchronized void subscribe (Observer o) {

i f (o != null && !obs. contains (o ) )
obs.addElement(o) ;

}
public synchronized void unsubscribe (Observer o) {

obs.removeElement(o) ;
}
public void notify ( ) {

I terator i = obs. iterator ( ) ;
while ( i .hasNext ( ) )

( ( Observer ) i . next ( ) ) . update( this ) ;
}

}
public interface Observer {
void update(Observable obl ) ;

}

As an example of concrete observables and observers, a skeleton implementation
of a ObservableMediaObject and a MediaObjectObserver in the IPML system is shown
here, demonstrating how they cooperate to synchronize their operations according to
the internal state transitions of the MediaObject.

public class ObservableMediaObject extends Observable{
private MediaObject mo = new MediaObject ( ) ;
public SyncState getSyncState ( ) {

return mo.getSyncState ;
}
public ready ( ) {
mo. ready ( ) ;
i f (mo.getSyncState == Synchronizable . ready ) {

notify ( ) ;
}

}
public start ( ) {
mo. start ( ) ;
i f (mo.getSyncState == Synchronizable . started ) {

notify ( ) ;
}

}
. . .

}
public class MediaObjectObserver implements Observer {

public void update(Observable obl ) {
i f ( obl instanceof MediaObject ) {
i f ( (MediaObject ) obl . getSyncState ( ) == Synchronizable . ready ) {
// . . .

}
else i f ( (MediaObject ) obl . getSyncState ( ) == Synchronizable . started ) {
// . . .

}
else i f . . .

}
}

}



5.2 Patterns as architectural constructs 59

ObservableMediaObject “decorates” the state control operations of a MediaObject
(see Decorator pattern, Gamma et al. (1995); Metsker (2002)), so that the observers
are updated with the change if the operation has successfully changed the syn-
chronization state of a MediaObject. Once a MediaObjectObserver is notified, it
may get the synchronization state by calling the getSyncState operation from the
ObservableMediaObject.

Notice that this section is just a brief example of how the pattern language can
be used for describing the design ideas in a pattern, although this “brief” is getting
too long. Many details have been omitted, as well as other sections such as “known
uses” that includes examples of real usages of this pattern, and “implementation
issues” that provides the techniques used in implementing this pattern and suggests
alternative ways for this implementation. More comprehensive descriptions can
be found in the GoF book (with C++ examples) and other literature (Bruegge and
Dutoit, 2004; Cooper, 1998; Grand, 2002; Metsker, 2002; Stelting and Maassen,
2002). The Observer patterns presented here and in the mentioned literature are
all slightly different from each other. In practice, the Observer pattern might appear
here and there without being implemented exactly the same way twice. If one
invocation is used to propagate the notification event, followed by a reciprocal request
for detailed state change information, the two steps can be merged into one operation
by providing state information as an argument to the notify operation. This “push
model” is not a new pattern, but rather a variant of the same pattern with “pull model”.

5.2 Patterns as architectural constructs

Design patterns represent solutions to problems that arise when software is being
developed in a particular context. Design patterns can be considered as reusable
architectural constructs (small software frameworks) that contribute to an overall
system architecture; they capture the static and dynamic structures and collaborations
among key components in a software design. For example, the Observer pattern is
used as the architectural foundation for distributed network sessions among actors
in the IPML system. A state change in one actor usually implies state change or
responses at other actors. If one actor temporarily turns off its audio presentation
channel (goes mute), other actors may want to present an icon indicating that the
actor is muted. If one actor leaves the system, other actors and the director must be
told that they should no longer try to communicate with that actor. One can think
of this use of Observer as an object-oriented session management framework. It can
easily accommodate many types of change, such as the attendance of new actors and
actor types, the way action states are computed or represented, and many others.

Object-oriented frameworks are customizable libraries of classes that can be
tailored to different applications by adding subclasses that supply application-specific
behavior in their method implementations. Frameworks often exhibit an Inversion
of Control (IoC), or also called Dependency Injection behavior (Fayad and Schmidt,
1997), where the framework classes call application classes, in contrast to usual class
libraries which are called from the application1. For example, a window system

1This behavior is similar to the Hollywood Principle: “Don’t call us, we’ll call you.”
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framework may contain the “main event loop” initiating all activity in an interactive
window-based application. The framework can therefore often be seen as a skeleton
application, implementing the most important design decisions at an abstract level
(e.g. as abstract classes). In this respect, it is often said that a framework constitutes
an overall design or architecture of a system.

Many useful frameworks, such as the Java Media Framework (JMF) (Gordon and
Talley, 1998; Sullivan et al., 1998), the Java Foundation Classes (JFC) (Walrath et al.,
2004), and the Apache Struts Web Application Framework (Structs) (Holmes, 2004)
are rich in patterns, combing many architectural constructs in to a larger architecture.
The resulting frameworks are documented by the use of known and new patterns,
describing how to extend it for specific desired behaviors.

Pattern oriented system design is to use patterns as architectural constructs, build
up a reusable framework, and finally reach the overall architecture of the system.
There are design patterns providing the structures at different levels of the system
architecture. At the bottom, design patterns such as Factory Method, Abstract Factory,
Composite, Proxy, Command and Observer can be used to manage the problems
in creating objects, grouping them into a bigger structure (Gamma et al., 1995;
Grand, 2002). In the middle, design patterns such as Layer, Pipe, Filter and Channel
control the communication among the bottom level components. At a higher level,
architectural patterns such as MVC and PACmanage the problems in structuring the
top level components of the system, handling user-system interaction, and making
the system adaptive (Buschmann et al., 1996). This design strategy fits perfectly the
requirements of the IPML system – not only a running system is needed, but also the
framework underlying the system should also be reusable for future extensions.

5.3 Formal specification

5.3.1 Problems of informal specifications

The pattern language can be used for specifying the pattern oriented architecture.
However, as an architectural specification language, according to Perry and Wolf
(1992), it should have the following desirable properties: 1. Generality. The language
should allow the expression of constraints at the necessary level of detail. “What is
not constrained by the architect may take any form desired by the implementer”.
2. Abstraction. Instead of “an assembly-level” architectural language that allows the
specification of all conceivable configurations, yet is too verbose, a language is needed
to restrict the discussion to topologies of interest. Such a language should incorporate
constructions that allow for specifications that are appropriately concise. 3.Modularity
and Expressiveness. The language is expected to provide a relatively small set of design
elements from which complex expressions can be constructed.

The patterns described with the pattern language as shown in section 5.1.3 on
page 55 are, at best, informal. The specification was given by means of abstract
diagrams and concrete examples and by appealing to intuition. These diagrams
and examples attempt to converge towards the desirable generalizations. Due to the
imprecise specification, the solutions prescribed by the pattern language as such serve
as prototypical abstractions of high intuitive appeal, yet they lack a more definitive
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foundation. To illustrate the structure of the Observer pattern, a UML class diagram
is used, in which three descriptive and informal notes have to be added to explain
the behaviors of three important operations (notify, update and getState, figure 5.2
on page 57). Otherwise, interaction diagrams, such as sequence diagrams, state
machine diagrams and activity diagrams have to be employed to illustrate the dynamic
behavior. However, as Booch, Rumbaugh, and Jacobson (1996, p.27) point out in an
addendum to the UML reference manual,

The interesting aspect of many patterns is their dynamic behavior. We can
certainly show this with interaction diagrams, but only in the context of a
specific model; it is harder to keep the “patternness” of the patterns open.
Finally patterns are templates, in a sense, in which classes, associations,
attributes and operationsmight all be mapped into different names which
keeping the essence of the pattern; we need a way to clearly parameterize
the patterns.

It is hard to use these diagrams to capture the roles and collaborations among
components andmodules of lower granularity levels. Each diagram contains constant
symbols, not variables, and can depict a concrete plan, not a generic schema.
In contrast, architectural specifications should express constraints on desirable
properties, not the specifics of their implementation. Clearly, such expressions
require variables and quantifiers as well; for example in the notify operation of
the Observable class, something more formal is needed, instead of “for all o in obs:
o.notify(this)”. The java code fragments do provide possibilities to include variables
to demonstrate the dynamic collaboration behavior, but at the same time, they loose
even more generality and abstraction: “a collection of observers” is implemented as
a Vector and it forces the specification to show the notify operation by traversing the
elements of the Vector one by one – the information provided by the code example
is redundant. A precise and concise way is needed to say “a collection of observers”,
and to say that the notify operation is to update all the observers. No more, no less.

Such ambiguities arise which cannot be resolved unequivocally with the pattern
language as is. See for instance the confusion that resulted from the inability to
conclusively pin down the difference between the patterns Multicast and Observer
(Vlissides, 1997a,b). From the descriptions provided it is hard to see the difference
between these two patterns – Multicast uses typed messages for change notifications.
Also for example, the patterns mailing lists (GoF patterns, 2005; patterns-discussion,
2005), often engage in prolonged discussions whether a particular piece of code
manifests an instance of one design pattern or the other, or whether one pattern is an
special case of another, often without any satisfactory answer given.

5.3.2 Observer pattern in Object-Z

If, however, the underlying abstractions in pattern catalogs (collections of patterns
documented in pattern language) are to become fundamental elements of software
construction, they must mature at least to have a definite and unambiguous spec-
ification. Mathematical formal methods are well accepted techniques to improve
the precision of software structures. Applying formal methods at early design
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stages can reduce ambiguities and possible errors in later software development.
Moreover, formal activities such as formal verification and program generation
through refinement would also bring other advantages that the UML diagrams
and the natural language can not provide. This project introduces Object-Z (Duke
and Rose, 2000; Smith, 2000) specification, an object-oriented extension to Z
(ISO/IEC, 2002; Spivey, 1992), into the pattern language to improve its precision
and conciseness, at the same time, to keep the object-oriented elementary building
facilities. Again as examples, let’s try to specify two basic elements of the Observer
pattern in Object-Z:

Observable

∆
obs : P ↓Observer

INIT
obs = ∅

Subscribe
o? : ↓Observer

obs′ = obs ∪ {o?}

Unsubscribe
o? : ↓Observer

obs′ = obs \ {o?}

Notify =̂∧o : obs • [ obl! : {self } ] o
9 o.Update

Observer

Update
obl? : ↓Observable

In this definition, an object of Observable clearly maintains a collection, or in other
words, a set of objects of the class Observer and its subclasses. The polymorphic
notation ↓ unites the class Observer and all its subclasses. The initial state (INIT) of an
Observable is that obs, denoting the set of the subscribedObservers, must be empty. The
state variable obs is declared in a ∆-list of those attributes whose values may change.

The operations Subscribe and Unsubscribe take an o? : Observer as input (the
decoration ? denotes an input variable), add it to or remove it from obs with set
operations. The state variable obs after an operation is decorated with a single prime ′.

The part of Notify, [ obl! : {self } ], is equivalent to an anonymous operation

obl! : ↓Observable

obl! = self

which outputs the self identity through variable obl! (the decoration ! denotes an
output variable). The operation Notify conjoins the operation Update of each Observer

in obs. The distributed conjunction composition ∧ conjoins the constraints on
the component operations, equating variables (including communication variables)
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with the same name, to model the simultaneous occurrence of the component
operations. This causes all the observers o : obs to be updated simultaneously.
The expression o.Update promotes the Update operation of the observer object o to
the class Observable. The anonymous operation [ obl! : {self } ] and the promoted
operation obl.Update are composed together with a sequential operator o

9 – the
right hand operation will proceed only after the left hand operation succeeds. The
sequential operator allows communication between two operations by o

9 equating
inputs to outputs with common base names, i.e, apart from the decorations ? and !.
Once a communication happens, the sequential composition hides the output from
its environment.

The class Observer defines a skeleton operation Update to receive the notifying
Observable as input, with an empty predicate part, which is the equivalent to:

Update
obl? : ↓Observable

true

Since the predicate part of the operation Update of a subclass will be conjoined, the
actual result of the operation solely depends on the subclass.

The specification can be further simplified by introducing abbreviations. For
example, it will be found very often that sequential composition is needed to output
known values with an anonymous operation to another operation that takes these
values as input, as in the definition of Notify: [ obl! : {self } ] o

9 o.Update. It can be
simplified as o.Update(self ) instead, by introducing an abbreviation

Op(x1  v1; x2  v2; . . . ; xn  vn) ==

([ x1! : {v1}; x1! : {v2}; . . . ; xn! : {vn} ] o
9 Op)

given that Op is any operation that has input variables of compatible types with the
same base names: Op =̂ [ x1? : X1; x2? : X2; . . . ; xn? : Xn; . . . | . . . ] where vi ∈ Xi

(i = 1 . . n), and when x1? is the only input variable in the operation Op. Further it
can be simplified it as Op(v1) == ([ x1! : {v1} ] o

9 Op).
Let’s also introduce an abbreviation “:=” for simple operations that update a state

variable x of type X with a variable v of the same type:

x := v == [∆(x) | x′ = v ∧ v ∈ X ]

so that the assignment operations can be written in a more readable form.
By introducing these abbreviations and by omitting derivable variable declara-

tions, the class Observer can be rewritten as:

Observable

obs : P ↓Observer
INIT
obs = ∅

Subscribe =̂ [ o? : ↓Observer ] • obs := obs ∪ {o?}
Unsubscribe =̂ [ o? : ↓Observer ] • obs := obs \ {o?}
Notify =̂∧o : obs • o.Update(self )
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5.3.3 Benefits of formal specification

Comparing to the UML diagram and the code example, the “collection of observers”
and the operations on this collection are modeled as a set, which provides the
abstraction that is no more and also no less than is necessary, yet has firm and
precise semantics. The informal note “for all o in obs: o.update(this)” in the diagram
has now a formal and concrete body, yet remains at an abstract level that the Java
sample code can not achieve. Notice that there is no self-reference in UML, “this”
is just a Java or C++ convention, whereas in Object-Z it is defined in the language
with the self identity. While it is hard to ensure the correctness, and even the
syntactical correctness of the UML diagrams and the additional notes in natural
languages, the specification in this chapter is checked with Wizard, a type-checker for
Object-Z (Johnston, 1996).In a design process Object-Z can be used to derive object-
oriented architectures from abstract functional specifications, where refactoring rules
such as annealing, coalescence and reflection can be applied (McComb, 2004; McComb
and Smith, 2004), and correctness concerns can be addressed as part of the design
process (Derrick and Boiten, 2001; Smith, 2000).

In short, the Object-Z specification provides a better amount of generality and
abstraction than UML and concrete examples, with the power of both formalization
and object orientation for elementary element building blocks – it has the properties
that an architectural specification should have. However, the Object-Z specification is
not intended to replace natural language specifications. Instead, formal definitions
are complementary to existing means (natural language, code samples, etc.). By
definition, descriptions in natural language cannot always be conclusively and fully
formalized. One should be aware that in some cases formalization is difficult and that
there is a definite limit to what can be specified in Object-Z. Object-Z is used only to
treat the solution part of the pattern specifications (more specifically, the architectural
construct specified by the solution). It has not been found that there is any attempt
to formalize the intent, context and consequences. This does not mean, however, that
these elements in the specification of patterns are insignificant. The static structure
and the dynamic behavior of a pattern might be the first, and probably the easiest part
to start with. Here let’s leave the possibility of formalizing the other parts to future
research.

This chapter has clarified the preliminary concepts of using software patterns as
architectural constructs and the need of employing Object-Z specification to improve
the precision and concision in addition to UML diagrams. It is now the time to
describe the basic problems in the IPML system and the pattern solutions thereof,
as well as later the communication middleware and the overall architecture.



CHAPTER6
Actions

At the bottom level of the IPML system the actors are acting, i.e., performing their
actions on the media objects. This chapter describes three patterns applied at this
level. Timed Action is a new pattern, designed for asynchronous control of timed
behavior of the actors; Synchronizable Object pattern lifts the structure of active
media objects seen in many multimedia systems to a pattern level, to deal with the
state control of heterogenous media objects; Action Service Factory pattern combines
the Timed Action and Synchronizable Object with the generic Abstract Factory pattern
(Gamma et al., 1995), together providing action services transparently.

6.1 Timed Action

6.1.1 Intent

The Timed Action pattern decouples action execution from action invocation to
improve concurrency so that the action can be taken asynchronously in another
process, and possibly at a preferred future time. It also simplifies synchronized access
to the action service supplier that has its own thread of process in parallel.

6.1.2 Context and forces

In order to synchronize media elements, many multimedia systems implement
a central scheduler to control the timing behavior of every element in sync by
sending action requests (for example starting, stopping and pausing) directly in real
time, expecting these operations to be immediately executed by the receiving media
elements. This strategy works fine if, and only if

1. the central scheduler can indeed schedule every timing behavior of all the
involved players and elements in advance, and
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2. the signal will be received by the targeted elements instantly, or in other words,
in a time that is short enough to be ignored.

However neither holds in an interactive and distributed context. For example in
the IPML system, the timing of an action, or the operations on the media objects
may depend on local situations (sensorial input from the environment) and user
interaction. In this case, the execution time can not be scheduled in advance by the
central scheduler (the director) because the operations can not be pinned down at
absolute time points in advance. Scheduling has to be done in real time. Then there
will be two options, either schedule the actions centrally by the director, or partially by
the actor themselves but supervised and coordinated by the director. Indeed the actors
can send every local sensorial input and the interaction events to the director and let
it decide what to do next on behalf of the actors in real time. However, not every
decision of an actor should be taken care of by the director – the director is not there
for that purpose. This approach would heavily increase the network load, worse, as
the number of actors increases, the central scheduler would also be overloaded with
trivial decisions that the actors can make by themselves locally.

Even when the director is able to handle this load, there is no guarantee that in
a network with heterogenous connections, action requests will arrive at actors and
will take effect on media objects in an ignorable short time. To ensure actors will
act at right moments, action requests have to be received by the actors prior to the
expected effecting time – this is possible because many of the timing constraints can
be resolved earlier than the actual action should be taken. In the worst case, when
some of the action requests can not arrive at the destination before the expected time,
a network delay can be taken into account. It is then possible to ensure that all the
involved actors will wait for the period of the delay, compromising the timing accuracy
for better synchronization if the operations are intended to be done at the same time.
In both cases, actions that arrive earlier need bo be hold until the right moment.

Often, media objects have their own thread of control, for example, a MPEG-
2 video stream with hardware decoding. Certain actions on this stream should be
synchronized, for example Start and Stop should not happen at the same time on
the same stream otherwise it might result in an undetermined finishing state. For
those media objects which do not have an internal mechanism to guarantee the
synchronized access to these actions, an external one is needed.

Further, concurrent operations on the media objects should not block the entire
process. For example, although Start and Stop are not allowed to happen at the same
time on the same media object, Stop should still be possible to be queued up while
another process is Starting the element in order to Stop it immediately after it is
Started.

In short, in the IPML system, there is a need for actors and media objects to
schedule the actions locally and to handle synchronized action requests in parallel.
In a more generic sense, many other applications may also benefit from a structure
that has it own process for providing the operation services, instead of executing these
operation in the processes of the requesting clients. However, if multiple clients are
allowed to send the operation requests, synchronized accesses to the state and the
operations of the serving object must be guaranteed, such that the accesses from
different processes are mutually exclusive.
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6.1.3 Solution

Every action service supplier decouples action invocation from action execution, so
that the client process appears to invoke an ordinary function call with a parameter.
The parameter specifies expected execution time, and a list of other parameters as
well. The function call is automatically converted into a correspondent scheduling
object and registered to a scheduler that has a process of its own, checking whether the
scheduling objects have reached their planned execution times. Once a scheduling
object has reached its planned time, the scheduler sends it back to the action service
for execution, where the scheduled object is converted back to a function call and
executed in the process of the action service.

The Timed Action pattern consists of the following components. An ActionService
implements and executes the action operations. For the ActionService, an
ActionServiceProxy represents the action interface as direct operations. Upon request,
it transforms the client’s action invocation into a TimedAction object, subscribes it to
a Scheduler, and returns a TentativeResult to the client. The TimedAction object wraps
an Action object and its planned execution time together, in which the Action object
encapsulates the serviced action operations from theActionService. The Scheduler then
activates the TimedAction at the planed time. Once activated, the TimedAction object
enqueues its Action component to an ExecutionQueue object that has its own active
process to dequeue the actions, execute them and update the TentativeResult object
with the actual final result.

6.1.4 Structure

The overall structure of the Timed Action pattern is illustrated in figure 6.1 on the
following page using a UML class diagram. See background material E for detailed
Object-Z specifications of these components.

6.1.5 Consequences

Benefits

The Timed Action pattern provides the following benefits:

Action scheduling: Actions invoked asynchronously are executed based on the time
constraints specified by the client. The order of action execution is independent
from the action invocation.

Enhanced concurrency: Concurrency is enhanced by allowing client processes, action
scheduling and action execution to run simultaneously.

Simplified synchronization: Synchronization complexity is simplified by the
ExecutionQueue, which guarantees serialized access to Action execution
and as a result serialized access to operations in ActionService.
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Figure 6.1: Timed Action pattern

Encapsulated scheduling policy: The scheduling policy is encapsulated in its own class
and can be changed easily. For example, the class Scheduler may maintain the
TimedAction objects in a sequence instead of a set, such that the order of action
requests can be taken into account when multiple TimedActions are planned to
be executed at the same time and if there is a need of notifying these objects in
sequence on a first-come-first-serve basis.

Liabilities

However the Timed Action pattern has the following liabilities:

Complexity and performance overhead: The Timed Action pattern involves multiple
parties working together in parallel to accomplish a single action request,
which certainly increases the context switching, synchronization and data
movement overhead. If there is no need of planning an action for future
execution, the Active Object pattern (Lavender and Schmidt, 1996) can do the
job without employing an extra Scheduler for TimedActions. If it is only to
ensure one action at a time to be executed within a passive object, the Monitor
pattern (Buschmann et al., 1996) incurs even less context switching and data
movement overhead.
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6.2 Synchronizable Object

6.2.1 Intent

The Synchronizable Object pattern extracts the common inter-media synchronization
behavior from the media objects with intrinsic timing and the ones without, such that
different media objects can be synchronized at distinct and possibly user definable
synchronization points.

6.2.2 Context and forces

Amultimedia system uses multiple different media (text, audio, graphics, animation,
video, and in an ambient intelligent environment, movements and behaviors of
physical objects), to convey information in synchronized order and at synchronized
moments. Many media objects have intrinsic timing (audio, video, animation), and
some don’t but require the content to be presented in a given order (speech and
movements), where as the others are static (text, image and graphics). Some media
appear active (video, audio, animation and Text-to-Speech (TTS)) and have a automatic
and successive behavior, whereas some others are passive (presentation slides, linked
web pages) and require external drive to move forward. How to synchronize all
these different types of media is not trivial. Especially in an ambient intelligent
environment, media are considered in a generic sense, that is, any physical or virtual
object that conveys information. Designers have the freedom to create new forms
of media hence new media types should be able to be incorporated into the system
easily.

In Presentation Environment for Multimedia Objects (PREMO) (Duke, Herman,
and Marshall, 1999) and StoryML(Hu, 2001, 2002, 2003), all the media objects are
assumed to be active, that is, every object has its own process driven by a Timer
(PREMO) or aMediaClock (StoryML), even if the object does not have intrinsic timing.
This approach simplifies the synchronization by providing a common time-based
mechanism for all the objects, however may increase the process resource overload
caused by the unnecessary active process for objects that need not to be actually active.

In JMF(Gordon and Talley, 1998; Sullivan et al., 1998), timed media objects or
streaming media objects that have intrinsic timing, for example, audio and video
objects, are treated differently from media objects that do not have intrinsic timing.
While synchronization mechanisms (Libraries and APIs) are well defined for timed
media objects, other media objects such as graphics and text are treated as different
data types for which no synchronization mechanisms are defined. To synchronize
with the timed media objects, the controlling interfaces of streaming media have
to be implemented on top of these non-timed types, which is not only unnatural,
but also sometimes hard to impose the semantics of timed media on the non-timed
ones. For example, should an EndOfMediaEvent be triggered when a picture has been
presented? or never?
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Figure 6.2: Synchronizable Objects

6.2.3 Solution

The design of this pattern is very much inspired by the structure appeared in
many multimedia standards and systems, especially JMF and PREMO. The formal
specification of the synchronization objects is based on the foundational objects
described by Duke et al. (1997), omitting exception handling mechanisms that are
considered not to be important in a pattern specification, and applying a different
event handling design. The design is then extended with the notion of time and the
controlling structure inspired by JMF.

6.2.4 Structure

As the basis, the concept of the coordinate system is introduced. Every Synchronizable
object has a progressive behavior – to be started, step forward until the end if there
is an end, and then possibly repeat from the beginning. A step is modeled as
a coordinate point and the sequence of the steps forms a coordinate system. An
ActiveSynchronizable object automatically steps forward in its own process and a
TimedSynchronizable automatically moves forward but also with timing constraints.
The timing constraints are applied to the TimedSynchronizable by synchronizing
with a Timer, which itself is an ActiveSynchronizable with a moving-forward or a
moving-backward timeline at a specific speed. Synchronizable media objects are
Synchronizable objects at all the levels of the inheritance hierarchy, but at the
same time implement the presentation behavior as a MediaObject. In addition, a
TimedMediaObjects needs a Prefetcher that keeps fetching enough amount of data
ahead of the presentation process, so that immediate starting and continuous
presentation are possible. Figure 6.2 shows the hierarchy of the synchronizable
objects.
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The synchronization between Synchronizable objects is event driven. A
Synchronizable may trigger StateSyncEvents when it changes its synchronization state
(stopped, ready, started and paused), may also issue other events that are attached
to a coordinate when the coordinate has been passed. Every synchronizable object
uses the Reactor pattern (Schmidt, Stal, Rohnert, and Buschmann, 2000) to dispatch
the synchronization events to the event handlers that are interested in certain sets
of events and sources. They an object of the type EventDispatcher that selects the
registered EventHandler objects and dispatches the synchronization events of the
interests. The EventHandler object in turn invokes concrete event handling operations
in other objects. The TimedSynchronizable object synchronizes the internal state with
a timer (reacting on the StateSyncEvents), and present the data on the paces of that
timer (reacting on the TimedSyncEvents), which also demonstrates the use of this
event-driven approach. See figure 6.3 for the UML class diagram that shows the static
structure of the synchronization events. Also see background material F for detailed
Object-Z specifications.

6.2.5 Consequences

Benefits

The Synchronizable Object pattern offers the following benefits (please refer to
background material F for the details mentioned here):

Separated timing concerns: Timing constraints are added only when they are necessary
and the timer can be shared – which saves concurrent processing resources.
Static media objects, for example, static pictures, can be easily implemented as
passive Synchronizable objects with a simple coordinate system that only has
one coordinate and it will stay static until there is an external drive to move
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it forward – which naturally stops it because there is no next coordinate. If
there is a need for the picture to stay presenting itself for a certain amount of
time, it can be then implemented as an TimedSynchronizable that uses a timer.
For media objects that have a progressive presenting behavior and that are not
constrained by the time, for example, a TTS object, the ActiveMediaObject class
does what is needed. However, if the TTS object need to presented at a speed of
a video stream, a timer can then be shared to make a TimedMediaObject so that
the TTS object can speak faster or slower.

Flexible concurrency: The concurrency of the structure can be from none to fully
concurrent. A Synchronizable can be moved forward by an external process
and the events can be dispatched in the same process using the Reactor pattern
(Schmidt et al., 2000). The concurrency can be improved by:

1. implementing a stepping process of its own, asynchronously presenting
the corresponding data;

2. incorporating a timer process that keeps track of the time and drives the
stepping process forward or backward at a preferred speed;

3. using an independent Prefetcher process that keeps fetching the data from
the source ahead of the presentation process to ensure immediate start
and continuous presentation;

4. applying the Proactor pattern (Schmidt et al., 2000) to involve an active
process for asynchronous event dispatching.

5. introducing an active EventDispatcher for each synchronizable object.

Simple and unified synchronization interface: All the Synchronizable objects at different
levels have the same synchronization controlling interface Ready, Start, Stop
and Pause and have the same state transition scheme, no matter whether the
coordinate system is time based or not. This makes it easy to incorporate new
types of Synchronizable objects without influencing existing types.

Open for extension: The actual presentation behaviors of media objects are left open,
and the event-based synchronization mechanism can be extended for other
purposes. For example, user interaction events can be easily added to the
structure in addition to the state transition events and the timing events.

Liabilities

Hard to debug: When multiple processes are involved, a Syncronizable object can be
hard to debug since the inverted flow of control oscillates between the framing
infrastructure and the parallel callback operations on the synchronization
controls and event handlers. This increases the difficulty of “stepping-through”
the runtime behavior of the object with a debugger, unless the debugger
efficiently supports multi-thread tracking, and the developer fully understands
the structure of event-handling and synchronization.
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Event dispatching efficiency depends on the hosting platform: This is a liability of all event
based synchronization mechanisms. In the specification, events are sometimes
required to be dispatched simultaneously using a conjunction operator (for
example, the operation DispatchSyncEvent of Synchronizable and the operation
Dispatch of EventDispatcher. This can only be applied efficiently if the hosting
platform and the operating system supports efficient parallel processing. It is
possible to emulate the semantics of the simultaneous operation using multiple
threads, e.g., one thread for each composed operation, then serialize the threads
to a single process. However this can only be efficient when the number of the
included threads is small, and each thread does not block the entire process and
impede the responsiveness.

6.3 Action Service Factory

6.3.1 Intent

To provide a contract to create families of related or dependent objects for performing
synchronization tasks on a given source of media content, without having to specify
the concrete classes and without knowing how to create these objects.

6.3.2 Context and forces

The IPML actors need to perform actions on the media contents and these contents
vary in types. Given a source of media, the actor should be able to determine its type
and create a synchronizable media object for manipulation if the actor is capable of
doing so. For an extensible architecture, the system can not assume the concrete
capability of an actor, but it does require the actors to report their capabilities and to
create the media objects of the types within their reported capabilities.

Furthermore, these synchronization actions need to be served across the network
between the actors and to be scheduled by the director for instant or future execution.
The Timed Action pattern can be applied, however, the media object as well as the
related synchronization actions must then be adapted to provide action service. A
set of objects, for example, event dispatchers for synchronizable objects and local
schedulers for timed actions must be created altogether.

These related or dependent objects can be created in different ways in order to
incorporate specific event dispatching and task scheduling strategies depending on
the available software and hardware resources and the implementation. Again, the
system can not assume the concrete strategies, but it does require the actor to be able
to create all related or dependent objects, assemble them together and provide simple
interfaces at an abstract level.
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6.3.3 Solution

Both the Factory Method pattern and the Abstract Factory pattern (Gamma
et al., 1995; Metsker, 2002) are applied. The classes AbstractSyncFactory and
AbstractSyncServiceFactory are abstract factories with several abstract or concrete
Factory Methods.

The concrete Factory methods delivers the required products. The class
AbstractSyncFactory has a concrete Factory Method CreateSynchronizable that takes
a media source as input and delivers a Synchronizable object. The class
AbstractSyncServiceFactory has a concrete Factory Method CreateSyncServiceFactory that
in turn takes the Synchronizable object as input and delivers a SyncServiceProxy object
that serves the timed synchronization actions.

Both abstract factories also have several abstract Factory Methods with only
the input and output interfaces defined. These abstract Factory Methods, for
example CreateEventDispatcher and CreateSynchronizable0 from AbstractSyncFactory,
and CreateScheduler from AbstractSyncServiceFactory, are to be implemented in the
concrete factories.

The classes ActionService and ActionServiceProxy from the Timed Action pattern
are used as templates to create SyncService and SyncServiceProxy by binding specific
synchronization operations (Ready, Start, ..., etc.) to the template operations (Op1,
Op2, ..., etc.) Using patterns as templates is a typical way of applying patterns. In
Object-Z, Template binding can be easily formalized as replacing (renaming) the state
variables and operations from the template class.

6.3.4 Structure

The overall static structure is shown in figure 6.4 on the next page. What is not
shown in figure 6.4, is that the actors are supposed to provide the concrete factories.
The actor may also implement multiple concrete factories and decide which concrete
factories to be used at the initialization time, or according to the changes in the
system, change the concrete factories to different ones. The director and other actors
only need to see the same abstract factories – the interfaces for the creation of the
media objects and action service proxies. See background material G for detailed
Object-Z specifications.

6.3.5 Consequences

Please refer to background material G for certain details mentioned in the following
discussions.

Benefits

The Action Service Factory pattern offers the following benefits:

Flexibility: The Action Service Factory pattern increases the overall flexibility of the
architecture. This flexibility manifests itself both during the design time
and the runtime. During design, it is not necessary to predict which media
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types an actor can perform and how corresponding media objects will be
created and served. Instead, one can focus on the generic framework and
then develop implementations independently for each involved actor later. It
can also simplify the testing of the rest of the application. Implementing
testing factories and products are simple; it can simulate the expected resource
behavior. At runtime, the system can easily integrate new actors and the actors
can easily integrate new capabilities when features and resources are available.

Reusability: The clients of these factories are independent of how the Synchronizalbe
objects and the service accessing proxies are created. On the one hand,
the Action Service Factory pattern makes it easy to create and manipulate
these objects without knowing exactly what they are. On the other hand,
following the protocol of the abstract factories, one can design and implement
concrete factories and products that operate in diverse environments. Hence
the anonymity of the concrete factories and products promotes reuse – the
code that uses these objects doesn’t need to be modified if the factories produce
instantiations of different media objects and proxies than they used to.

Compatibility in created objects: By forcing the other objects to go through the
interfaces CreateSynchronizalbe and CreateSyncServiceProxy to create concrete
Synchronizable objects and service accessing proxies, the Action Service Factory
pattern ensures that the client objects uses a compatible set of objects.
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Liabilities

Since the clients of the factories do not see the concrete products (concrete media
objects and their proxies), but only the abstract products (Synchronizable objects and
their proxies), the synchronization interfaces of these abstract products are vital and
should be carefully designed. If these interfaces are improperly defined, producing
some of the desired media objects can be difficult or even impossible. In this case,
the interfaces of the abstract products must be redesigned to incorporate the new
synchronization behavior, which can be a lot of work to update all related concrete
products.

6.4 Concluding remarks

The patterns of this chapter deal with the essentials of media processing: timing,
event handling, synchronization, presentation, etc. If a single-device architecture for
media processing would have to be designed, the above patterns would be sufficient.
But the typical target architecture is distributed and heterogeneous. This puts extra
demands both to the architecture and to the methodology of patterns. These topics
are addressed in the next chapter.



CHAPTER7
Communication

Software components residing in different systems can communicate with one
another over a network in many different ways. At a low level transport layer,
techniques such as socket mechanisms (Stevens et al., 2003) can be directly used,
together with a custom communication protocol to serve the communication needs.
However, it leaves many complex problems completely to the implementation of
the custom protocol. The problems are for example the quality of communication,
the guarantee of security, the management of heterogeneity, and the control of
concurrency. These problems can not be ignored when a distributed real-time
multimedia system is to be designed. A variety of higher level communication
protocols and frameworks, from the synchronous Remote Procedure Call (RPC) to
asynchronous data channels, can be the better choices for the purpose.

The patterns described in this chapter deal with the communication issues in
a distributed architecture, with attention paid to the management of concurrency,
heterogeneity, quality of service, and the load of media data transportation.

7.1 Overview of communication patterns

7.1.1 Remote Procedure Call

In this model, a component acts as a client when it requests some service from
another component that acts as a server when it responds to the request from the
client. RPC makes invoking an external procedure that resides in a different system
or machine in the network almost as simple as calling a local procedure. Arguments
and return values are automatically packaged in a platform-neutral format and sent
between the local and remote procedures. For each remote procedure, the underlying
RPC framework needs a “stub” procedure on the client side acting as a proxy for
the remote procedure, and a similar object on the server side acting as a proxy for
the client. The role of the stub is to take the parameters passed in a regular local
procedure call and pass them to the RPC system that must be resident at both the
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client and the server sides. Behind the curtain, the RPC system cooperates with the
stubs on both sides to transfer the arguments and return values over the network.
RPC frameworks have become an established technique, and are typically invisible to
application programmers since they merely represent the basic transport mechanism
used by more general middleware platforms as presented in section 7.1.4.

An example of the RPC system is Open Network Computing (ONC) from Sun
Microsystems (Srinivasan, 1995) for UNIX platforms. It is used for accessing system
services such as the Network File System (NFS) and the Network Information System
(NIS) (Stokely and Clayton, 2001). Another example is the Distributed Computing
Environment/Remote Procedure Calls (DCE/RPC), which is used as the basis for the
Microsoft COM+ (COM+) middleware (Eddon and Eddon, 2000; Pinnock, 1998).

7.1.2 XML-based RPC

Although the issue of interoperability in networked systems is addressed explicitly by
RPC, client and server components are tied to the same RPC framework in order to
cooperate successfully. Every RPC system has a different data structure and encoding
system, and it is hard to communicate if the client and the server are operating on a
different RPC dialect. Fortunately, the basic semantics of most RPC systems are quite
similar since all of them are based on a synchronous procedure call in a C-like syntax
format. The solution is to develop a common language that is understandable by both
parties, even though they are running on different RPC systems.

The recent development on this is to treat the messages sent between clients and
servers as XML documents with a given syntax. Using XML to define the syntax of
RPC requests and replies was a simple idea, but it paved the way for interoperability
between different RPC systems (Hunter et al., 2004; Laurent, Dumbill, and Johnston,
2001). The essential idea in XML-based RPC frameworks is to use XML to define
a type system for data communication between clients and servers. These type
systems specify primitive types such as integers, floating points, and text strings,
and they provide mechanisms for aggregating instances of these primitive types into
compound types in order to specify and represent new data types.

One of the XML-based RPC frameworks was the Simple Object Access Protocol
(SOAP) (Gudgin et al., 2003; Mueller, 2001). SOAP was proposed to W3C by HP,
IBM, Microsoft, SAP and many other companies. There are several different types
of messaging patterns in SOAP, but by far the most common is the RPC pattern,
where one network node (the client) sends a request message to another node (the
server), and the server immediately sends a response message to the client. An
advantage of SOAP is its extensibility by the use of XML schemas and the fact that the
widespread HyperText Transfer Protocol (HTTP) protocol can be used as the transport
mechanism between clients and servers, thus using the Web as a communication
infrastructure and a tunnel between cooperating distributed applications. HTTP
was chosen as the primary application layer protocol for SOAP since it works well
with today’s Internet infrastructure; specifically, SOAP works well with network
firewalls. This is amajor advantage over other distributed protocols like General Inter-
ORB Protocol (GIOP), Internet Inter-ORB Protocol (IIOP) or Distributed Component
Object Model (DCOM) which are normally filtered by firewalls.
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Other XML-based RPC dialects such as standard XML-RPC have also been
specified (Laurent et al., 2001; Winer, 1999). Most of them, however, do not
incorporate XML schemas and are thus limited to a fixed set of primitive data types, as
are traditional RPC systems. Fortunately, the problem of having to cope with different
dialects of XML-based RPC systems is not as serious as dealing with incompatible
classical RPC frameworks, because in many situations simple transformation rules
can be defined to convert XML encoded messages between different RPC platforms.

7.1.3 Remote Method Invocation

Remote Method Invocation (RMI) is similar to RPC, but integrates the distributed
object model into the Java language in a natural way (Grosso, 2001; Sun Microsys-
tems, 2003). With RMI, it is not necessary to describe the methods of remote objects
in a separate type definition file. Instead, RMI works directly from existing objects,
providing seamless integration. Remote objects can be passed as parameters in
remote method calls, which is a feature that classical RPC does not possess.

In classical RPC systems, client-side stub must be generated and linked into a
client before a remote procedure call can be made. In RMI systems, a local surrogate
(stub) object manages the invocation on a remote object. The stub that is needed
for an invocation can be downloaded at runtime (in an architecture- neutral bytecode
format) from a remote location, for example directly from the server just before the
remote method is actually invoked. RMI seems to fit well with the general trend of
distributed systems becoming increasingly dynamic.

7.1.4 Asynchronous Protocols

Although the interoperability of RPC can be enhanced with XML-based commu-
nication and object oriented technologies, the communication using these models
is basically synchronous: the client is blocked while the call is processed by the
server. To enable asynchronous communication, multi-threading is required. Multi-
threading is more difficult to handle and is more error prone, however distributed
systems, especially, distributed multimedia systems often require multi-threading
for parallel media presentations and at the same time user interaction. Even when
multi-threading is not natively supported by the hardware, it can still be supported
at the software level by the operating system or the application framework, using for
example time-sharing.

Such asynchronous communication is better served by a more abstract pattern
based on asynchronous messages or events, modeling that something has happened
that is potentially of interest to some other objects. Distributed infrastructures based
on this paradigm are often called “event channel” or “software bus”, based on the
Observer pattern (or sometimes called Publisher/Subscriber pattern or Supplier/-
Consumer pattern) in a distributed manner. The concept of such a software bus is
quite similar to the Observer pattern: all consumers (i.e. observers or subcribers of
the events) are connected to a shared medium called a “channel”. They announce
their interest in a certain topic (i.e. type of events) by subscribing to it. Objects or
processes that want to send a message or an event to the consumers publish it under
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a certain topic to the bus. When that happens, and if the consumers’s topic matches
the supplier’s topic, the message is forwarded to the consumer.

From a software design point of view, such a pattern offers the benefits of direct
notification instead of busy-polling: an object or a component tells the environment
to inform it when something happens, and when something happens it is then
informed and it reacts accordingly. This pattern eliminates the need for consumers to
periodically and constantly poll for new events. Furthermore, the concept easily allows
the use of the Adapter pattern that some objects act as programmable middlemen in
the event chain. These Adapter objects may multiplex, filter, or aggregate events and
more importantly, possibly make the consumers and the suppliers “pluggable” into
the system without any knowledge of their peers (Fowler, 2002).

This type of pattern is attractive for asynchronous communication in distributed
systems due to its conceptual simplicity and has the benefit of decoupling objects in
both space and time, while at the same time abstracting from the network topology
and the heterogeneity of the components. However, it requires a powerful broker
mechanism that takes care of event delivery, and requires the implicit or explicit
semantics of the proxy mechanism to be carefully designed and analyzed – for
example it is not clear how quickly events are to be delivered, whether events are
to remain in the channel for a certain period of time so that subscribers who miss
anything due to system failure can catch up on missed events, and whether there are
any guarantees on the delivery order. It should be noted that the Observer pattern
is basically a multicast scheme. It is well known in distributed systems theory that
broadcast semantics, in particular for dynamic environments, is a non-trivial issue.

From this overview of communication patterns, it becomes clear that there is
a trend in distributed systems: the communication paradigm is evolving from the
simple procedural paradigm requiring relatively little system support, via the object-
oriented method invocation principle, towards distributed infrastructures and more
abstract schemes for loosely coupled asynchronous systems that require complex
runtime infrastructures. Since most of the system models are evolving towards the
asynchronous communication and processing paradigm, it is important to design the
distributed multimedia system along with this trend so that the involved components,
and the system and the environment can talk to each other in the same manner.
Anyhow, asynchronous communication is indeed required for parallel and interactive
media presentations in distributed settings. Scalability and efficient realization of
such infrastructures is a real challenge, though. Next this challenge will be dealt with
step by step, starting from the pattern of the event and data channels.

7.2 Channel

7.2.1 Intent

The Channel pattern decouples the communication between objects that are on the
same host or distributed over a network, by defining two roles for the objects: The
supplier role and the consumer role. Suppliers produce data sent to the channel and
consumers process data received from the channel without directly interacting with
each other, even when the other side is not available.
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7.2.2 Context and forces

Actors are distributed active objects. They reside in multiple hosting devices and
service the actions according to the requests from the clients (director or other actors).
The most common communication pattern between clients and servers on a network
is the client-server model as shown in figure 7.1.
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Target service

Response

Request

Figure 7.1: Client-server communication model

With this model, data is communicated by a client invoking operations on a
service object on the server by sending a request. The request normally contains
data arguments that are marshalled (packaged) and sent over the network to the
service object. Once a client sends a request to a server, it is blocked and unable
to perform any other function. The server side unmarshals the request to obtain the
data, performs the necessary operations and returns a response back to the client.
When the client has received the response it may continue its execution. For such
communication to happen, there must be a client and a server available for the
request call to succeed. If a request fails for any reason, for example the server is
unavailable, clients will receive an exception and must take appropriate action. This
is the common principle of all RPC or RMI based systems.

In many cases, this basic communication paradigm is sufficient and greatly eases
development since it develops the distributed computing in a straightforward manner
from normal non-distributed function calls. However, in some scenarios a more
decoupled communication model between the clients and the servers is required. For
example in our case of distributed multimedia:

1. The actors of a particular environment differ and their configurations may
change during the presentation. The identities of the actors and their action
services are unknown to the clients and therefore can not be connected directly.

2. The actors may move out the reach from the clients during the presentation,
and the clients may wish to send requests to actors when they are not available.
In this case, there needs to be a mechanism that buffers the requests until an
actor becomes available again.

3. The clients, especially the director, have to be responsive to other events and
can not afford to block while waiting for a response from one actor.
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7.2.3 Solution

Techniques beyond the basic client-server communication paradigm are needed to
overcome the problems just mentioned. One of the techniques is to add another
layer between the client and server, for example the Common Object Request
Broker Architecture (CORBA) Event Service (Bolton, 2001; OMG, 2004a), the Elvin
notification service (Segall and Arnold, 1997), the InfoBus data controllers (Sun
Microsystems, Inc., 1999) and the iBus channels (SoftWired AG, 1998). From design
pattern points of view, these solutions are similar and fall into the same pattern: The
clients are modeled as data consumers and the servers are data suppliers, and the
data is communicated through middleware services, often referred to as channels.
The pattern formalized here is based on the CORBA Event Service, with channel
management and exception handling simplified or removed.

The Channel pattern provides a facility that decouples the communication between
objects. It provides a supplier-channel-consumer communication model that allows
multiple supplier objects to send data asynchronously to multiple consumer objects
through a data channel. For example, the supplier-consumer communication model
allows an object to communicate an important change in state, such as “an actor has
just finished presenting a media object”, to any other objects that might be interested
in such an event.
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Figure 7.2: Supplier-Channel-Consumer communication model

Figure 7.2 shows three supplier objects communicating through three data
channels with three consumer objects. Supplier 1 is connected to Channel 1 and
Channel 2, and the data it supplied will be sent to Consumer 1 and Consumer 2.
Consumer 2 is connected to Channel 2 and Channel 3 and it will receive data from
all 3 suppliers. The channels are both consumers and suppliers. For a supplier the
channel acts as a consumer of data at the supplier’s site; for a consumer the channel
acts as a supplier at the consumer’s side. This is done through the use of proxy
objects.

Instead of directly interacting with each other, suppliers and consumers obtain
a proxy object from the channel and communicate with it. Supplier objects obtain a
consumer proxy and consumer objects obtain a supplier proxy. The channel facilitates
the data transfer between consumer and supplier proxy objects. Figure 7.3 on the
facing page shows how one supplier (Supplier 3) can distribute data to multiple
consumers (Consumer 2 and Consumer 3).

There are four general models of supplier-consumer collaboration in the Channel
pattern. Figure 7.4 on page 84 shows the collaborations between suppliers, con-
sumers and channels in each of the models outlined as follows:
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Figure 7.3: Consumer and supplier proxy objects

Canonical push model: In this model, event suppliers initiate the transfer of data to
consumers. As shown in figure 7.4(a) on the following page, suppliers are the
active initiators and consumers are the passive targets of the requests. Channels
play the role of a notifier, as defined by the Observer pattern (see definition
on page 57), where observers of an object are notified whenever the object
changes it state. Active suppliers therefore use channels to push data to passive
consumers that have registered with channels.

Canonical pull model: In this model, consumers request events from suppliers. As
shown in figure 7.4(b) on the following page, consumers are the active initiators
and suppliers are the passive targets of the pull requests. Channels play the role
of a procurer since they obtain events on behalf of consumers. Active consumers
therefor can pull data explicitly from passive suppliers via a channel.

Hybrid push/pull model: In this model, consumers request events that are queued at a
channel by suppliers. As shown in figure 7.4(c) on the next page, both suppliers
and consumers are the active initiators of the requests. Channels play the role
of a queue. Active consumers therefore can pull data that is explicitly deposited
by active suppliers via a channel.

Hybrid pull/push model: In this model, a channel pulls data from suppliers and
pushes them to consumers. As shown in figure 7.4(d) on the following page,
suppliers are passive targets of pull requests and consumers are the passive
targets of pushes. Channels play the role of an active agent. These channels
therefore can pull data from passive suppliers and push it to passive consumers.

7.2.4 Structure

Figure 7.5 on page 85 shows the static structure of the Channel pattern in a UML class
diagram. A Channel object has two managers SupplierAdmin and ConsumerAdmin
maintaining proxy consumers and proxy suppliers. A supplier can obtain a proxy
consumer from the SupplierAdmin and connect to it. Either a ProxyPushConsumer
object or a ProxyPullConsumer object can be used, depending on the data delivery
model. At the another side, a consumer can obtain a proxy supplier from the
ConsumerAdmin and connect to it. The consumer may decide which data delivery
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Figure 7.4: Data delivery models in Channel pattern

model to be used, by connecting to a ProxyPushSupplier object or a ProxyPullSupplier
object, independently of the data delivery model used at the supplier side. See
background material H for detailed Object-Z specifications.

Channel composition

The example above shows that the registration of a supplier or consumer is designed
to be a two step process. A data-generating application first obtains a proxy consumer
from a channel, then connects to the proxy consumer by providing it with a supplier.
Similarly, a data-receiving application first obtains a proxy supplier from a channel,
then connects to the proxy supplier by providing it with a consumer.

It might be unnecessary at the first sight to split such a process into two steps. The
advantage of the two-step registration process over the single step one is the possibility
of composing channels by an external object or process. With the two step process,
it is possible to compose two channels by obtaining a proxy supplier from one and a
proxy consumer from the other, and passing each of them a reference to the other as
part of their connect operation (see figure 7.6(a) on page 86).

It is possible to chain the channels to create a data filtering graph that the
consumers use to receive a subset of the total events from the suppliers. In
figure 7.6(b) on page 86, Channel B and C as consumers of Channel A, can for
instance select a subset of the received data to pass on to their own consumers. Hence
Consumer A and B will only receive the data selected by Channel B, and Consumer C
and D will only receive the data selected by Channel C. Instead of letting Consumers
to pick up interested data by themselves, the intermediate channels centralize the
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Figure 7.5: Channel pattern

process for the consumers that are interested in the same subset of data. This
somehow compensates the overhead of the data broadcasting.

This is useful in the IPML system when their is a need to reduce the load of
the event and message propagation in the distributed network, but not to change
the controlling hierarchy. A connected actor may disconnect from its channel to
the director or to another actor, apply a new channel with new event and message
requirements, then connect itself to the new channel and in turn the new channel
to the original channel. New filtering requirements are then enforced, but from the
viewpoint of the director or the others, nothing has been changed.

7.2.5 Consequences

Benefits The Channel pattern provides the following benefits:

Decentralized communication: The channels work in a distributed environment. The
design does not depend on any global, critical, or centralized service, as long as
the supplier and the consumer have access to a shared channel. The suppliers
can generate data without knowing the identities of the consumers, and the
consumers can receive data from the channel without knowing the generating
suppliers. In the IPML system, by applying the channel pattern, the director
does not take the central position of managing the communication. The actors
can connect themselves to the channel services even when the director is not
active or not available. This is essential in a dynamic configuration.
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Figure 7.6: Channel composition

Asynchronous communication: If clients and servers are connected through channels,
the channels can play the role of a queue and the clients do not have to block to
make requests. This makes the client applications much easier since it does not
have to be multi-threaded. Clients and servers can also run at different times.
For requests to be completed successfully, both the client and the server do not
have to be available at the same time. If a server has failed and a client sends
data to the failed server, the data remains in the queue until the server becomes
available when it can retrieve the process the message accordingly. For our
distributed multi-media system, it also supports nomadic actors. Disconnected
from the director, actors will be able to accumulate outgoing requests in queues
until the connection with the director is established, and vice versa.

Flexible communication: The Channel pattern allows multiple consumers and mul-
tiple suppliers. A supplier can issue data to all consumers at once. The
consumers can either request data or be notified of the data, whichever is
more appropriate for the design and the implementation. The pattern is also
capable of being implemented and used in different operating environments,
for example, in environments that support multi-threading and those that do
not.
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Liabilities However the Channel pattern also has the following liabilities:

Over generalization: The Channel pattern is very flexible and can support a wide range
of applications. As a consequence the registration of suppliers and consumers
is rather complicated due to the multi-step connection process to the channel.

Limited data filtering: The Channel pattern defines Channels as broadcasters that
forward all events from suppliers to all consumers. This approach has several
drawbacks. If consumers are only interested in a subset of types of data from
the suppliers, theymust implement their own data filtering to discard unneeded
data. Furthermore, if a consumer ultimately discards data, then delivering data
to the consumer needlessly wastes bandwidth and processing. Data filtering is
possible by chaining the channels together to create a data filtering graph as
showed in figure 7.6(b) on the facing page. However the filter graph increase
the number of nodes that data must travel between suppliers and consumers
and hence the overall cost.

No data correlation: A consumer may only be interested in the data from particular
suppliers, and may wish to specify more complex conjunctive (AND) or
disjunctive (OR) semantics when specifying filtering requirements, based on
the type or the supplier of the data. With such correlation mechanisms, the
bandwidth and processing load can be greatly decreased when there are many
consumers and providers are communicating through the channels. In the
IPML system, if the communication among a big number of actors needs to be
managed, the efficiency of event and message propagation is important and a
more effective filtering mechanism is needed.

No Quality of Service (QoS) Support: The Channel pattern does not specify the Quality
of Service (QoS) that the channels must implement. This means different
implementations may have different level of QoS. This means the reliability,
availability, throughput, performance and scalability requirements have to be
taken care with extensions. Clearly no single implementation of the channel
pattern can optimize such diverse technical requirements. QoS support
is especially important for time critical scheduling tasks, and performance
demanding multimedia data transport in the IPML system.

Confirmation of reception Some application may require the consumers provide an
explicit confirmation of reception back to the supplier. This can be done
effectively using a “reverse” channel through which the confirmation can be
sent back as normal data. However, strict atomic delivery between all suppliers
and all consumers requires additional interfaces.
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7.3 Real-time Channel

7.3.1 Intent

The Real-time Channel pattern improves the Channel pattern to provide a flexible
model for asynchronous communication among distributed components in real-time
applications, with efficient data filtering and correlation, predictable and scalable data
dispatching, and Quality of Service (QoS) support.

7.3.2 Context and forces

Distributed multimedia applications, like other distributed real-time applications,
require stringent real-time QoS support, although the requirement is not as stringent
as the systems like sophisticated medical operation and space mission computers
where failure to meet deadlines can result in loss of life or significant loss of property.
Failure to meet the timing, priority and reliability requirements in distributed
systems man cause desynchronization, latency and jitter in content delivery, hence an
unpleasant media experience for the end users. For real-time distributed multimedia,
the following issues are important to be covered:
Reliability: The Channel pattern described in previous section handles asynchronous

communication in many flexible and versatile ways, to decouple the supplier
and the consumer and increase concurrency and prevent unnecessary blocking.
However, multimedia applications require the communication to be not only
asynchronous, but also reliable. Some data, for example certain user interaction
events, must delivered no matter how much it is delayed, even when the source
or the target device is temporally disconnected from the system. Other data,
for example a sound effect that is designed for a particular moment, should
be dropped if it missed its deadline or after the system has failed to deliver on
is best effort. The channel should provide options for both reliable persistent
delivery and best effort delivery.

Timing: Distributed multimedia applications require not only high transmission
reliability, but also stringent delivery delay. In a distributed environment,
delay-free communication is not possible, but for multimedia applications, the
delay must be controlled to keep the minimum synchronization, otherwise the
intended temporal relationships within and among multimedia objects would
be distorted due to the delay jitter(Liu and El Zarki, 1999). The Channel pattern
should be extended to allow the data supplier or the consumer to specify delivery
time constraints according to their needs.

Priority: A Channel is an objected shared by multiple suppliers and consumers, and
data may be queued for concurrent delivery, including scheduling commands,
user interaction events and chunks of multimedia content. Scheduling com-
mands, for example “Stop” applying to a media stream being transmitted in the
same channel, should have higher priority than the media stream otherwise the
stream would stop until the transmission is completed. The Channel object
must support the preemption of the lower priority data so that the higher
priority data can be delivered first.
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Data filtering and correlation: Data filtering and correlation should be supported for
the multimedia applications. Although the large amount of data transmission
of multimedia data can be handled with dedicated streaming protocols and
channels, smaller media data chunks can be transmitted among distributed
components for interactive applications. The broadcasting scheme of raw
data transmission in the Channel pattern may cause high load on network
and processing resources when the system scales up with many supplier and
consumer nodes. To ensure the scalability, the Channel pattern should be
improved with data filtering and correlation mechanisms.

7.3.3 Solution

Many real-time applications, such as industrial process control and military com-
mand/control systems, commonly use the push model because of the efficient and
predictable execution of operations (O’Ryan et al., 2001; Rajkumar, Gagliardi, and
Sha, 1995). The consumers only react when their dependencies are satisfied, that
is, when the data is pushed from the supplier proxies. In contrast, the pull model
requires the consumers to actively acquire data from the supplier proxies. The
consumer process would need to be blocked until there is data to be pulled. In
order to do this, the system must allocate additional threads to allow the application
to proceed while the pulling process is blocked. Adding extra threads may increase
context switch overhead and synchronization complexity; it may also require complex
real-time scheduling polices. These negative consequences made the pull model
often not appropriate in real-time tasks. Therefore, for real-time scheduling and
synchronization tasks in our distributed multimedia system, let’s focus on the push
model.

The solution is to extend the push model of the Channel pattern with extra
components and interfaces, so that the consumers may subscribe their interests
(interested subset of data, source of the data and QoS requirements) to the channel.
The channel includes a dedicated component to filter the incoming data for the
consumers according to their subscription. The channel then enqueues the data
according to the priority and the displacing order. At the same time, the channel
employs an separate active process that keeps dequeuing data from the queue and
dispatching it to the connected consumers.

7.3.4 Structure

The Real-time Channel pattern is an extension of the push model of the Channel
Pattern. Figure 7.7 shows overall the structure of the extension. The RTChannel
contains additional components to manage the details of the communication:
Filter when the data arrives from the ProxyPushConsumer, the RTChannel forwards

it to its Filter component to determine which RTProxyPushsupplier objects (in
turn, the connected PushConsumer objects) should receive the data and when to
dispatch the data.
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Scheduler The filtered data, together with the interested proxies, are then forwarded to
the Scheduler to calculate the preemption priority, and within the same priority,
the dispatching order.

PriorityQueue For each supported preemption priority, the RTChannel maintains an
ordered queue. The data and the targeted proxy are inserted with corresponding
preemption priority. The queuemaintains its elements in the dispatching order.

Dispatcher The dispatcher is responsible for removing data/proxy tuples from the
priority queues and forwarding the data to the targeted proxy by calling the Push
operation. Depending on the placement of each tuple in the priority queues,
the Dispatcher may preempt a running DispatchingThread with the preemption
priority to dispatch the data.
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Figure 7.7: Real-time Channel

The classes RTConsumerAdmin and RTProxyPushSupplier extend ConsumerAdmin
and ProxyPushSupplier respectively to accommodate the subscription and unsubscrip-
tion operations for the consumers to register their interests to the Filter. The interests
are modeled as DataInterest, which contains the filtering conditions on the source of
the data, the type of the data and the QoS requirements. The Real-Time Channel
pattern requires that Any data to be transferred through real-time control facilities
must implement the TypedData attributes, or the data will be transferred as it is in
the Channel pattern. The QoS requirements are modeled as QoSProperties, a list of
name 7→ value pairs.

Figure 7.8 on the next page shows roughly the data flow inside the RTChannel.
See background material I for detailed Object-Z specifications.

7.3.5 Consequences

Since the Real-time Channel pattern is an extension of the Channel pattern, it
provides all the benefits that the Channel pattern does. In addition, with special
attention paid to the QoS needs of distributed real-time applications, the Real-time
Channel pattern also provides the following benefits:
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Figure 7.8: Data flow in a Real-time Channel

Benefits

Flexible QoS control: The QoS requirements are modeled as a list of name 7→ value
property pairs. Although several QoS properties are defined as an example,
the structure of the pattern does not depend on the elements of the QoS list.
If nothing is specified as QoS requirement, the Real-time Channel still works
as a signal queue, multi-thread dispatching channel. If a new QoS property is
introduced, this structure of separating filtering, scheduling and dispatching
can easily incorporate the new QoS property with limited change to the
related components. For example, if a more detailed timing requirements on
dispatching would be introduced, a QoS property EndTimemight be introduced
to require that a transaction must be finished before a certain time, in addition
to the property Deadline which specifies the deadline of the staring time. The
scheduling and dispatching strategies based on this EndTime requirement can
be easily implemented by extending the PriorityQueue, the Scheduler and the
DispatchingThread with EndTime being taken into account, without touching
the basic structure and changing the interfaces.
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Flexible scheduling and dispatching policies: The Scheduler and the Dispatcher in this
pattern can be replaced or extended to introduce different scheduling and
dispatching policies. It is also possible to equip the channel with multiple
scheduling and dispatching policies thus the configuration of the scheduling
and dispatching strategy can be done at the runtime. Further, because of
the loose coupling of scheduling and dispatching components from the other
components, it is possible to employ the Plugin pattern (Fowler, 2002) so that
the Scheduler and the Dispatcher with different policies can be installed and
removed on the fly during the runtime.

Multi-thread dispatching and predictability: The Real-time Channel pattern uses
multiple threads within the channel forwarding data to the consumers. It can
be configured with an application-specified strategy to assign the number and
priority of real-time threads that will dispatch the data. The specification here
defines example strategies to show how the application-specified needs can
be covered. A dispatching task can be assigned to a thread at the appropriate
priority, avoiding priority inversions in the channel and thus achieving better
predictability by enforcing scheduling decisions at runtime.

Event filtering and correlation: Although it is possible to broadcast the data to
connected consumers and let the consumers perform its own data filtering,
it wastes network and processing resources and requires extra work from
developers. The channel in this pattern sends data to a particular consumer only
if the consumer has subscribed for it explicitly, or has not subscribed for any
data. This pattern allows not only disjunctive dependencies by uniting multiple
DataInterest objects, but also conjunctive dependencies by the consumer
defining conditions for the source, the type and the QoS requirements of the
data.

Liabilities However the Real-time Channel pattern also has the following liabilities:

Data marshalling and unmarshalling: The QoS and filtering features of this pattern
requires the data to be typed. The supplier must first transform it into a
↓TypedData object with the source and type information and QoS requirement,
marshal the object into a data stream , then push the data stream it into
the channel; the channel must analyze the type and the QoS requirements
by partially unmarshalling the stream; every consumer must unmarshal the
stream in order to peel out the data transmitted. This procedure would not take
too much of the processing resources if the task is to transmit a small chunk
of messages or events. However, if the data itself is a continuous stream with
a complicated structure, for example, when it is needed to transmit a stream of
video frames, this pattern does not apply. With this pattern, the transmission
can only happen when the whole package of the data is marshalled into the
required format, which does not cover the concept and the needs of continues
streaming media.
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Less generality: While Channel patten might have a liability to be too general with
many possible combinations of the push and pull models, the Real-time
Channel pattern has included details of filtering, scheduling and dispatching,
with focuses on the QoS and real-time requirements. These requirements have
to be taken care of everywhere for real-time scheduling and event dispatching,
however, as a pattern it has less generality than the Channel pattern.

Bandwidth and throughput not handled: While the QoS requirements on timing,
priority and reliability are covered with examples in the specification here,
other requirements such as those on channel bandwidth and periodic
communication throughput have not been taken into account. To handle
these bandwidth and throughput requirements, the Real-time Channel must
be considered in a bigger context: channels may share the same physical
connection; the number of the sharing channels and the total bandwidth
of the physical connection would influence the periodic throughput. From
the architecture point of view, these requirements are no more than some
additional QoSProperties to be handled by the Scheduler and the Dispatcher.
However, these requirements require more sophisticated bandwidth resource
scheduling in addition to task scheduling, which is considered to be too detailed
for a pattern level specification. As an interesting topic, let’s leave it as an option
for future research.

Please refer to background material I for the details mentioned in the above
discussions.

7.4 Streaming Channel

7.4.1 Intent

Extend the Channel pattern to support multimedia streaming data, quality of service
control, as well as multicast data delivery.

7.4.2 Context and forces

The use of multimedia data requires more effective and faster communication.
This requirement places new demands on on the enabling technologies and the
middleware that creates distributed applications. Support for multimedia in the
Channel pattern, and the Real-time extension as well, do not have specific support or
facilities for handling media streams. The patterns specified in the previous sections
assume that the events or messages transferred between distributed components
contain relatively small discrete data entities, which are sufficient to notify some
change of application state or send controlling commands, and do not require
much of processing resources and network bandwidth. However this assumption
does not hold any more when multimedia applications need to use and transport
special forms of data, such as audio and video streams, or messages and events that
contain multimedia streams. These streams are continuous, processing intensive,
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and require stable communication bandwidth to bring the data across. Frequent
marshalling and unmarshalling of the transferred objects during the communication
have been proven inefficient for this purpose (Gokhale and Schmidt, 1998).

There are many technologies and protocols available for streaming multimedia
over a network. While Real Media, Apple QuickTime and Microsoft Media support
proprietary streaming media types and technologies, many open standards such as
MPEG-2 and MPEG-4 are also widely supported. Multimedia can be streamed and
controlled over networks using protocols such as Real-time Transport Protocol (RTP),
Real Time Streaming Protocol (RTSP), Real-time Transport Control Protocol (RTCP),
and Microsoft Media Services (MMS). Most of these protocols are built on top of User
Datagram Protocol (UDP), but may also work on top of more reliable protocols such
as Transmission Control Protocol (TCP).

It seems that these technologies and protocols would be enough for streaming
data between components. However they imply a tight coupling between the client
(consumer) and the server (supplier) and it’s often difficult to separate the media
distribution protocols from the rendering technology being used. Further, the
multimedia data may need to be exchanged among loosely coupled and distributed
components in response to application state changes. A many to many, more flexible
and decentralized communication structure is needed.

7.4.3 Solution

Since there are many dedicated protocols and technologies available for streaming
multimedia data with quality of service support, let’s leave the data streaming task
to these dedicated protocols and technologies. These streaming connections are
modeled as objects of the type Stream. A streaming channel manages multiple
Streams, each of which is created with an identity of type String and with QoS
requirements. Given the identity of a stream, StreamSuppliers and StreamConsumers
may connect to the stream in the channel by connecting to a proxy consumer or
a proxy supplier. A StreamSupplier pushes data into the channel, the connected
ProxyStreamConsumer pushes the data into the Stream and the Stream does the
streaming according to the preset QoS requirements. At the another side, an Observer
pattern is applied – ProxyStreamSuppliers that are related to this streamwill be notified
when the data arrives. Each of the related ProxyStreamSuppliers will then push the
data to the connected StreamConsumer. The StreamSuppliers and StreamConsumers do
not directly connect to each other but through the streams that are managed by the
channel. They may disconnect themselves from the channel without affecting other
components communicating through the same or a different stream.

The structure of this solution is very similar to the push model of the Channel
pattern, in the sense that the data is pushed into the stream and the stream pushes
data to the consumers. The difference is that the channel here acts as a stream
manager and it does not directly serve data transport. Since the data transportation is
rather different, it is not wise to extend the push model and override the semantics.
Instead, the Streaming Channel pattern extends the Channel pattern with a new
model of data streaming, keeping the existing pull and push models intact.
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Figure 7.9: Streaming Channel pattern

7.4.4 Structure

Figure 7.9 shows the static structure of the Channel pattern in a UML class
diagram. A StreamingChannel object has two managers StreamingSupplierAdmin and
StreamingConsumerAdmin extending SupplierAdmin and ConsumerAdmin respectively,
maintaining proxy consumers and proxy suppliers. It also has a StreamAdmin
maintaining Stream objects. A supplier can obtain a proxy consumer from
the StreamingSupplierAdmin and connect to it as it does in the Channel
pattern. In addition to ProxyPushConsumer objects and ProxyPullConsumer
objects, ProxyStreamConsumer may also be used if the required Stream has been
created. At another side, a consumer can obtain a proxy supplier from the
StreamingConsumerAdmin and connect to it. The consumer may decide which
data delivery model to be used, by connecting to a ProxyPushSupplier object, a
ProxyPullSupplier object, or if the consumer knows the identity of the Stream, a
ProxyStreamSupplier object. The push and pull models of the Channel pattern are
fully inherited by this pattern, though the details of these two models are not shown
in this figure. See background material J for detailed Object-Z specifications.
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7.4.5 Consequences

For certain details mentioned below, please refer to background material J.

Benefits The Streaming Channel pattern extends the Channel pattern with a
streaming data transportation model, without infecting the original push and pull
models. Hence it provides all the benefits that the Channel pattern does. With the
streaming style, this pattern also provides the flowing benefits in addition:

Easy to set up streams: Using stream-type channels makes it straightforward to set
up and manage multimedia data streams. This can be done without having
to manually allocate multicast addresses or port numbers and then design a
suitable multicast protocol at the application level.

Support for multimedia events: Multimedia data can be exchanged in the context of
asynchronous event notification, which makes this pattern widely applicable
for applications that require notifications of events with multimedia content.

QoS support: The channel in this pattern acts as a stream manager and leaves the
data transportation to dedicated streaming technologies and protocols, which
ensures efficient delivery of data to consumers based on the QoS parameters
associated with each stream during stream creation.

Media type Independency: Support for streaming data in this pattern is provided in a
manner that is independent of the type of themultimedia data being propagated
and the technology used to capture and render the stream. This pattern does
not place any requirements on multimedia types that may be used. It does
not attempt to decode and interpret the data or the data fragment as it passes
through the relevant channels.

Liabilities However the Streaming Channel pattern also has the following liabilities:

Limited Reliability: This pattern does not guarantee the data delivery. The data might
be dropped before, during and even after it is streamed, because of either a
small cache or a limited transport rate.

The reliability of the data transportation also depends on the underlying
streaming protocol. Most of the real-time streaming protocols are build
upon UDP. UDP sends the media stream as a series of small packets, called
datagrams. This is simple and efficient; however, packets are liable to be lost
or corrupted in transit. Depending on the protocol and the extent of the loss,
the client may be able to recover the data with error correction techniques,
may interpolate over the missing data, or may suffer a dropout. Hence when
UDP is used, it is not suitable for transferring scheduling commands and user
interaction events. A more reliable pattern, for example the Real-time Channel
pattern should be applied. Or, the channel should create reliable streams by
using a more reliable protocol, such as TCP. It guarantees correct delivery of
each bit in the media stream. However, it accomplishes this with a system of
timeouts and retries, which makes them more complex to implement. It also



7.5 Concluding remarks 97

means that when there is data loss on the network, the media stream stalls
while the protocol handlers detect the loss and retransmit the missing data.

Stream id negotiation: Only the suppliers can create streams with a specified id. For
both suppliers and consumers to communicate with same stream, they must
agree on the id. Either this id is predefined and shared as a protocol, or
the id must be negotiated. The negotiation requires a different connection
other than the streaming model. Since in a distributed multimedia system,
the streaming model is not reliable enough to transmit controlling commands
and interaction events, reliable push or pull models are needed anyway. The
negotiation can then be done through these reliable channels. For example, a
supplier may create a real-time stream with an id “rtsp://supplier.com/live/video”
in a Streaming Channel, and push this id over the Real-time Channel to the
consumer. Then both the supplier and the consumer may connect to this
stream with the same id for streaming the live video.

Multicast streaming: Connecting multiple consumers that are distributed over
multiple systems to one stream require the underlying technologies and
protocols support efficient multicast data delivery. Otherwise, if only unicast
is supported, a supplier must create multiple streams for the consumers that
wish to receive the data. Multicasting delivery is then possible, however the
supplier must maintain a list of streams and iterate through this list to deliver
the data.

Compatibility The streaming model is compatible with neither the push model nor
the pull model. Unlike the push and pull model that can be combined with
each other to form different communication styles, the streaming model can
not be mixed. If the streaming model is used, it must be used by both the
suppliers and the consumers. Data sent through streaming will not received by
any push or pull consumer but only the streaming consumers; and data sent
using either push or pull model will not arrive at any streaming consumer.

7.5 Concluding remarks

The channel is an abstract concept, which is implemented as a software service
that runs across the distributed components. Different protocols and hardware
connections can be used for data transportation, which would have incurred many
complex and trivial issues that should not appear at an architectural level, if the
concept of the channel is not introduced. Separating the suppliers and the consumers
with channels enables decentralized, asynchronous and flexible communication, and
issues such as QoS control and data filtering can be taken care of by adjusting the
channel service.

The patterns described in this chapter fall into a general pattern: no matter
whether they use the push model, the pull model or the streaming model, no matter
whether they include the mechanisms of data filtering and QoS control, they have
three types of basic elements in common: data suppliers, data consumers and a
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Figure 7.10: Simplified view of channels

channel in between. At a more general level, an object that needs to communicate
asynchronously with other components may aggregate or include suppliers or
consumers as its input or output components. In the UML diagram shown in
figure 7.10(a), the class A has a (instead if “is a”) supplier s and the class B has a
consumer c. Both A and B have access to a global Channel object ch and connect their
s and c components through ch.

The connection pattern shown in figure 7.10(a) is often used in our distributed
system. To simplify the diagrams and the specifications, an equivalent diagram will
be used, as shown in figure 7.10(b), where a “u” indicates a supplier component, a
“E” indicates a consumer component and a connecting line in between indicates the
channel. The process of obtaining and connecting to a proxy consumer or a proxy
supplier from a channel will also be omitted hereafter from the specification, if a
connection line between the supplier and the consumer is shown in the diagram.

These components can be considered as output ports, input ports and channels
connecting these ports. The requirements on the communication can be modeled as
the properties or functions of the channels. When the details of the communication
are not any more the main focus, this approach would provide a more abstract view
on the higher level architecture about the interfaces, the distribution and the state
transitions. For example in Broy’s component-based logic for formalizing distributed
systems, components are specified by logical expressions relating input and output
histories of communications on their channels, described using state machines (Broy,
1999). Here it shall not be attempted to analyze formally in which sense that the
object-oriented view on the communication is equivalent to Broy’s component-based
view. These two views show clear similarities, for example objects in Object-Z and
components in Broy’s theory are all state machines, input and output ports are all
connected through channels etc. While the Object-Z approach is closer to object-
oriented implementation, Broy’s theory gives a more abstract and more manageable
view on the component-based communication and architecture. Later, this approach
will be used for analyzing the mapping problems.

Having described the actions and the communication channels, now it is ready to
present the actors – those who perform and communicate.



CHAPTER8
Actors

Having defined the actions that actors perform to present the multimedia objects and
the channels that these actors use to communicate with each other, it is now ready to
examine the structure of these actors. The actors are in the system not only to present
the multimedia objects, but also to provide the interface for the users to interact
with the system. This chapter will first look at the interactive system architecture
in general, then formally examine and compare two agent-based architectural models
(MVC and PAC) in detail. PAC is selected as the overall system architecture, and
the actors are implemented as PAC agents that are managed by the scheduling and
mapping agents in a PAC hierarchy, connected with the channels defined in the
previous chapter, and performing the actions defined in chapter 6.

8.1 Interactive system architecture

An interactive system architecture is a set of structures, including components,
the outside visible properties of these components and the relations between them
(Coutaz, 1997). Several architectural patterns have been proposed by researchers and
practiced in software industry over the last twenty years (Bass et al., 1991; Buschmann
et al., 1996; Coutaz, 1997; Pfaff, 1985; Stephanidis, 2001). These results can be
grouped into three categories:

The language model: Foley and Dam (1982) propose to decompose the application
and the user interface in the same way as a language. They suggest that
each interaction with the system can be divided into four levels: 1. semantic:
the meaning or purpose of the task; 2. syntactic: the structure or sequence of
actions to complete the task; 3. lexical: the symbols used (e.g. words or icons)
for each action; 4. device: the input device used to supply lexical components.
The drawbacks of this model are that the priority is given to the shape of the
information rather than the interaction itself and that the level of abstraction
of the communication protocols is not sufficiently clear (Coutaz, 1987; Hartson
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and Hix, 1989; Knight and Brilliant, 1997). Despite these drawbacks, the basic
principles of this model have been inspiring and have influenced the design of
other generic models, for example, the functional models.

Functional models: These models provide a layered separation between the function
core and the user interface. The Seeheim model (Pfaff, 1985) represents
one of the first and “best” known models for user interfaces of this type
(figure 8.1). It describes the user interface as consisting of the three
components: 1. presentation, which performs a lexical analysis in order to
translate the input of the user into into internal representation; 2. dialogue
controller, which provides a syntactic analysis on the internal representation and
manages the dialogues between the presentation and the application interface.
3. application interface, which translates the internal representation into function
specifications in order to reach the application’s function core. The Seeheim
model showed to be inadequate for complex graphical user interfaces, thus
being adapted, extended, or revised by other prescriptive models (Coutaz, 1987;
Duce et al., 1991; Krasner and Pope, 1988; Lantz et al., 1987).

Presentation
Dialogue
controller

Functionality
(Application 
Interface)

Application

feedback

Figure 8.1: Seeheim Model

The Arch model or the Slinky metamodel (Bass et al., 1991, 1992) is one of
these revisions. Instead of examining the functionality of an interactive system
in order to separate the user interface from core functions, this model examines
the nature of the data that is communicated between the user interface and
the other components of an interactive system (figure 8.2 on the next page).
The components presentation and interaction decompose the presentation of the
Seeheim model. The presentation component supplies a set of presentation
objects that are independent of any interaction toolkit and thus the interaction
objects. The domain adaption component is used for adjusting the differences
in the domain objects between the functional core and the dialog controller. Note
that the term object is used as an expository abstraction for describing the
transmitted information between the components. The term and the shape
“Arch” suggest “the more stable development environment that occurs when
goals have been set and choices have been made” (Bass et al., 1992).

Seeheim and Arch models set the foundations for functional partitioning.
Modifiability, motivated by the iterative design of user interfaces, was the
driving principle. The slogan was “Separate the functional core from the user
interface”. Seeheim and Arch provide canonical functional structures with
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big conceptual blocks, which is useful for rough analysis and design of the
functional decomposition of an interactive system. Multi-agent models aim at
a more fine-grained and object-oriented decomposition.

Agent based models: Agent-based models structure an interactive system as an
organization of specialized computational units called agents. This thesis will
not detail the notion of agent, but retain the following definition: An agent can
be a physical or virtual entity that can act, perceive its environment (in a partial
way) and communicate with others, is autonomous and has skills to achieve
its goals and tendencies (Ferber, 1999). Agents that communicate directly with
the user are sometimes called interactors (Hu and Feijs, 2003a,b; Markopoulos,
Johnson, and Rowson, 1998; Markopoulos, Shrubsole, and de Vet, 1999).

Agent-based models suggest grouping the three functional aspects (presen-
tation, dialog control and functional core) together into one unit, the agent,
according to the principles of object-oriented composition and encapsulation.
The agents are then organized in a structure using event-driven mechanisms or
communication channels. All of the agent-based styles and tools push forward
the functional separation of concerns advocated by Seeheim and Arch. They
generalize the distinction between the functional core and the user interface by
applying the separation at every level of abstraction and refinement.

A number of agent-based models and tools have been developed along these
lines, among which MVC and PAC models are typical agent-based styles or
patterns. These models stress a highly parallel modular organization and
distribute the state of the interaction among a collection of cooperating units.
For applications that involvemultiple units or devices, such as the IPML system,
modularity, parallelism and distribution of these agent-based models are useful
and convenient for designing user interfaces.

Chapter 3 has briefly introduced these two major interface architectures Model-
View-Controller (MVC) and Presentation-Abstraction-Control (PAC). In the design
of the StoryML system, PAC was found to be more suitable mainly because it was
designed for distributed use. This decision was kept for the final design of the IPML
system. In this chapter, a formal study on both of them is conducted and provides
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a more detailed insight into the reasons why PAC is more suitable for distributed
situations, to consolidate the observations and the design decision.

Both of them have been studied formally by Hussey (1999); Hussey and
Carrington (1997, 1996) using an Object-Z approach. A composite clock system was
described as an example to compare MVC and PAC, especially on the presentation
concerns, that is, how input is obtained and how output is produced. The
communication between components is handled by aggregating the components and
combining their operations in the aggregated component. Nowadays, MVC and PAC
like structures are also used for distributed applications such as Web services, for
example in Microsoft .NET (Microsoft, 2003) and Apache Struts (Holmes, 2004),
where the MVC or PAC agents, and possibly their components, are distributed
over the network. Direct access to other component’s state and operations is not
feasible. The communication between these components and agents has then to
be done through network connections instead of direct functional calls or operation
compositions.

Other agent-based models are also studied using different formal approaches.
Abowd (1991) uses uses a hybrid of Communicating Sequential Processes (CSP)
(Hoare, 1985) and the Z notation (Lightfoot, 2001; Spivey, 1992; Woodcock and
Davies, 1996) to illuminate agent-based separation and usability properties of
interactive systems. Markopoulos (1997) uses Language Of Temporal Ordering
Specification (LOTOS) (Bolognesi and Brinksma, 1987) to describe his Abstraction-
Display-Controller (ADC) interactors (Markopoulos et al., 1998). LOTOS is also used
by (Stirewalt and Rugaber, 2000) to stress the composition issues of the interactive
agents. Alexander (1990) uses CSP to decompose complex dialogs into separately
defined application and presentation agents, while van Schooten (1999) uses CSP
to model the interactive components in virtual environments. One may indeed gain
many insights about the compositional structures and the interactive behaviors of
these agents, but might still miss the parts about how these agents would cooperate
and communicate in a distributed setting.

MVC and PAC are going to be compared using Object-Z again, but with more
attention to the communication in distributed environments: distributed components
and agents will be loosely connected through communication channels, using the
Channel patterns from the previous chapter. By doing so, which of them fits better in
a distributed system can be decided.

8.2 Distributed Model-View-Controller

The MVC pattern was first implemented in the Smalltalk-80 system as a user
interface paradigm (Krasner and Pope, 1988). It has been gradually evolved into
an user interface pattern for GUI (for example, JFC/Swing in Java (Walrath et al.,
2004)) and architectural patterns for interactive systems (for example, Document-
View in Microsoft Foundation Classes (MFC) (Kruglinski, 1995) and web applications
(Holmes, 2004)). Each of them differs in either the responsibility of the controller, or
the communication between the components. The established and widely accepted
descriptions by Howard (1995) and Buschmann et al. (1996) are followed here.



8.2 Distributed Model-View-Controller 103

8.2.1 Structure

In MVC, an interactive agent is divided into three components that are respectively
responsible for processing, output, and input: The Model is about the domain-specific
representation of the information on which the application operates. Domain logic
adds meaning to raw data. The Model contains the core functionality and data that are
independent of specific output representations and input behavior. The View renders
the model into a form suitable for interaction, typically a user interface element.
The Controller responds to events, typically user actions, and invokes changes on
the model and perhaps the view. Views and controllers together comprise the user
interface. Though MVC comes in different flavors, control flow generally works as
follows:

1. The user interacts with the user interface;

2. The controller receives the raw input from the user interface and encapsulate
the raw input as input events. The Command pattern (Gamma et al., 1995) is
often used to encapsulate events. The controller sends the user input events to
the model, and possibly to the associated view as well. In a non-distributed
setting, sending an input event is done by calling the interfacing methods
provided by the model. In a distributed setting, communication channels must
be established for sending input events.

3. The model updates its internal state according to received input events.

4. The model notifies the view and the controller about the internal state change.
In a non-distributed setting, the model uses the Observer pattern to allow the
controller and view components to subscribe their interests of the changes
in the model and notify interested parties of a change to the observers. In
a distributed setting, the Real-time Channel pattern can be used so that
notifications can be sent through and filtered inside the connection channel
according to the subscribed interests.

5. To render the interface, the view and the controller retrieve the data from
the model. In a non-distributed configuration, this can be easily done with a
straightforward function call. However in a distributed setting, this is often a
two step process: the view or the controller sends the query request and the
model returns the query result through a connection channel.

6. The user interface waits for further user interactions, which begins the cycle
anew.

Whereas the view and controller components register themselves with the model
and listen for changes, the model itself remains view and controller agnostic. The
controller does not pass the model change to the view although it might issue a
command telling the view to update itself.

Besides its wide use in non-distributed interactive architectures (JFC and MFC
for example), MVC is also often seen in distributed applications, especially web
applications. In a web application, the views are the HTML pages rendered by web
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browsers and the code at the server side that generate the pages, and the controllers
are the controlling components embedded in the HTML page, sending HTTP GET
and POST requests to the model – the web service that implements the domain logic.
While in these web applications, view and controller are often coupled locally at the
client side together to comprise the interface, views are even split across the web client
and the web server in web applications, which makes it unclear where the distributed
boundary is between the view-controller coupled client and the model (web service).
To simplify the specification, the splitting of the view components is ignored, and
only the distribution of the model and its view-controller dependents are taken into
account.

The overall static structure is shown in figure 8.3(a) in a standard UML diagram.
View components and Controller components are paired locally and communicate
with a remote Model component. Views and Controllers all depend on the Model
component to update and render the interface, hence they have common attributes
and behavior, which is modeled as the attributes and behavior of a ModelDependent
component. Figure 8.3(a) shows the channel connections between the Model
component and the ModelDependent components, in which not only are the symbols
“u” and “E” used to indicate the data suppliers and consumers as introduced at
the end of the previous chapter, but the symbol “p” is also used to indicate that the
attaching component has a function of physically presenting data to the user, and the
symbol “@” is used to indicate the function of capturing input from the user interface
or the environment. See background material K for detailed Object-Z specifications.



8.2 Distributed Model-View-Controller 105

Document

View View...

(a) Document-View

C C

M

V ... V

(b) M-VC

M

C

V...

C

V

(c) MC-V

M

C

V

C

V...

(d) MC-V

Figure 8.4: MVC variants

8.2.2 MVC variants

The MVC pattern has been just presented, with the configuration which would
be applied in a distributed environment for interactive presentations. There are
many variants, due to either different understanding of the roles of the controller
component, or the difficulty of separating the controller from the associated view
component. Three examples (figure 8.2.2) are given here.

Document-View The Document-View variant recognizes all three roles of Model-
View-Controller but merges the controller into the view (figure 8.4(a)). The document
corresponds to the model role in MVC. This variant is present in many existing GUI
platforms. An good example of Document-View is MFC in the Microsoft Visual C++
environment(Kruglinski, 1995).

This variant is also used in distributed applications. For example, Okada and
Tanaka (1997) used it for their distributed 3D graphics applications, with a Document-
View structure named “Model-Displayobject”. Interestingly, a previous attempt by
the same authors for the same distributed applications used the conventional MVC
structure (Okada and Tanaka, 1995). The reason of getting rid of the controller
component in later systems was that “the role of the Controller could be included
in the View part” and in practice “the View part directly handles user-operation events
instead”.

M-VC The M-VC variant is very similar to Document-View in the sense of isolating
controller from the Model, but it does not combine the controller into the View
(figure 8.4(b)). A controller in M-VC is only for taking user inputs and translate
them into input events, then send to connected View. The controller does not have its
interface of its own. Buttons and menu items can be controllers in MVC (figure 8.3
on the preceding page), but they have to be yet smaller M-VC agents in this variant.
The granularity of this variant makes it more suitable for managing GUI components.
Java Swing/glsjfc components are good examples of this variant. There JComponents
are Views, and event handlers are controllers (Walrath et al., 2004).
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MC-V Many distributed web applications advocate MVC as the architecture (Barrett
and Delany, 2004; Bodhuin et al., 2002; GuangChun et al., 2003; Knight and Dai,
2002; Qiu, 2004; Wojciechowski et al., 2004), in which the controller component
is actually a server side component that is tightly coupled with the model. Instead
of being an interface component to get the input directly from the interface, the
controller accepts the input events (HTTP GET and POST messages) from the web
page (the view) rendered by a browser, and decides which functions or operations
of the model should be invoked (figure 8.4(c) on the preceding page). In some
implementations, the controller even coordinates the behavior of the view for the
model (see figure 8.4(d) on the previous page). The controller falls into the Mediator
pattern (Gamma et al., 1995) in this variant.

8.3 Distributed Presentation-Abstraction-Control

If the MVC architecture is applied at a system level, multiple View-Controller pairs
need to communicate with the same Model component. When the system scales
up, one model can hardly decompose the system complexity. More models are then
needed. How these different models should be connected is not covered in the MVC
architecture.

There are many attempts to improve the scalability of the MVC pattern, for
example the Hierarchical-Model-View-Controller (HMVC) (Cai, Kapila, and Pal,
2000), in which the controller also takes the responsibility of communicating with
other MVC components. However, when a controller does not handle the user input,
but acts as a mediator between the model and the view, and even between the MVC
agents, this kind of MVC becomes more PAC-alike than its name indicates.

Coutaz (1987) proposed a structure called Presentation-Abstraction-Control, which
maps roughly to the notions of View-Controller pair, Model, and Mediator. It
is referenced and organized in a pattern form by Buschmann et al. (1996): the
PAC pattern “defines a structure for interactive software systems in the form of a
hierarchy of cooperating agents. Every agent is responsible for a specific aspect
of the application’s functionality and consists of three components: presentation,
abstraction, and control. This subdivision separates the human-computer interaction
of the agent from its functional core and its communication with other agents.”
Figure 8.5 shows the static structure of PAC in UML.
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8.3.1 Structure

This structure separates the user interface from the application logic and data with
both top-down and bottom-up approaches (figure 8.6). The entire system is regarded
as a top-level agent and it is first decomposed into three components: an Abstraction
component that defines the system function core and maintains the system data
repository, a Presentation component that presents the system level interface to the
user and accepts the user input, and in between, a Control component that mediates
the abstract component and the presentation component. All the communications
among them have to be done through the control components.

At the bottom-level of a PAC architecture are the smallest self-contained units
which the user can interact with and perform operations on. Such a unit maintains its
local states with its own Abstraction component, and presents its own state and certain
aspects of the system state with a Presentation component. The communication
between the presentation and the abstraction components are again through a
dedicated Control component.

Between the top-level and bottom level agents are intermediate-level agents. These
agents combine or coordinate lower level agents, for example, arranging them into a
certain layout, or synchronizing their presentations if they are about the same data.
The intermediate-level may also have its interface Presentation to allow the user to
operate the combination and coordination, and have an Abstraction component to
maintain the state of these operations. Again, with the same structure, there is a
control component in between to mediate the presentation and the abstraction.

The entire system is then built up as a PAC hierarchy: the higher-level agents
coordinate the lower level agents through their Control components; the lower level
agents provide input and get the state information and data from the higher level
agents again through the Control components. This approach is believed more
suitable for distributed applications and has better stability thanMVC, and it has been
used in many distributed systems and applications, such as Computer Supported
Cooperative Work (CSCW) (Calvary, Coutaz, and Nigay, 1997), distributed real-time
systems (Niemelä and Marjeta, 1998) , web-based applications (Illmann et al., 2000;
Zhao and Kearney, 2003), mobile robotics (Khamis et al., 2003a,b), distributed
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co-design platforms (Fougeres, 2004) and wireless services (Niemela, Kalaoja, and
Lago, 2005). However as far as known, there is no attempt so far to formally describe
how the PAC works in a distributed setting.

To a large degree the PAC agents are self-contained. The user interface com-
ponent (Presentation), the processing logic (Abstraction) and the component for
communication and mediation (Control) are tightly coupled together, acting as one.
Separations of these components are possible, but these distributed components
would then be regarded as PAC agents completed with minimum implementation
of the missing parts (examples will be given later). Thus the distribution boundaries
remain only among the PAC agents instead of composing components. Based on
this assumption, each component is formally described in background material L,
modeling the communication among PAC agents with push style channels from the
Channel pattern.

8.3.2 PAC Variants

There are also many PAC variants. Nigay and Coutaz (1991) propose a hybrid model
called PAC-AMODEUS. In this model, the dialogue controller of the Arch model
(Bass et al., 1991) is made of PAC agents. Other architectures have been proposed. For
multiuser systems, PAC∗ (Calvary et al., 1997; Khezami, Otmane, and Mallem, 2005;
van Schooten, 2001) emphasizes the functional aspects of each component; for multi-
modal systems, AMF (Tarpin-Bernard and David, 1997; Tarpin-Bernard, David, and
Primet, 1999) focuses on composition of the PAC agents; for distributed real-time
systems, DPAC (Niemelä and Marjeta, 1998) integrates the runtime configuration
support into a framework that supports distributed and asynchronous messaging; for
consumer electronics and on-screen displays, Markopoulos et al. (1999) propose a
scheme to distinguish “look” (Presentation) and “feel”(Abstraction + Control).

Despite the architectural amendments for different focuses, these variants are
renditions of the basic structure that are formally specified in background material L:
the Control acts as a mediator, separates the user interface Presentation from the
function core Abstraction, and handles the communication among distributed PAC
agents; a PAC agent comprises these three PAC components that locally form a
hierarchical structure with other PAC agents through their Control components.

Lévy, Losavio, and Matteo (1998) and Lévy and Losavio (1999) propose the Broker
pattern in instead of the Mediator pattern for communication. They argue that the
Broker, in its indirect communication variant(Buschmann et al., 1996), is a special
case of the Mediator, hence the usage of Broker instead of Mediator could take
advantage form the distribution featured by Broker. The specification here agrees
on the Mediator role of the Control component, but leaves the communication among
distributed components to the connecting channels. The Channel pattern, however,
uses producer and consumer proxies as output and input ports to connect the PAC
agents, and these proxies actually fall into the Broker pattern. Note that these brokers
are not PAC agent brokers as suggested by Lévy and Losavio (1999). Instead, they are
producer and consumer brokers – the Broker pattern is applied at a more fine-grained
level of each channel connection.
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8.4 Comparing PAC to MVC

Based on the formal models of both MVC and PAC architectures in distributed
settings, a concrete basis can be provided for language independent comparison. Both
the MVC and PAC architectures are based on the concept of separating the functional
core and data component of an interactive application from its interface components.
The principle of separation allows these components to be developed separately and
facilitates the reuse, but the way of separation differs in MVC and PAC. The primary
differences between the PAC and MVC architectures are:

• the location of input and output;

• the communication among related agents and components;

• where the distribution boundaries are.

8.4.1 Coupling of input and output

When interacting with our physical surroundings, a “natural” interaction is expected:
the output or the feedback of an interactive object should not be separated from the
input or the action from the users. Wensveen (2005) proposes a tangibility approach
in product design, trying to couple the action and the reaction as close as possible, in
the aspects of time, location, direction, dynamics, modality and expression, to make
the interaction with design objects more “natural”.

In GUI design, direct manipulation (Shneiderman, 1997, 1981) is actually based
on the same thinking. The input from the mouse, in the sense where the physical
actions are taken, is (in location) not coupled with the reactions from the system (on-
screen feedback). However when the user is getting used to the mouse to control the
on-screen cursor, the mouse is a “ready-in-hand” (Dourish, 2001) tool that extends
the physical capability of the user to the cursor. The “click” action is then felt to
be happening at the place where the on-screen cursor is, not where the mouse is.
Thus direct manipulation gives people a feeling of coupling thus a feeling of natural
interaction. However direct manipulation of virtual objects using a mouse does not
fall into the Tangible User Interface (TUI) framework of Ullmer and Ishii (2000).

TUIs give physical form to digital information, employing physical artifacts both
as representations and controls for digital information, coupling the physical controls
and physical representations with digital representations (Ullmer and Ishii, 2000).
On the interface level, TUIs couple tightly the user control and the system feedback
in physical means, hence bring more feeling of natural interaction to the users than
direct manipulation on GUIs.

The basic concept of TUI fits very well with the vision of AmI, where the
digital representations fade into the background and are embedded in our physical
surroundings. The physical environment, and the physical objects which comprise
this environment, become the interface to the digital data and functions. Interacting
through tangible objects is one of the important ways to enhance the naturalness of
interaction (Ducatel et al., 2001).
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Ullmer and Ishii (2000) uses MVC to illustrate the separation of the GUI between
the visual representation (or view) provided by the graphical display and the control
capacity mediated by the mouse and keyboard of the GUI. For natural interactions
through tangible objects, they present an alternate interaction model called MCRpd,
for model-control-representation (physical and digital), where control-representation
part is actually a coupled component to form the tangible interface. This view of
coupled input and output is well reflected in PAC with the presentation component.
An integrated component for both input and output would encourage the coupling of
these two in the design of the virtual or physical objects.

Output behavior in the MVC architecture is dealt with by having the Model
component handle the input events (HandleInput) from the Controller component
and send appropriate notifications upon state change, and handle the data queries
(HandleQuery) and send the query results to the View component. In PAC, input
(HandleInputData) and output (Present) behaviors are coupled in the Presentation
component. The MVC architecture models the output as to the depiction of abstract
system states, whereas the PAC architecture models the output as encompassing both
the creation and update of the interface the depiction of abstract system states. The
Presentation component in PAC is essentially the entire user interface, composed of
both the View and Control components.

8.4.2 Communication and control

PAC has a dedicated control component that mediates and manages the communi-
cation and that has no direct correspondent in the MVC architecture. In addition
to its responsibility of the function and data services, the Model components in
MVC must maintain the consistency between distributed MVC agents by passing
messages through connecting channels, and the consistency between the distributed
View and Controller pairs by monitoring the input events from all distant dependents
and broadcasting change notifications through communication channels. However
the MVC structure itself does not indicate how communication is handled between
agents in an interactive system.

In the MVC specification, theModel component takes the control to decide what to
do upon receipt of input events and the Controller component does not really control,
but only act as an input component that takes the raw input from the user or the
environment then transforms it into input events. There is no consensus in the
design pattern society where the control really is and what is a Controller anyway 1

in MVC (see the variants in figure 8.2.2 on page 105). The Controller ends up being
the most vague of all these components, and a satisfactory explanation can be hardly
found – likely because MVC was designed for a very specific requirement in a specific
environment (Smalltalk-80 and VisualWorks), and is difficult to reify it when it comes
to describing distributed architectures such as web applications.

Comparing to MVC, the notion of control explicitly centralized in PAC. The
PAC control hierarchy provides a useful mechanism for specifying relations between
agents, because the hierarchy corresponds to the way in which the actors are
distributed. Often however, the relationships are relatively simple and the approach

1A discussion is available at http://c2.com/cgi/wiki?WhatsaControllerAnyway.

http://c2.com/cgi/wiki?WhatsaControllerAnyway.
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adopted in the MVC architecture is sufficient. But for later distributed systems, the
structure introduced by the PAC architecture provides easier maintenance than that
provided by the MVC architecture.

8.4.3 Distribution

Although the Presentation, Control and Abstraction components of a PAC agent are
locally coupled, the PAC agents are decoupled. In a PAC hierarchy, PAC agents
can be loosely connected together through the communication channels using their
Control components. Higher level agents can delegate their functions and interfaces
to lower level agents. Consequently, making complicated, especially distributed, user
interfaces based on simple components is more natural to PAC than it is to MVC
because composition of the agents can be done without violating encapsulation. In
this way, one can imagine that because of its flexibility of delegation and because of
its decoupled nature, it is even possible to scale up PAC so that the various parts of
PAC are completely separate processes. The properties are precisely what make PAC
a good fit for distributed systems.

The formal specification of PAC looks more complicated than MVC, but PAC
scales better. Adding a PAC agent, or a hierarchical collection of PAC agents, to a
existing hierarchy is no more than connecting them to the communication channel
that the parent PAC node is connected to. Removing is no more than disconnecting
them. The specification of the PAC Control component is large, however it is because
of the behavior of this component can be described at a fine-grained level. The
specification of MVC is easier, but the communication between multiple MVC agents
is simplified by sharing the same Model component, which would result in a very
busy and centralized control. If multiple MVC agents are allowed to have their own
Model components to build up a hierarchical structure as PAC has with the Control
component, the specification of such a MVC structure would be more complicated,
and it would also violate the principle of object oriented decomposition.

Moreover, the PAC pattern fits the problem of distributed user interfaces much
better than MVC. First, it provides with a well-defined place to hook in the various
infrastructure pieces that take care of the dimensions of the distribution and affect
the user interface without exposing this functionality to the control logic of the
application: the control component. This means that the control component can
communicate with the location sensitivity system, the voice recognition engine, the
speech synthesis engine and all the other sub-systems that are needed to control and
produce the user interface without violating the separation of concerns among the
abstraction, shielding the local logic and the presentation.

Both MVC and PAC styles are often used to structure interactive systems.
Moreover, MVC is being employed as a reusable framework in commercial graphical
toolkits. PAC instead, gradually being adopted by many research and industrial
projects, has a major theoretical importance in research since it greatly favors the
independence of communications among the agents, without loosing their control,
and it seems very well adapted to be used to architecture distributed applications with
multiple separated process. For this reason the design decision has been taken to use
only the PAC style as the structure for the actors.
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Figure 8.7: IPML system: an IPML actor

8.5 Actor: a PAC agent

An actor is basically a PAC agent, or to emphasize its interactive behavior, a PAC actor.
It reacts on the user input events and scheduling commands, and takes actions to
present media objects. Backgroundmaterial M describes an example implementation
of an actor based on the PAC pattern, also using the patterns described in previous
chapters.

8.6 IPML system: an IPML actor

The final IPML system is simply an IPML actor, or in other words, an Actor
implementation that is capable of presenting the IPML scripts. IPML is a presentation
description language that extends SMIL, describing the temporal and spatial relations
among distributed actions on synchronizable content elements (more detail is
available in the next chapter).

Note that IPML is an extension of SMIL, and a SMIL document is actually a
composite content element by itself. Hence an IPML actor is first of all a SMIL
player and it may present the contained content elements to its own Presentation
component. What makes IPML superior to a SMIL player is the capability of
distributed presentation, interaction and synchronization: It can delegate content
presentations to other actors, synchronize the presentation actions of these actors,
and propagate distributed user interaction events among these actors.

The overall structure of the IPML system (figure 8.7) is similar to the structure of
the experimental StoryML system (see figure 3.9 on page 36), except that the scripting
language is different and several architectural improvements have been made.
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Comparing to the StoryML system structure, the final IPML design first of all
abandons the notion of “physical actors”, but uses “real actors” instead. The bottom
level actors can be either physical devices or software agents. As long as it implements
the interfaces and the functions of the Actor, it does not really matter at the system
architecture level whether it is physically a real device, or virtually a software agent.
The word “actor” is used not only implying the theater play metaphor, but also
indicating these actors are implementations of the class Actor – PAC actors that
perform to present content elements.

The secondmajor difference is that in this architecture, only actors are distributed.
Other functions, such as parsing an XML document, prefetching media objects and
managing timelines are distributed with these actors, instead of realizing them as
distributable agents. There are three reasons to make this decision:

1. These are mostly functions rather than objects. For example, prefetching has
been designed as a function that should be implemented by every media object
(see section F.12 on page 296), a centralized prefetcher is no longer necessary,
but also violates the principle of encapsulation.

2. If the top level IPML system agent is implemented as an actor, objects such as
the timeline controller and the XML parser are simply internal mechanisms
of its Abstraction component. Whether to implement them as a separate
PAC agent is not important, although doing so may enable visualization and
interactive control of these mechanisms. Let’s leave this as an option to
implementation, rather than maintained at the system level as independent
agents.

3. Encapsulating the scheduling functions internally, the IPML actor, is just
yet another actor. This maximizes the extensibility and flexibility of the
architecture: The entire system as an actor can join another IPML system
in a distributed manner, without exposing the internal mechanisms to and
interfering with each other.

In figure 8.7 on the facing page, the virtual actors are no longer managed by an
“actor manager” as they are in the StoryML architecture, but rather, the IPML actor
implements the role of a Director, which has a mapping engine, creates, manages
and connects the virtual actors, and has a timing engine which schedules the timed
actions for the delegating virtual actors. Depending on the physical configuration of
the “theater” – the presenting environment, the mapping engine may also connect
appropriate “real actors” to virtual actors, where the virtual actors keep the role
of software drivers for the “real actors”. It is then no longer necessary to have
a distributed “actor manager” PAC agent between the IPML actor and the virtual
actors – which may result in unnecessary network and management overload. The
mapping engine may make use of distributed lookup and registration services such
as Universal Plug and Play (UPnP) (Michael Jeronimo, 2003) and JINI (Edwards,
2000) to locate and maintain a list of “real actors”, but this architecture leaves these
possibilities open to the implementation of the mapping engine.
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Looking back, in this part, an object-oriented formal approach is used to present
the pattern-oriented architecture design of the IPML system, from action patterns
that are used to present synchronizable content elopements, to channel patterns
that are used to manage asynchronous communication among distributed objects,
and finally in this chapter, to interface patterns for the actors. A high level view of
the IPML system architecture is revealed: The IPML system is an IPML Actor that
presents IPML scripts by delegating the interactive presentations to other virtual or
real actors. An IPML actor also takes the role of aDirector, reading and understanding
the IPML scripts, finding appropriate actors for certain types of roles and actions,
and scheduling action tasks for these actors. The next part focuses on the Director’s
problems: the timing models and scheduling methods; and the mapping between
the roles that are required in the script, and the actor cast that the Director has in a
“theater”.
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Timing and Mapping

115





CHAPTER9
Timing

An interactive play has been defined as a cooperative activity of multiple actors that
take actions during certain periods of time to present content elements. An action, as
the basic component of such an activity, has a time aspect per se. That is, a timing
mechanism is needed to decide when the actor should commence the action, how
long the action should take, and how the actions are related to each other in time.

The same phenomena exist in traditional multimedia systems. A multimedia sys-
tem is characterized by integrated computer-controlled content generation, storage,
communication, manipulation and presentation of independent time-dependent and
time-independent media objects. Timing sits at the heart of multimedia systems,
describing and managing the temporal relations between these media objects.
Although the traditional media objects can not cover all the content elements that
the actors need to take actions with, the timing issue is rather similar at least at
conceptual level, if the difference of the managed objects is put aside. Therefore,
the timing models from traditional multimedia systems can be useful for managing
temporal relations of actions in IPML performances.

Many timing models and synchronization mechanisms have been developed for
multimedia presentations during the last decades. The question is then which one
fits better the needs of the theater play. The traditional treatments in multimedia
systems rarely integrate the audience participation and interaction in the time model.
For interactive theaters, it is necessary to model the audience participation and other
events as a form of scheduling to provide a unified timing model for these commonly
disparate features. Further, actors in the theater need to get their action commands
and the related content elements in real time through different delivery channels. The
timing model has to accommodate both reliable and unreliable delivery.

Although IPML has been presented as the scripting language, in which the
SMIL timing model is used for describing the time relations between actions, the
arguments behind the decision have not yet been covered. This chapter tries to cover
the timing issues from the basis, by first giving an overview about the basic concepts
and existing models, and analyzing their advantages and disadvantages. How the
SMIL (Ayars et al., 2005) timing module covers general time relations will then be
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discussed. A run time synchronization engine is presented thereafter, addressing the
above mentioned issues, providing a powerful, flexible and extensible framework for
synchronizing the actions. This engine is used by the director to schedule the actions
for the actors, nomatter whether the actors are distributed over the network. However
when the actors are distributed, time differences among their hosting devices and the
network delay of scheduling commands can not be ignored. These distribution issues
will be covered at the end of this chapter.

9.1 Background Concepts

9.1.1 Natural and synthetic temporal relations

Temporal relations between content elements can be divided into natural and synthetic
relations (Little, 1995). In multimedia, natural temporal relations are implicit at
the time of data capture, such as the interdependence between the audio and video
tracks in the recording of a motion picture sequence. Synthetic relations are explicitly
specified between independently captured or generated media objects. An example
of this is the construction of a motion picture by compiling various sequences.

Similarly in interactive theaters, natural temporal relations may exist within the
action, when the action is to perform a content element that is an autonomous
behavior without external stimuli, for example, acting out the given lines. At the
system level of action synchronization, the director assigns the actions to appropriate
actors and schedules these actions in the play time according to the script; thus the
temporal relations among actions are always synthetic.

9.1.2 Time-dependent and time-independent elements

A timing model defines how to coordinate and synchronize the actions over time. As
said, an action is depicted by a content element. The term content element covers a
broad range, including time-independent elements that have no intrinsic timing, and
time-dependent types that are intrinsically time-based. The time dependency of the
content elements influences significantly the action synchronization.

The content elements are often media elements. In multimedia, time-
independent media elements are for example still images, HTML pages, vector
graphics, whereas video, audio, and animations are time-dependent elements. In
SMIL 2.0 , time-independent and time-dependent elements are respectively referred
as discrete and continuous elements (Ayars et al., 2005).

Time-independent elements are all elementary synchronization objects because
they are indecomposable for synchronization. After the time-independent elements
have been started and before they are stopped, they will stay static and will not
generate any time-based events. Furthermore, they can’t start and stop by themselves
since there are no internal time dependencies defined. The presentation of such an
element has to be controlled by externally imposed time dependencies.

The major difference between time-dependent and time-independent elements
is whether they have intrinsic timing. The same time dependency of the content
element is imposed upon the corresponding action. A time-independent action only
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keeps the actor in a static situation, for example keeping a lamp on or off during
the time. A time-dependent action often needs the actor to decompose it into more
elementary actions and further schedule these actions in parallel or sequence by
themselves. For example, flashing a light is decomposed to alternatively turning the
light on and off.

9.1.3 Who has the time?

The timing aspect of a theater performance need to be supported by the authoring
and performing systems, as well as the underlying timing models and engines. As
Hardman et al. (1999) point out, there are different perspectives on the timing issue,
from the authors of a play, the designers of the scripting model, the designers of the
performing system (the theater), and of course, the audience of the performance.

From an author’s perspective, timing aspects are important elements in the
way the multimedia presentation is conceived and received and thus the author
requires certain means of manipulating the timing within a performance. From a
scripting model designer’s perspective, temporal aspects of a performance are about
the composition of the actions with some structures that are not only easy for the
authors to express timing relations, but also easy for the performing system to under-
stand. From a performing system designer’s perspective, different synchronization
strategies and techniques are needed for different types of actions, for example, those
with or without audience interaction, and those with linear or non-linear navigation.
The system designer also needs to decide how to deal with situations such as network
delay and device variation. The content is finally presented to the audience, who
should receive and perceive the performance in a simple timeline without knowledge
of the underlying temporal constructions.

Hardman et al. (1999) present a useful taxonomy for these time concepts. There
are four types of time when constructing and conducting a performance1:
Content element time: is the duration of (part of) the content element included in a

play. If there are no further temporal transformations, the media element
time is the length of time it would take to be performed on an ideal system.
The content element time can only be manipulated in the script, unless the
author edits the element itself. Some content elements are distributed over
and streamed from a network, and the durations of these elements can not be
determined at the authoring stage until they have been presented at the client
side and explicitly ended from the server side. A good example of such elements
is a live audio or video program. Some other content elements have no intrinsic
timing, such as images and text, the durations of which depend on how it is
performed or presented. For example if the text is displayed on a screen, the
duration is often treated as infinite. But if the text is going to be presented
through a TTS engine, the duration depends on the synthesizing mechanism.
The designers of the timing model and the presentation system have to take all
these different elements into account.

1Hardman et al.’s taxonomy is adapted for the play metaphor. In the original taxonomy for the time
concepts in multimedia systems, the adapted time and action time were called rendered time and runtime
respectively.
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Script time: is the relative time stored in the script describing when the content
elements should start and stop. The author can assign and manipulate the
script time, in terms of a timingmodel, or indirectly using an authoring tool and
then converting to the timing model. The presentation system should retrieve
the content elements included in the document in due time and comply with
the temporal relations specified by the authors to construct the presentation.

Adapted time: is the result of adapting the script time to the performing system.
The script may provide alternative content elements for different client system
configurations. After the authoring stage and before the final performance,
the performing system has to decide which content element fits best to the
client environment, which will result in different timing schemes on different
systems (again the example of the text being rendered by different means can
be used). If no choices are provided in the script, the adapted time is the same
as the script time.

Action time: is the time when the performance takes place in real time, during which
the audience can interact with the performance and, possibly, influence the
actual timeline of the performance. The presentation time can also be affected
by network delay when the media elements are distributed over the network.

Each time type has its own important role in the synchronization. For example,
in a script, it could be specified that an audio element should start right after a video
element has started. If the action time of the video element is delayed, so is the
audio. But if both the audio and the video are specified to be started 5 seconds after
the beginning of the entire play, the delayed video should not prevent the audio from
starting immediately at its due time, and the video must catch up with the audio by
for example dropping a certain number of frames.

9.1.4 Synchronization reference model

A reference model is needed to understand the various requirements for multimedia
synchronization, identify problems and compare existing solutions for multimedia
systems, and structure the runtime strategies that support the execution of the
synchronization. A layered reference model (figure 9.1(a) on the next page for
multimedia synchronization is introduced byMeyer, Effelsberg, and Steinmetz (1993)
and further developed by Blakowski and Steinmetz (1996).

This reference model provides four layers of abstraction through which a
multimedia application can access synchronization service. Each layer implements
synchronization mechanisms which are provided by an appropriate interface. These
interfaces can be used to specify or enforce the temporal relationships. Each defined
interface services can be used by the next higher layer to implement the higher level
interface. At the media layer, a presentation operates on a single continuous media
stream, which is treated a sequence of Logical Data Units (LDUs), such as video
frames and audio samples. If this layer is used by the presentation, the presentation
itself is responsible for the data units to be played back at a correct interval, enforcing
the intra-media synchronization.

The stream layer operates on continuous media streams, as well as on groups of
media streams. Typical operations invoked by an presentation are for example start
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Figure 9.1: Four-layer reference model

and stop a stream or a group of stream. The object layer operates on all types of
media and hides the difference between the time-independent and time-dependent
media. At the specification layer, the spacial and timing relations between the objects
provided by the object layer are defined, such as a video object to be presented in
parallel with an audio object, and with a sequence of subtitle text objects. Spatial
relations such as a “picture in picture” presentation are also defined in this layer, but
the spatial relations are not going to be covered here.

Two types of temporal media synchronization are distinguished in multimedia
applications: inter-media and intra-media synchronization. The first refers to
synchronization among media streams (e.g. video and audio in lip-synchronization),
while the second refers to synchronization within a single stream (e.g. video frames
to be presented in synchronization with time intervals for continuous playing back at
specified frame rate).

For interactive plays, this reference model is adapted to three layers of content
element, action and script (figure 9.1(b)), in which the content element layer contains
both the stream layer and the media layer in figure 9.1(a).

In the content element layer, a content element encapsulates its internal synchro-
nization mechanisms to provide proper synchronization behavior in content element
time for the action layer. The concept of content element is more general than the
concept of media objects. A content element can be a composite media object, for
example a movie clip with internally synchronized video and audio streams, hence
it may cover both the media layer and the stream layer in the reference model.
Let’s leave the internal synchronization issues of a content element to the rendering
platform and focus on the inter-media or inter-action synchronization.

The action layer wraps the content element up and hides the differences between
time-dependent and time-independent elements, providing the script layer with
unified action services, for example, preparing, starting and stopping the content
element at a given time. The time can be specified in the script in a relative manner
in script time, and during the performance, the time should be first mapped to the
adapted time according to the configurations of the system, and then mapped to the
absolute action time for scheduling the action.
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The script layer specifies the timing relations among the actions using timing
models. These models use relative time instants, or interval based relations. Some
may use both. During the performance, no matter whether the timing model is
instant or interval based, the actual action time of these actions must comply with
the relations defined in the script.

9.2 Timing models

In multimedia systems, two representations of temporal relations can be indicated.
These are based on instants and intervals. A time instant is a zero-length moment in
time, such as “9:30am”. By contrast, a time interval is defined by two time instants
and therefore, their duration (e.g., “10s” or “9:30am to 9:40am”).

9.2.1 Instant based models

Let’s start from the concept of time instants as an axiom for further discussions: an
instant is a durationless moment in time, or more precisely, an instant is a piece of
time whose begin and end are not distinct in the context of the consideration.

The idea that time instants should be the primitives in a temporal relations has
been influenced by Physics. In Physics it is a common practice to model time as an
unbounded, ordered continuum of instants that is structured as the set of the real
numbers (Whitrow, 1980), and hence has an unbounded dense linear relation (i.e.,
<). Not only researchers from the Artificial Intelligence (AI) community are in this
tradition (Galton, 1990; McDermott, 1982; Shoham, 1987), but also researchers in
temporal databases use this assumption, as it is, for example, described by McKenzie
and Snodgrass (1991). There is a powerful argument for this view, that is, instants are
important for modeling continuous change (Galton, 1990; McDermott, 1982). For
example, if one throws a ball into the air, then a point of its trajectory depends on an
instant. In order to describe the dynamics of classical mechanics, one needs concepts
such as derivatives, and hence the theory of real numbers (Newton’s F = m d2x

dt2 ). In
addition, if intervals become necessary, they can be introduced as ordered pairs of
instants, as it is done, for example, in (Ladkin, 1987; McDermott, 1982). One may
refer to (Broxvall and Jonsson, 1999) for further considerations of the instant based
models over partially ordered (e.g., branching) time.

Let’s consider the basics of instant based models. Formally, an instant based
model is defined over a structure 〈T,≺〉, where T denotes a non-empty set of instants,
and ≺ defines the ordering relation between two instances.

A temporal structure may or may not have on or more of the following properties:
Discreteness: An instant is discrete in a temporal structure, if, along any path in the

structure which includes that instant, the instant has a “closest” instant on each
side, unless it has no instants on that side:

∀ t, t1 : T • t ≺ t1 ⇒ (∃ t2 : T • t ≺ t2 ∧ (∀ t3 : T • ¬ (t ≺ t3 ≺ t2)))
∀ t, t1 : T • t1 ≺ t⇒ (∃ t2 : T • t2 ≺ t ∧ (∀ t3 : T • ¬ (t2 ≺ t3 ≺ t)))

A temporal structure is discrete if all instants in it are discrete.
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Density: A temporal structure is dense if between any two comparable instants there
is a third instant:

∀ t, t1 : T • t ≺ t1 ⇒ ∃ t2 : T • t ≺ t2 ≺ t1.

In particular, density is valid if instants are modeled as real numbers (R) or
rational numbers (Q), but not if as integers (Z) or natural numbers (N).

Ordering: The relation ≺ constrains the set T with a strict partial order if it satisfies
the properties of

∀ t : T • ¬ (t ≺ t) [ Irreflective]
∀ t, t1, t2 : T • t ≺ t1 ∧ t1 ≺ t2 ⇒ t ≺ t2 [ Transitive]
∀ t, t1 : T • t ≺ t1 ⇒ ¬ (t1 ≺ t). [ Antisymmetric]

Linearity: may be imposed to time to force instants to be arranged in a single line:

∀ t, t1 : T • t ≺ t1 ∨ t = t1 ∨ t1 ≺ t

that is, in a linear temporal structure, two instants must be either before or after
each other, or they are simultaneous.

Unboundedness: A temporal structure is unbounded if

@t1, t2 : T • ∀ t : T • t1 � t � t2.

Otherwise the structure is either left-bounded such that nothing has happened
before a starting point:

∃ begin : T • ∀ t : T • begin � t,

or right-bounded such that there is an end towards future:

∃ end : T • ∀ t : T • t � end.

Different time structures have been used. In chapter 4, time is modeled as rational
numbers2 (Q) with which the authors of the script may specify the begin and end time
and the duration of an action in various date and time formats (e.g. 1000.0000002ms).
The begin time can be relatively negative, so that the action will start from a point in
the middle of its content element time (e.g. begin = "a.click − 1000.0000002ms"). The
time there is dense, linear and unbounded, which conveniently reflects our normal
perception of time. However in chapter 6, T is modeled as N that is discrete, linear
and left-bounded. The value of T there starts from a fixed point in time, progressively
advancing in discrete steps, which fits better the internal representation of the clock
time in the processing unit. Although time structures in the specification script
and the runtime scheduling engine are different, the mapping between these two
structures is straightforward andmost of the platforms provide a convenient mapping
Application Programming Interface (API).

Next two instant based timing models, timeline and temporal point net, are
presented as examples. They are about ways of specifying temporal relations between
content element time instants and script time instants3.

2Par abus de language these numbers are called “real” numbers as well.
3Action time (runtime) instants are linearly ordered anyhow, of course.
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Timeline

A common model employing instant-based temporal intervals is the timeline, in
which instants, representing the temporal boundaries of media objects, are ordered
along a time axis.

Let T be a set of instants, and < a strict total order on the set T, then for any two
temporal instants, represented by t1 and t2, there are three possible temporal relations
in a linear structure:

• t1 < t2 (t1 before t2)

• t1 = t2 (t1 simultaneous to t2)

• t1 > t2 (t1 after t2)

These are the three basic relations between time instants which allow for express-
ing eight disjunctive relations between time instants; for example, the disjunction
of < and =, denoted by 6, or the disjunction of < and >, denoted by 6=, are such
disjunctive relations. These relations correspond to different degrees of knowledge
on the involved pairs of instants.

Many projects and products use timeline based time models. In the early stage of
this project, the StoryML conceptual model (see chapter 3) uses an implicit timeline
to specify when storylines and user interactions should start and stop. In the Athena
Muse project (Hodges, Sasnett, and Ackerman, 1989), a global timeline is used to
attach all media objects to a time axis that represents an abstraction of real-time.
With some modifications, this kind of strategy is also used in the model of active
media (Tsichritzis, Gibbs, and Dami, 1991), Apple QuickTime (Towner, 1999) and
Macromedia Director (Persidsky and Schaeffer, 2003). A world time is maintained,
which is accessible to all objects, each object can map this world time to its local time
and moves along its local time axis. In presentation time, re-synchronization with the
world time is required when the difference between world time and local time exceeds
a given limit.

The project Athena (Hodges et al., 1989) and the HyTime standard (Erfle, 1994;
Goldfarb, 1991) use multiple virtual time axes, a generalized version of the timeline
approach. With this approach, it is possible to use several virtual axes to create
a virtual coordinate space and specify the temporal relations with user-defined
measurement units.

Timeline based models relate any two instants by one of the instant relations <
,=, >. Owing to the fact that all instants are totally ordered along the time axis, it
is impossible not to define a relation between any two events. Since the relations
can only be defined based on fixed instants of time, problems arise if the objects
have unpredictable durations. This restriction makes the model somewhat inflexible
(which is precisely what was found out in the evaluation of StoryML). In other words:
the timeline model forces the author to commit the sin of over-specification.

On the other hand, the timeline approach allows a very good abstraction from the
internal structure of the objects and the nested structures. It is also very intuitive and
easy to use in authoring situations.
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Temporal point net

Temporal point nets used in the Firefly multimedia document system (Buchanan and
Zellweger, 1993, 2005, 1992) are an instant-based approach that defines relations
between interval end points for temporal composition (figure 9.2). Temporal
constraints are ordering relations that can be placed between pairs of events in one
or more media items. The relations are based on the events which establish temporal
equalities (=) and inequalities (<,>) between instants (interval end points) in a
presentation. For example in figure 9.2, the object Audio Amust start simultaneously
when the Image object ends, and when Audio A ends, the object Audio Bmust start at
the same time. Audio B should start earlier than the Video object.

In contrast to the timeline approach it is no problem to let the temporal relation
between two instants be unspecified. This makes the temporal net more flexible than
the timeline (Buchanan and Zellweger, 1993, 2005; Wahl and Rothermel, 1994).

However, the use of temporal point nets is less intuitive than the timeline
approach and it may result in complicated, unstructured graphs. In addition to that,
their use may lead to an inconsistent specification in which contradictory conditions
are specified for intervals. In this case, a verification algorithm (called sometimes a
temporal formatter) is needed to check the consistency.

Image

Audio A

Audio B

Video

simultaneous to (=)

simultaneous to (=)

before (<)

Figure 9.2: Temporal point net

9.2.2 Interval based models

Before discussing the interval based time models, let’s first introduce a definition of
time interval:

Let T be a partially ordered set, 6 be the partial order on the set T, and t1, t2 be
any two elements (time instants) of T such that t1 6 t2. The set {x | t1 6 x 6 t2} is
called an interval of T denoted by [t1, t2].

Any interval [a, b] has the following properties:

• [t1, t2] = [t3, t4] ⇒ t1 = t3 ∧ t2 = t4

• t ∈ [t1, t2] ∧ [t1, t2] ⊂ [t3, t4] ⇒ t ∈ [t3, t4]

• #([t1, t2]) > 1
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Temporal intervals are defined by their end points (here represented by t1 and t2).
Whenever T is embedded in N, Q, or R, the length of such a temporal interval is
t2 − t1. Given an interval a, let’s write δa to denote its length.

Allen (1983) introduces the thirteen basic relations that can exist between temporal
intervals and these relations are further discussed by Allen and Hayes (1990), and
Allen and Ferguson (1994). Figure 9.3 depicts seven of these relations based on
a timeline. The remaining six can be constructed by taking the inverse of each
relation except “equals” (Little, 1995; Little and Ghafoor, 1993). For example, the
inverse relation of “before” is “after (or “before−1”), where “a before b” is the same
as “b after a”. Temporal intervals can be used to model multimedia presentations
by letting each interval represent the presentation time of some multimedia content
element, such as a still image or an audio segment.

      a

a

b

a before b

a meets b

a overlaps b

a during b

a

a

a

a

a

time

a starts b

a finishes b

a equals b

Figure 9.3: Temporal Relations

Both language-based (including scripting) and flow graph-based approaches have
been proposed for abstracting the interval relations via a representational scheme.
Among others, Object Composition Petri Net (OCPN) is an example of the graph-
based approach, while SMIL is an example of the scripting approach.

Object Composition Petri Net

Petri nets are commonly used to model concurrent systems. Extensions have
been made to Petri nets to improve their functionality in representing multimedia
synchronization. Little and Ghafoor (1990) propose Object Composition Petri Net
(OCPN), a formal specification and modeling technique, for multimedia composition
with respect to inter-media timing, based on the logic of temporal intervals and Timed
Petri Nets. It allows the specification of synchronization requirements of complex
structures of temporally related objects in a database, and the retrieval of media
elements from the constructed database in a manner which preserves the temporal
requirements of the initial specification.

A Petri net is a network of a set of transitions (bars), a set of places (circles), and a
set of directed arcs. OCPN augments the conventional Petri net model with values of
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time, as durations, and resource utilization on the places in the net. In OCPN, each
place (circle) in the net has a duration and represents the playback process of a media
item or a delay. Transitions (bars) represent synchronization, as usual.

Equipped with interval constraints, the OCPN model has been proved capable of
specifying any arbitrary temporal relationship and it may be applied to both stored-
media applications and live media applications (Little and Ghafoor, 1991, 1990). It
can easily cover the 13 temporal relations – given any two atomic temporal intervals,
there exist an OCPN representation for their relationship in time (table 9.1).

Table 9.1: Temporal relations in OCPN

Temporal relation OCPN representation Interval constraints

a before b a bx δx 6= 0

ameets b a b

a overlaps b
a

bx
δx 6= 0 ∧ δa < δx + δb

a starts b
a

b
δa < δb

a during b
b

ax

δx 6= 0 ∧ δx + δa < δb

a finishes b
b

ax
δx 6= 0 ∧ δb = δx + δa

a equals b
a

b
δa = δb

The eXtended OCPN (XOCPN) (Woo, Qazi, and Ghafoor, 1994) can additionally
specify the resource management and communication functions in control places.
Prabhakaran and Raghavan (1993) suggest a Dynamic Timed Petri Nets model
which can be adopted by OCPN to facilitate modeling of multimedia synchronization
characteristics with dynamic user participation. Guan, Yu, and Yang (1998) propose
Prioritized Petri Net (P-net) and an enhanced version (EP-net) (Guan and Lim, 2002),
and apply them to distributed multimedia synchronization, using their version of
Distributed OCPN (DOCPN) model. Using the DOCPN model, operations among
distributed computer sites can be coordinated (Guan and Lim, 2002; Guan et al.,
1998; Shih, Keh, Deng, Yeh, and Huang, 2001), which is very interesting for the
purpose of synchronizing distributed actions.
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SMIL Timing Module

Often an interval based modeling uses only the parallel (equals) and sequential (meets)
relations out of the thirteen temporal relations. By restricting temporal composition
operations to these relations, most temporal interactions can be specified. This
approach has been used by Poggio et al. (1985) in the development of the Command
and Control Workstation Project (CCWS), by Postel et al. (1988) and Reynolds et al.
(1985) for grouping presentation elements under sequential and simultaneous property,
and by Ravindran and Steinmetz (1996) using AND-OR graphs and an occurs-after
relation to specify timing precedence. To completely represent the 13 temporal
relations, often a time object is introduced in these models to be inserted into the
vacant time interval between any disconnected objects. By introducing such a time
object, Fung and Pong (1994) prove that these 13 relations can be refined as two
parallel primitives starts with and end with, and a sequential primitive follow by.

SMIL is another example. The temporal relations in a SMIL document can be
defined using the SMIL timing and synchronization module (Ayars et al., 2005;
Rutledge, 2001), which in the following is described on a general level. The model
is based on the “meets” and “equals” relations. These relations represent sequential
and parallel playback of media items, respectively, and are represented by the SMIL
synchronization containers seq and par. Figure 9.4 shows a SMIL fragment and its
timeline interpretation (note that ref is a SMIL generic media reference).

<par>
< ref id="a" />
<seq>

< ref id="b" />
< ref id="c" />

</seq>
</par>

a

b c

par

seq

time

Figure 9.4: Timeline interpretation of a SMIL fragment

This type of temporal specification approach is also known as a hierarchical con-
trol flow-based specification (Bulterman and Hardman, 2005), as the synchronization
behavior can be seen as a flow of control through a hierarchical tree structure.

The SMIL timing and synchronization module is not limited to a basic hierarchi-
cal specification, however. Themodel is mademore expressive by the synchronization
attributes such as begin, dur and end which can be specified for each synchronization
element. The dur attribute specifies an explicit duration for a synchronization
element, begin and end are used to specify synchronization behavior for the end points
of an element. End point synchronization can be used, for example, to synchronize
the begin or end time of an element to some events in another element and to user
interaction events. Examples of such events are an media element e being started
for 5 seconds (“e.beginEvent + 5s”) and a button btn on the screen being pressed
(“btn.activateEvent”). The addition of end point based synchronization attributes
makes the SMIL timing and synchronization module a hybrid between an interval-
based and an instant-based model.

Other additional attributes such as endsync, repeatdur and repeatcount can be added
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to the synchronization elements. For example the attribute endsync that can be added
to a par container to control the implicit duration, as a function of the children. The
endsync attribute is particularly useful with children that have “unknown” duration.

It is not practical to list all SMIL timing and synchronization elements and
attributes here. But with the par and seq elements and the attribute begin, the timing
SMIL is already powerful enough to cover all thirteen temporal relations (table 9.2).

Table 9.2: Temporal relations in SMIL
Temporal relation SMIL specification Constraints

a before b

<seq>
< ref id="a" />
< ref id="b" begin="t" />

</seq>

t > 0

ameets b

<seq>
< ref id="a" />
< ref id="b" />

</seq>

a overlaps b

<par>
< ref id="a" />
< ref id="b" begin="t"/>

</par>

t > 0 ∧ a.dur < b.dur + t

a starts b

<par>
< ref id="a" />
< ref id="b" />

</par>

a.dur < b.dur

a during b

<par>
< ref id="a" begin="t"/>
< ref id="b" />

</par>

t > 0 ∧ t + a.dur < b.dur

a finishes b

<par>
< ref id="a" begin="t"/>
< ref id="b" />

</par>

t > 0 ∧ t + a.dur = b.dur

a equals b

<par>
< ref id="a" />
< ref id="b" />

</par>

a.dur = b.dur

Note that in table 9.2, the constraints can be enforced either implicitly by the
involved ref elements having the required duration, or explicitly by adding a dur
attribute to these elements. For example, “a starts b” can be specified explicitly in
SMIL as

<par >
< ref id="a" dur="δa" />
< ref id="b" dur="δb" />

</ par >

where δa < δb.
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9.2.3 Timing models for authoring and directing plays

Given that many timing models are available, it is necessary to decide which timing
model is to be used for authoring the plays and directing the performances.

Timeline based instant models use a time axis (or multiple time axes or time
branching) as the main method of structuring the temporal positioning of content
elements. This approach is often used in the editors for time-dependent and
composite content elements (for example MPEG-2 movies) where the start times and
the durations of the included items are explicitly available, and in principle can also
be manipulated directly.

However when the temporal characteristics of the time-dependency are not
completely known or can not be explicitly specified, timeline based models can hardly
handle conditional activations and asynchronous behavior, nor can they deal with
adaptive inter-media or inter-action constructions. For interactive and adaptive plays,
the timeline metaphor is not powerful enough for either authoring or directing.

Graph based models, including both instant and interval based graph models,
provide abstractions that incorporate powerful temporal compositions and allow
grouping and nesting these compositions to reflect complex narratives. Controlling
nodes and arcs can be added to the graphs such that the models can be flexible
enough to support arbitrary temporal structures. Graph based models are often
based on a formal mathematical model that can be easily implemented as internal
representations for scheduling the presentations, and in our case, directing the
performance.

Nevertheless, when graph based models are used for authoring, there is consid-
erable overhead in specifying all of the constraints associated with the presentation
states of the content elements, and the flexibility often results in a loss of focus for
the authors who are not good at, or less interested in formal specification and formal
analysis other than simply specifying the narrative paths.

Comparing the script based models to graph based models, for example the
SMIL timing and synchronization module in table 9.2 on the preceding page to
the OCPN model in table 9.1 on page 127, one may find that the script models
are essentially similar to the graph models in terms of their flexibility and their
expressiveness. The script models are likely to be more flexible due to the direct use of
a scripting language, so that the authors are not restricted to the actions supplied by an
authoring system for manipulating the timing model. However when more flexibility
is handed over to the authors, more structural inconsistency and more errors may
occur. Without further supporting tools, scripting is often a tedious and low-level
method for specifying a multimedia presentation.

In spite of the disadvantages of the script models, the most flexibility from
these models is needed for specifying complex narrative structures and detailed user
interactions in interactive plays. Let’s leave the problems of the tedious, error prone
scripting process to dedicated authoring tools, and concentrate only on interpreting
such a script model to an internal representation for scheduling.
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Many scripting languages are available for specifying multimedia presentations.
For example, Videobook timed scripts (Ogawa, Harada, and Kaneko, 1992) provide
hypertext-based nodes to present text, graphics and audio visual data synchronously
and control the data sequence along a timeline; Harmony hypertext scripts (Shimojo
et al., 1991) uses links to specify the timing relations between media nodes; Nsync
(Bailey et al., 1998) defines a declarative synchronization language that supports
the specification of synchronous and asynchronous timing relationships using con-
junctive and disjunctive operators based on branching timelines. Some scripting
languages are powerful and flexible enough for our purpose, however, it is preferred
to use a script language that is more open and extensible, and possibly supported
by open standards and tools. None of the aforementioned languages falls into this
category.

XML based languages fit this aim very well, and during the early phase of this
project, XML-based StoryML was designed, based on a timeline model to describe
timing relations. However as already found out, StoryML was only suitable for
linear or, at best, branching structures. The timeline based model was not powerful
enough for complex narratives. During the course of this project, SMIL as a W3C
recommendation for synchronized multimedia, especially for distributed multimedia
over the web, was gradually getting more acceptance and support from the industry.
The SMIL timing and synchronization module, as briefly depicted in this section, can
easily cover all the interval-based time relations, furthermore, its event and link model
supports user interactions and complex narrative structures, and works seamlessly
together with the timing model. Hence it was decided to extend SMIL for interactive
plays, including its timing and synchronization module as the basis for specifying
timing relations. This timing model was referred to as IPML timing model hereafter.

A timing engine is then needed for the director that takes the IPML timing
specification as input, schedules the specified actions and issues the scheduling
commands to the actors. W3C has a recommendation of complete Java bindings
for the SMIL 1.0 DOM (Le Hégaret and Schmitz, 2000). Its object-oriented design
can be used as the basis for interpreting a IPML script into an object-oriented
representation. Nevertheless, it is just a static representation of the hierarchical
document structure and is far from a timing engine. Since the IPML timing
model is basically interval based, and the graph based formal models can be better
representations for scheduling the presentations, let’s develop a timing engine based
on a graph based interval model. The general notion of timed Peri nets, especially
the OCPN model, have been explored extensively in the research literature, which
provides a solid basis, and in practice, many examples to start from. However, the
OCPN model also has limitations in dealing with interaction events and network
delays.

The next section starts from the timed Petri nets and the OCPN model, investi-
gates their limitations, and proposes new model for the IPML director.
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9.3 Action Synchronization Engine

Before the synchronization engine is proposed, let’s first have a look at the basic
concepts of Petri nets and OCPN.

9.3.1 Petri nets

Petri nets were developed originally by Carl Adam Petri (Petri, 1962, 1966), and were
the subject of his dissertation Kommnunikation mit Automaten. Since then there
has been a steadily increasing interests in Petri nets because of their capability of
representing both concurrency and nondeterminacy (Best and Devillers, 1987). Thirty
years of theoretical and practical work and several thousand research papers prove that
Petri nets are one of the most useful means for modeling concurrent processes.

The Petri net is defined as a bipartite, directed graph G = (PL,TR,AR) where

PL = {pl1, pl2, . . . , pln}, where n > 0 [ places]
TR = {tr1, tr2, . . . , trm}, where m > 0 ∧ PL ∩ TR = ∅ [ transitions]
AR : I ∪O, where [ directed arcs]

I = PL↔ TR [ input arcs]
O = TR↔ PL. [ output arcs]

A marked Petri net GM = (PL,TR,AR,MA) includes a marking MA which
assigns tokens to each place in the net: MA : PL → N. MA is a total function that
maps places to natural numbers ({0, 1, 2, . . .}), which means a place can be marked
with one or more tokens, or no token at all. The behavior of the Petri net is governed
by a set of firing rules that allows the tokens to move from one place to another:

1. A transition is enabled when all the input places that are connected to it via an
input arc have at least one token;

2. Firing of a transition removes a token from each input place and puts a token
in all of its output places.

9.3.2 OCPN

For the simple Petri nets, there is no notion of processing time in either places
or transitions. The time from enabling a transition to firing is unspecified and
indeterminate. For a representation of the synchronization of multimedia entities,
Petri nets must be extended.

The OCPNmodel augments the conventional Petri net model with values of time,
as durations, and resource utilization on the places in the net. It considers the places
as media processing objects and the transitions as the points of synchronization. Each
place is associated with a duration, and all transitions occur instantaneously. The
places rather than transitions have two different states: active and inactive, respectively
indicated by locked and unlocked tokens.
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An OCPN is a 6-tuple, GOCPN = (PL,TR,AR,MA,DU,RE) where, additionally,

DU : PL→ R [ durations]
RE : PL→ {re1, re2, . . . , rek} where k > 0. [ resources]

This is the original definition of OCPN as given by Little and Ghafoor (1990).
Their firing rules are given in an informal way, which are summarized as follows:

1. When a token is added in a place, the place enters or remains in the active
state and the token is locked for the duration specified or needed for media
processing. When the place becomes inactive, or upon expiration of the
duration, the token becomes unlocked.

2. A transition is enabled if all its input places contain an unlocked token.

3. Upon firing, the transition removes a token from each of its input places and
adds a token to each of its output places.

One possible way to formalize this, is to let the marking MA : PL → N be
decomposed into a pair of markingsMAlocked : PL→ N andMAunlocked : PL→ N from
which the originalMA can be reconstructed asMA(p) = MAlocked(p) +MAlocked(p) for
p ∈ PL. An alternative would be to import the theory of colored Petri nets (Jensen,
1996). As far as known, Little and Ghafoor did not develop the formal definition
of OCPN. Here a pragmatic approach is taken and continued with their practical
definitions. Wherever possible it will be shown how the extensions, such as unlocking
tokens, can be understood as “syntactic sugar”4 for certain constructs in Petri nets.

If OCPN would be applied as the internal model for the synchronization engine,
the timing specification in the following example IPML script can be converted into
an OCPN as shown in figure 9.5 on the following page, where a play is cut into three
sequential segments. In first two segments, a video stream, an audio stream and a
robotic behavior need to be performed in parallel, assuming δv1 = δa1 > δr1 and
δv2 = δa2 > δr2 . In the last segment, the video stream v3 and the robotic behavior
r3 are started at the same time in parallel, presumably δv3 > δr3 . According to these
assumptions, although being separated into segments, the video streams v1, v2 and
v3 are expected to be played back continually without a break in between. The same
holds for the audio streams a1 and a2.

4The locking extension to the Petri nets is considered as syntactic sugar: for each place P, two places
Plocked and Punlocked are introduced with one transition T from Plocked to Punlocked. All incoming transitions to
P are incoming transitions to Plocked and all outgoing transitions of P depart from Punlocked. The transition
T can have one or more extra input places that belong to the player’s or timer’s presumed Petri net model
that provides a “ready token” to enable T :

P Plocked Punlocked

=

Syntactic sugar is a term coined by Peter J. Landin for additions to the syntax of a computer language that
do not affect its expressiveness but make it “sweeter” for humans to use. For example C’s “a[i]” notation is
syntactic sugar for “∗(a + i)”.
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<seq>
<par >

< action id="v1" src="intro .mpg" />
< action id="a1" src="background1.au" />
< action id="r1" src="attention .bhv" />

</ par >
<par >

< action id="v2" src="happystory.mpg" />
< action id="a2" src="background2.au" />
< action id="r2" src="happy_puppy.bhv" />

</ par >
<par >

< action id="v3" src="end.mpg" />
< action id="r3" src="quiet.bhv" />

</ par >
</seq>

v1

a1

r1

v2

r2

v3

a2

r3

tr1 tr2 tr3 tr4

Figure 9.5: OCPN for an IPML example

However OCPN is not yet powerful enough to cover all the timing models in
IPML. There are still a few problems that need to be solved, for example:

1. In figure 9.5, if a1 and r1 have finished performing but v1 is late due the
network overload and delay, transition tr2 can not be enabled until v1 finishes.
Because of this delay, the audio stream a2 can not be started even if its data has been
ready. Audio streams are more jitter sensitive than video streams. There should be no
perceivable break between the audio segments a1 and a2. Holding a2 too long after
finishing a1 will result in audio jitter hence unacceptable audio quality. On the other
hand, dropping a small portion of the video frames or having a small random delay
between video framesmay have aminor impact on the video quality that is perceivable
by human eyes. In IPML the solution in handling this situation is to use the endsync
to end the first par container when the audio stream a1 finishes, no matter whether
v1 and r1 have finished:

<par endsync="a1">
< action id="v1" src="intro .mpg" />
< action id="a1" src="background1.au" />
< action id="r1" src="attention .bhv" />

</ par >

The unfinished video frames in v1 will be dropped. In OCPN a corresponding
solution is to fire transition tr2 right after a1 is finished to maintain the audio quality
regardless the token status of v1 and r1. However OCPN does not allow this type of
transition – all the transitions can be enabled only after all its input places have an
unlocked token.
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2. OCPN needs to be extended to include places not only where the actors perform
the actions, but also where the director controls the actions. For example the time
values of the attributes of begin, end and dur can only be controlled outside the related
action places because these values are related to containing timing containers or other
action places. For example, the following IPML script requires the robotic behavior to
be started 5 seconds after its containing par starts:

<par endsync="a1">
< action id="v1" src="intro .mpg" />
< action id="a1" src="background1.au" />
< action id="r1" src="attention .bhv" begin="5s" />

</ par >

An extra place that holds for 5 seconds before r1 takes place is needed to complete the
semantics above.

3. OCPN requires the actions taken in the places to have an explicit or implicit
duration that should be determined when a place is activated. This results in
difficulties in modeling nondeterministic durations and interaction events that are
supported in IPML. As an example, values of begin and end attributes for the action
places and the timing containers par and seq can be interaction events or other state
change events from other actions or actors. How long these events will take to happen
and whether these events will happen at all depends on the user interaction. The
following change of the previous IPML example enables the robotic behavior r1 to
be started after 5 seconds, or whenever during the par element the user activates the
video v1 (for example, when the user clicks on the video presentation):

<par endsync="a1">
< action id="v1" src="intro .mpg" />
< action id="a1" src="background1.au" />
< action id="r1" src="attention .bhv" begin="5s; v1.activateEvent" />

</ par >

The OCPN model as is can not handle this type of nondeterministic behavior.
4. Some complicated synchronization features in IPML, such as restart, repeatDur

and repeatCount, allow more flexible and dynamic temporal relations that depend on
the runtime situations. It is not easy to produce the OCPN equivalences for these
features. For example, if an element is required to repeat for repeatCount times,
but within a total duration of repeatDur, the element in the OCPN structure may
be duplicated for repeatCount times and these duplications may then concatenated
together, each given a divided duration. However, if the repeatCount is a big number,
this approach might result in too many duplications hence a huge representation.

Several researchers have attempted to improve the expressiveness of OCPN and
address these problems. For example, Guan et al. (1998) propose Prioritized Petri Net
(P-net) and an enhanced version (EP-net) (Guan and Lim, 2002) to add priority to the
arcs in OCPN, and it can be used a solution for the endsync problem. However in an
object-oriented implementation of OCPN, arcs are more naturally to be implemented
as invocations and passing-message because they represent the movements of the
process control. Further in IPML, the attribute endsync of a par container refers to
one of its contained actions; it is more convenient to add priority to these actions
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when translating an IPML script into an OCPN representation. Yang and Huang
(1996) propose a Real-time Synchronization Model (RTSM) based on OCPN and the
idea of adding priorities to action places. These places are called “enforced places” –
once an enforced place gets unlocked, the transition following it will be immediately
fired regardless of the states of other places feeding this transition. This approach
is proven powerful enough to cover most of the temporal constructs in SMIL (Yang,
2001; Yang, Tien, and Wang, 2003).

Based on the OCPN, and the aforementioned observations and research, the
Action Synchronization Engine (ASE) is developed, which is to be presented next.

9.3.3 ASE

In short, the ASE is a runtime synchronization Engine that takes the timing and
synchronization relations defined in an IPML script as input, and creates an object-
oriented representation based on an extended version of OCPN.

An ASE model is a nine tuple that extends OCPN,

GASE = (PL,TR,AR,MA,DU,RE,PP,TC,CT),

where, additionally,

PP : PPL [ prority places, a subset of PL]
TC = {tc1, tc2, . . . , tcq} where q > 0 [ Run-time transition controllers]
CT : P(TR× TC × TR), [ TC controlled transition pairs]

and where the functions DU and RE are redefined as follows,

DU : PL→ {null} ∪ R [ durations]
RE : PL→ {null, re1, re2, . . . , rek} where k > 0. [ resources]

The inclusion of a null value in the ranges of the functions DU and RE means that
there are places without a pre-determined duration, and there are places not related
to any content resources.

The ASE model distinguishes priority places from other places. Special firing rules
will be used for these priority places to implement the IPML endsync semantics and
to cope with nondeterministic durations and interaction events. A priority place is
drawn as a circle in an ASE graph like other places, but using a special (thicker) circle
to emphasize its priority.

The added transition controllers TC make it possible to change the structure
between two transitions in run time. It may fire another linked transition instead
of the current enabled transition, which can be used to repeat or skip the structure
between the controlled transition pairs. The controller may use a counter to control
the number of repeat iterations, andmay add and remove timer places in the structure
to control the total duration for repeat. This mechanism is useful when dealing
with IPML restart, repeatCount and repeatDur semantics. In an ASE graph, a box
represents a transition controller, and dashed lines connect the controlled transition
pairs (figure 9.6 on the facing page).
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tr1 tr2

tc

...

Figure 9.6: Transition controller

As already mentioned, there are places that do not have a pre-determined
duration. The actual duration of these place can only be determined after the actions
at these places have been carried out. These places are called nondeterministic places:

NP = {pl : PL | DU(pl) = null}.
Non-deterministic places in an ASE graph are circles marked with a question mark.

Some nondeterministic places are not related to any content resources. These
places are used in an ASE model to represent the actions that need to be taken by the
engine itself to check certain conditions, to detect user interaction events, or simply
to block the process etc. These places are called auxiliary places:

AP = {pl : NP | RE(pl) = null}.
There are also places that do have a duration, but do not have a content element

attached to it. These places are used by the ASE model to include an arbitrary interval
to construct temporal relations. These places are called timer places:

TP = {pl : PL | DU(pl) 6= null ∧ RE(pl) = null}.
Timer places are indicated with a clock icon with the hands pointing to 9:00am. To

construct an ASE graph from an IPML script structurally, it is sometimes necessary to
connect two transitions. Since an arc can only be the link between a transition and a
place, a zero-duration timer place can be inserted to maintain the consistency. These
zero-duration timer places are called connecting places, indicated with a clock icon with
its hands pointing to 0:00pm, and marked with an anchor link.

Table 9.3 on the next page shows the graph representations of the different ASE
places and their priority versions. To show how an ASE would look like, the examples
from section 9.3.2 on page 134 and on page 135 are combined below. The temporal
structure in this example can be converted to the ASE model shown in figure 9.7 on
the following page.

<seq>
<par endsync="a1">

< action id="v1" src="intro .mpg" />
< action id="a1" src="background1.au" />
< action id="r1" src="attention .bhv" begin="5s; v1.activateEvent" />

</ par >
<par >

< action id="v2" src="happystory.mpg" />
< action id="a2" src="background2.au" />
< action id="r2" src="happy_puppy.bhv" />

</ par >
<par >

< action id="v3" src="end.mpg" />
< action id="r3" src="quiet.bhv" />

</ par >
</seq>
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Table 9.3: Places in ASE
Place Normal Priority

Normal

Nondeterministic ? ?

Timer

Connecting

tr1

v1

a1

r1

v2

r2

v3

a2

r3

tr2 tr3 tr4

?

5s

v1.activateEvent

Figure 9.7: An example of the ASE model

An IPML script wraps all the timing elements in a body element. To compile the
<body> ... </body> tag an “initial” place and a “final” place are added. The initial place
contains precisely one unlocked token, whereas the final place has no token.

Detailed firing rules of ASE are included in background material N. Background
material O describes how an IPML script can be translated to an ASE model.

9.3.4 Object-oriented implementation of ASE

The ASE in the IPML system is implemented in an object-orientedmanner (figure 9.8
on the next page): Places and transitions are objects with input and output references
that realize the arcs; transition enabling and firing are simply event-driven invoca-
tions. The Observer pattern can be used to implement the structure, where the
transitions observe the token states of the connected places. Transition controllers
are also objects with references to and from two related transitions. If the different
types of the places are omitted from figure 9.8, the remaining static structure is rather
simple. The dynamic behavior of these objects is driven by the firing rules and the
implementation of the dynamic behavior is straightforward. The remaining design
problem now is how to convert an IPML timing structure to an ASE model.

9.4 Get ready just in time

For an action to be immediately taken at the scheduled time, actors need to get ready
prior to that time. For media objects enough amount of data needs to be prefetched;
For robotic behaviors the mechanical system needs to be at a ready position for the
next move. Two extreme strategies could be adopted by the director. First, the director
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PriorityConnectingPlace
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Figure 9.8: Object-oriented implementation of ASE

informs all actors to get prepared for all possible actions before the performance is
started; second, the director never requests the actor to get ready before any action.
The first strategy guarantees the smooth transitions between actions, and manages
nondeterministic timing and user interaction well. However the cost is also obvious:
it may result in a long initial delay and for media objects, and every actor needs
a large buffer for prefetching all media objects in advance. The second strategy
minimizes the initial start delay and the buffer requirement, but every transition
between two actions will take time because the next action only starts to be prepared
after the previous one stops. Hence smooth transitions between action places are not
possible, unless the actions do not need to be prepared, which is rare in multimedia
presentations. The nondeterministic user interactions make the situation even worse
– Users may experience a long delay between their input actions and the system
reactions. A different approach is needed for the IPML system.

9.4.1 Just-in-time approach

The director in the IPML system uses a “just-in-time” approach, in which the action
preparation process is required to be completed just before the action time. With this
strategy, the director informs the actor to prepare an action before the action time with
the necessary preparation time taken into account. This strategy therefore requires
less use of data buffers and facilitates more efficient use of network bandwidth.

In an ideal situation, i.e. the action time of all actions can be determined in
advance, the start-preparation time for each action, that is, when an actor should start
preparing an action, can be calculated based on its playback time, its QoS request,
and the estimation of the available network bandwidth.
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However for an IPML performance, the accurate action time often can not be
determined before the performance takes place, because of the nondeterministic
action durations and user interaction events. The best an ASE can do, is to predict
the earliest action time for each action as if the nonmechanistic events would happen
at the earliest possible moments. This can be done before the performance starts,
as long as the ASE model has been established. During the performance, a dynamic
error compensation mechanism can be used to adjust the estimate of the action time
for each action and the start-reparation time as well.

9.4.2 Action time prediction

Once an ASE is converted and simplified from a given IPML, the director estimates
the earliest possible action time for each action in the ASE by first assigning the
duration of all nondeterministic places to zero and then traversing the ASE. The
action time of an action is the firing time of its starting transition. There are two
possible cases for a transition in the ASE: 1. it has no priority input place, or 2. it has
at least one priority input place. For case 1, the firing time of the transition is the firing
time of the preceding transition plus the maximum duration of the input places. For
case 2, the firing time of the transition is instead the preceding transition plus the
smaller one between the minimum duration of the priority places, and the maximum
duration of the non priority places. Note that for time independent actions, such as
presenting images and text, if the duration is not explicitly given, it is considered
nondeterministic and its duration is considered as zero for prediction. For time-
dependent actions, like presenting audio and video media objects, if the duration
is not defined explicitly, the duration of the place is the implicit duration of the object
if it can be determined from the server in advance.

During this traversal process of predicting the earliest possible firing time of
each transition, it is also necessary to deal with the transition controllers to get
more accurate values. The restart controller deals with events that could restart an
element during the active duration of the element, so the earliest case for its ending
transition would be that there is no restart at all. Thus, the restart controller is ignored
during prediction. The repeat controller deals with the repeatDur attribute as well as
the repeatCount attribute. The repeatDur attribute sets the duration of repeating an
element, so the firing time of the ending transition should be the end of the repeat
duration. The repeatCount attribute specifies the number of times to repeat, thus the
firing time of the ending transition is extended as many times as specified. If any of
them is is set to be “indefinite”, the duration is considered nondeterministic hence a
value of zero.

9.4.3 Dynamic adjustment

Obviously, the actual action time of every action will not be earlier than the prediction
made prior to the performance. The differences between the actual action time of the
actions that have already been taken and their predicted earliest times can be used
to adjust the predicted action time of the actions that have not yet been performed.
The predicted action time can then be updated for those yet to happen. The updated
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prediction of the action time can then be used to update the start-preparation time.
Note that start-preparation time should not be updated if the preparation request has
already been sent to the actor, since the actor may have already started preparation
and an ongoing preparation process should not be interrupted. Nevertheless an
ASE action time prediction with this dynamic adjustment mechanism does make
the predicted action time of later actions closer to the actual action time, hence seems
more intelligent than without.

9.5 Distributed time

Since they inhabit on different hardware platforms, actors may have time systems
that are different from the directors. In order to get everything synchronized, the
actors must use the director’s time, or at least agree on the time difference. A
simple approach to get actors have the same time as the director’s, is to use clock
synchronization mechanisms to synchronize the clocks of the underlying platforms.

9.5.1 Clock synchronization

An actor may perceive data skews due to asynchrony of its local clock with respect to
the clock of the director, which may arise due to network delays and/or drifts in the
clocks. In the absence of synchronized clocks, the time interval of an actor may have
drifted to a value bigger or smaller than that of the director.

Clocks can be synchronized using an asynchronous protocol between the trans-
port level entities in the presence of network delays compounded by clock drifts.
Most clock synchronization protocols require the entities to asynchronously exchange
their local clock values through the network and agree on a common clock value.
These protocols use knowledge of the network delays in reaching agreement. For
instance, the Network Time Protocol (NTP) requires the entities to receive their clock
values from a central time server that maintains a highly stable and accurate clock
and to correct the received clock values by offsetting the network delays. For clock
synchronization protocols to function correctly, it is desirable that the network delay
is deterministic, i.e., the degree of randomness in the delay is small and the average
delay does not change significantly during execution of synchronization protocol.
Accordingly, the transport protocol may create a deterministic channel with high loss
and delay sensitivity to exchange clock control information. Clock synchronization is
a complex topic of its own, and details of such protocols are outside the scope of this
thesis.

9.5.2 Software clocks

The actors are not the only ones who inhabit a hardware platform. There may exist
other hardware or software components sharing the same platform clock. Applying
clock synchronization mechanisms to the shared clock may result in unexpected
consequences on the components that are not under the supervision of the play
director but have other time critical tasks of their own.
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To avoid this side effect, the IPML system requires every actor to implement a
software clock. The actor’s clock is then synchronized with the director’s clock using
NTP according to the director’s time on a regular interval basis. During the update
interval, the actor’s clock ticks ahead according to the local platform time.

9.5.3 “Action!” delayed

The director issues action scheduling commands over the network to the actors.
“Action!” the director yells and expects the actor immediately starts the action. In real
performance, these directing commands travel at the speed of sound and will be heard
by the actor almost “immediately”. However in the IPML system, these commands
are not the only data traveling through the network. A command may need to be
cut into pieces, packaged and queued at the director’s side waiting for the network
service to move it over. Once the packages arrive at the actor’s side, they are again
put in the queue for the network service to retrieve them. Once retrieved, depending
on the network protocol, the data packages might need to be verified and confirmed
before the command is reassembled and handed over to the actor. All these take time.
Depending on the protocol and the bandwidth, it varies from few milliseconds to
hundreds of milliseconds, or even more. The command will eventually be heard late.
Since a particular network protocol is not assumed for transporting the commands, it
is necessary to handle the delay at the architecture level.

Several strategies are adopted in the IPML system. First of all, all scheduling
commands from the director are tagged with a time stamp that indicates when
exactly the command is issued. Upon receipt, the actor retrieves the time stamp
and compares it to its local software clock. Since the actor’s clock is synchronized
with the director’s clock, the traveling time of the command can be calculated. If the
command is not to start an action to present time-dependent content, the traveling
time of the command is ignored. Otherwise if the traveling time is bigger than a
QoS threshold, the actor will skip a fragment of time-dependent content that should
have been performed right after the command was issued and before the command is
received. Thus the distributed content elements can always be synchronized over the
network, at the price of a small portion of the content being dropped at the beginning.
If the network has enough bandwidth, the dropped content is hardly noticeable by the
user.

9.6 Concluding remarks

This chapter presented a framework to translate an IPML script to a runtime
scheduling engine, based on a formal approach that extends the Petri nets and OCPN.
How timing can be managed in a distributed setting was also discussed based on this
framework. Knowing that timing is a difficult issue, especially in a distributed setting,
this chapter did not try to cover all possible issues. For example, when scheduling the
content prefetching or preparation, the load of network bandwidth should be taken
into account and be balanced. How this can be done is out of the scope of this thesis,
but it is an important issue in a heavily loaded multimedia network.



CHAPTER10
Mapping

Whereas formal specification and verification have shown their value by improving
reliability and trustworthiness of traditional industrial systems, this chapter first
presents a contribution that was made by applying them to the field of distributed
theater play in an AmI context, to investigate the mapping problem in which
content requirements are to be satisfied using given performance resources. Broy’s
stream-based component framework is used to model content-related interfaces and
constraints in an elegant way. It combines the well-known notations of Z with an
underlying concurrency theory. It shows that not only verification issues can be
handled such as bandwidth and delay constraints, but also architecture-level issues
such as network structural content-type compatibilities. The formalization is used
as a theoretical framework and a starting point for the mapping problem in the
IPML system: an IPML script describes the requirements on the performance cast by
describing the actor types or the action content types, and these requirements need to
be mapped to real configurations of available actors in a home theater to form a real
performance cast, which may change during the action time because the actors may
leave and join the theater at any time.

10.1 Mapping requirements to resources1

One of the problems of presenting multimedia to distributed AmI environments is
the variety of such environments – think of how different people arrange their living
rooms. AmI environments are not the only places to have such a problem. This
has been a long-existing problem with regard to web browsers. In order to give the
same look-and-feel on a single web page to the users, the poor authors often have to
work very hard to use all kinds of tricks, and when this fails, write different versions
for different browsers. On the other hand, web authors are lucky – if they only
consider Internet Explorer, they will possibly cover 4/5 of the audience, and if they

1This section is based on a paper published in the proceedings of The 28th Annual International
Computer Software and Applications Conference (Feijs and Hu, 2004, COMPSAC 2004).
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are kind enough to consider Mozilla Firefox users too, they will almost cover them
all. However one can not assume that there are only Explorer-like living rooms or
Mozilla-like living rooms. They are different, in terms of available components and
connections. It is impossible to have one version to fit them all. Instead there should
be only one abstract presentation script for all living rooms. The script should then be
mapped to every room, to create the experience for end users as intended as possible.
Similar mapping problems are studied informally by Kray, Krüger, and Endres (2003).

This chapter first aims at the formalization of the mapping from content require-
ments to devices. Each mapping problem is defined by a set of content requirements
and a set of resources. The content requirements are abstract descriptions of the
content element as well as its requirements for the physical components and their
connections, including for example audiovisual players, robotic actors and lights.
These physical components are presentation resources in a distributed presentation
environment. Broy’s stream-based component framework (Broy, 1999) is employed.
The following issues should be addressed:

1. component interfaces for control and for events;
2. user interfaces: touch screens, switches and buttons;
3. throughput requirements and network delays;
4. embedding of presentation components into devices;
5. standardization of specifications.

(keeping the math away from the content producers).
The formalization will then serve as a helpful theoretical framework and a starting
point for the development of an automated mapper that can handle real action
requirements and real performance resources (actors and channels) in an IPML play.

The mapping is to find the presentation resources for a set of content require-
ments so that the content element is properly presented. In a typical implementation
a mapping is a process that at runtime deals with control and events, and that
has access to a number of reserved communication and presentation resources, for
example channels (chapter 7) and actors (chapter 8) in the IPML architecture. A
distributed action is built by a local action service (also a factory, see section 6.3 on
page 73) of the actor. This chapter adopts a pragmatic view, looking at the hardware
resources such as presentation devices and network connections instead of software
architectural abstractions such as actors and channels.

10.1.1 Preliminaries

To get started a few simple content requirements are considered:
• high-resolution video presentation
• low-resolution video presentation
• dancing behavior
• up-down interactor

which have to be obtained from the following resources:
• cable: upc cable 801(10Mb/s)
• the sign: www.clips.com/the sign.mpg (10Kb/s)
• happy puppy: www.dance.com/happy puppy.bhv (1Kb/s)
• updown: /interactors/updown.exe (1b/s).
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To model the content and connection requirements, the approach of Broy (Broy,
1999) based on timed streams is followed. Some additional drawing conventions
are used, which is derived from ADL Darwin (Eixelsberger and Gall, 1998; Feijs and
Qian, 2002), and the object oriented view on channels (see figure 7.10 on page 98).

F

I

...

O

is used instead of F

I

...

O

(Broy, 1999, p.7).

As discussed in chapter 8, in an interactive system, it is necessary to distinguish
user interface from streaming channels. For this the convention introduced in
chapter 8 on page 104 is used, that is, output channels � modeling real, physical
presentations such as sounds, video frames and robotic movements, and input
channels � modeling the components with which the user may interact with the
system, such as a GUI interface on a screen and physical buttons on a remote control.

Broy demands that a set S of types be given. Let’s put

S = {PAL,MPG,DBH, IBH,R}

for PAL streams, MPEG streams, Dancing BeHavior, Interaction BeHavior and
“things in the Real world”(for example, buttons, screens and robots).

In Broy’s approach there is a discrete time frame representing time as an infinite
chain of time intervals of equal finite duration. Let’s take 1 second for that duration.
This allows the specification to formally represent the facts for example that there are
25 video frames per second in a high-resolution video stream and that each frame
takes a number of bits.

Let’s assume the functions on data:

bits : PAL→{0, 1}∗ ... also forMPG,DBH
pr : PAL→R
pr : MPG→R
pr : DBH→R
pr : IBH→R (pr for presentation).

and lifted versions of pr are abtained at timed-stream level:

pr′ : PAL∗→R∗ by (pr′(p)).i = pr(p.i)
pr′′ : (PAL∗)∞→(R∗)∞ by (pr′′(x)).t = pr′(x.t)

and so on. The formal model has some structure of its own (figure 10.1).
In order to map this, devices and connections must be assumed. Figure 10.2 on

the next page shows a possible configuration with the following devices:
• STB: set-top box;
• modem: internet modem;
• hi res&PIP: high-resolution monitor with picture-in-picture function;
• lo res: low-resolution (lo res) monitor;
• level2 robot: “level-2” robot;
• RC: remote control for the low-resolution monitor
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Figure 10.1: Formal model structure
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Figure 10.2: A possible configuration

and the following connections:
• STB−modem 100b/s duplex;
• STB−hi res 100Mb/s duplex;
• modem−lo res 1Mb/s duplex;
• modem−robot 10Kb/s duplex;
• RC−lo res 100b/s duplex.
There are two possible ways of presenting the dancing behavior: either by an

animated character on the PIP of the hi res screen, or by the physical robot together
with the RC providing user input. But the STB−modem bandwidth is not enough
for the PIP to do it. So the robot must dance and the RC must provide the up-down
interaction.

10.1.2 Specification

Some abbreviations are needed. For timed stream z and n1, n2 ∈ N,

rate(z, n1, n2) == ∀ t : N\{0} • #(z.t) = n1

∧ ∀ i : N • 0 < i 6 #(z.t) ⇒ #bits(z.t.i) = n2

with the intuition that e.g. rate(z, 100,100K) means that 100 frames fit into once
second and that 100K bits go into each frame (figure 10.3 on the facing page).
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Figure 10.3: rate(z, 100, 100K)

For timed streams x and x′, and ∆ ∈ N,

delay(x, x′,∆) == ∀ t : N\{0} • x.t = x′.(t + ∆)

and for m ∈ N,

maxdelay(x, x′,m) == ∃∆ : N • ∆ < m ∧ delay(x, x′,∆).

The rate information is put into the source devices S1,S2,S3 and the sink S4.

S1

in cable : PAL
out z : PAL

z = cable
rate(z, 100,100K)

S2

in the sign : MPG
out z : MPG

z = the sign
rate(z, 2, 5K)

S3

in happy puppy :
DBH

out z : DBH

z = happy puppy
rate(z, 10, 100)

S4

in z : IBH
out updown : IBH

z = updown
rate(z, 1, 1)

The relation between media formats and the real world is described in P1, ...,P4.

P1

in w : PAL
out screen : R

screen = pr′′(w)

P2

in w : MPG
out screen′ : R

screen′ = pr′′(w)

P3

in w : DBH
out moving : R

moving = pr′′(w)

P4

in button : R
out w : IBH

button = pr′′(w)
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Matters of delay are modeled in the channels.

C1

in z : PAL
out w : PAL

maxdelay(z,w, 2)

C2

in z : MPG
out w : MPG

maxdelay(z,w, 3)

C3

in z : DBH
out w : DBH

maxdelay(z,w, 4)

C4

in z : IBH
out w : IBH

maxdelay(z,w, 4)

Finally the whole system is specified by:

SYSTEM = (S1 ◦ C1 ◦ P1) \ {z,w}
‖ (S2 ◦ C2 ◦ P2) \ {z,w}
‖ (S3 ◦ C3 ◦ P3) \ {z,w}
‖ (P4 ◦ C4 ◦ S4) \ {z,w}

which has a syntactic interface of (I,O), where

I = {cable, the sign, happy puppy, button}
O = {screen, screen′,moving, updown}.

10.1.3 Presentation resources

The next step is to formalize the presentation resources, i.e. the components and the
network connections. Let’s assume that the components cause delays and that the
connections give rise to bandwidth restrictions. The structure of the resulting model
is shown in figure 10.4 on the next page. Clearly renaming will be needed later, for
example, [the sign/url1] (for modem) and [cable/channel] (for STB).

Somehow the components must be configured to perform the required routing
of streams. Although the current mapping-example does not require it, in general a
component must be able to combine two incoming streams and put them on a single
output port, or conversely, split what comes in to produce separate outgoing streams.
In other words, some components must contain a switch.

A component containing a switch must have an extra channel of a special type, a
control channel, accepting so-called commands, from a set C. So from now on,

S = {PAL,MPG,DBH, IBH,R, C}.

To get some experience in modeling switches, let’s try a simplified component,
the Simple Switch SS:

SS
x
y
z

u (x, y, z : DBH)
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Figure 10.4: Structure of the resource model

Any selection from x, y and z can be combined and offered on u, provided the
rates fit. To adapt to the rate of u (assumed to be fixed), dummy data must be stuffed.

Let’s assume the existence of disjoint copies of the set DBH, which are denoted
as DBH1, DBH2, etc. Let’s also assume conversion functions d1 : DBH → DBH1,
d2 : DBH → DBH2, etc. and the corresponding inverses, e.g. d−1

1 : DBH1 → DBH.
They give rise to lifted versions, e.g. d′1 : DBH∗ → DBH∗

1 . These assumptions allow
the specification to describe streams being merged, e.g. x and y merged into u:

u©CDBH1 = d′′1 (x) ∧ u©CDBH2 = d′′2 (y).

In other words, the mechanism of disjoint copies is used to model tagging of sub-
streams conveniently in an abstract way. (In Broy’s theory, S©C x means the stream
obtained from x by deleting all its messages that are not elements of the set S.)

Let’s introduce abbreviations:

maxrate(x, n) == ∀ t : N\{0} •
#(x.t)∑
i=1

#bits(x.t.i) < n

maxrate(x, y, n) == ∀ t : N\{0} •
#(x.t)∑
i=1

#bits(x.t.i) +
#(y.t)∑
i=1

#bits(y.t.i) < n

Although a real network connection carries bits, a more abstract model to reflect
the general-purpose nature of connections can be used:

B = (
⋃

i=0,1,2...

DBHi) ∪ (
⋃

i=0,1,2...

PALi)∪etc. (all data types used)

where DBH0 , DBH (So this can be used for the simple case where tagging is not
really needed).
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SS
in x, y, z : DBH
in s : C
out u : B

s.1.1 = xy2u⇒
maxrate(x, y, 100)
∧ delay(d′1(x), u©CDBH1,∆SS) ∧ delay(d′2(x), u©CDBH2,∆SS)

s.1.1 = yx2u⇒
maxrate(x, y, 100)
∧ delay(d′2(x), u©CDBH2,∆SS) ∧ delay(d′1(x), u©CDBH1,∆SS)

s.1.1 = x2u⇒
maxrate(x, 100) ∧ delay(d′1(x), u©CDBH1,∆SS)

etc. (y2u, z2u, xz2u, ...)

Based this example, let’s consider the real components, assuming the real delay
occurs in the components as show in the following table. This means that a constraint
such as delay(x, u,∆SS) has to be rewritten as delay(d′′1 (x), u©CDBH1, ∆SS). Let’s
assume the delay is fixed, independent of the load and the precise routing. Otherwise,
more sophisticated schemes can be devised if necessary. Note that ©C ′ is the lifted
version of ©C . The rate constraints are modeled as if they belong to the input ports.

component delay value

STB ∆STB 1
modem ∆modem 1
hi res ∆hi res 1
lo res ∆lo res 1
level2 robot ∆level2 robot 0
RC ∆RC 0

The presentation resources are then specified as follows.

STB :

control

exec
STB

channel u

x

vy

STB
in channel : PAL
in control : C
in x, y : B
out exec : IBH
out u, v : B
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control.1.1 = channel2v⇒
maxrate(channel, 100M) ∧ delay(channel, v©CPAL,∆STB)

control.1.1 = x2exec ⇒
maxrate(x,100K) ∧ delay(x©CDBH, exec,∆STB)

control.1.1 = channel2v x2exec ⇒
maxrate(channel, 100M) ∧ maxrate(x,100K)
∧ delay(channel, v©CPAL,∆STB)
∧ delay(x©CDBH, exec,∆STB)

etc.

hi res&PIP: hi_res
&PIP

screen

PIP
control

u x

hi res&PIP
in x : B
in control : C
out u : B
out screen,PIP : R

control.1.1 = x2screen⇒
maxrate(x, 100M)
∧ delay(pr′′(x©CPAL), screen,∆hi res&PIP)

control.1.1 = x2screen PIP ⇒
maxrate(x, 100M)
∧ delay(pr′′(x©CPAL), screen,∆hi res&PIP)
∧ delay(pr′′(x©CDBH),PIP,∆hi res&PIP)

etc.

RC:
RC

u x

buttoncontrol

RC
in x : B
in control : C
in button : R
out u : B

control.1.1 = button2u⇒
maxrate(u, 100) ∧ delay(button, pr′′(u©C IBH),∆RC)
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modem: controlmodem

url1 url2 url3

x
u

y v z w

modem
in url1, url2, url3, x, y, z : B
in control : C
out u, v,w : B

control.1.1 = url12v⇒
maxrate(url1,56K) ∧ delay(url1, v,∆modem)

control.1.1 = z2u⇒
maxrate(z, 1M) ∧ delay(z, u,∆modem)

control.1.1 = url22w ⇒
maxrate(url2,56K) ∧ delay(url2,w,∆modem)

etc.

level2 robot: moving

feeling

level2

robot

u x

control

level2 robot
in x : B
in feeling : R
in control : C
out moving : R
out u : B

control.1.1 = x2moving ⇒
maxrate(x, 10K) ∧ delay(pr′′(x©CDBH),moving,∆level2 robot)

control.1.1 = feeling2u⇒
maxrate(u, 10K) ∧ delay(feeling, pr′′(u©C IBH),∆level2 robot)

control.1.1 = x2moving feeling2u⇒
maxrate(x, 10K) ∧ maxrate(u, 10K)
∧ delay(pr′′(x©CDBH),moving,∆level2 robot)
∧ delay(feeling, pr′′(u©C IBH),∆level2 robot)

lo res: screencontrol lo_res

u x

y v
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lo res
in x, y : B
in control : C
out u, v : B
out screen : R

control.1.1 = x2screen⇒
maxrate(x, 1M) ∧ delay(pr′′(x©CMPG), screen,∆lo res)

control.1.1 = y2u⇒
maxrate(y, 100) ∧ delay(y, u,∆lo res)

control.1.1 = x2screen y2u⇒
maxrate(x, 1M) ∧ maxrate(y, 100)
∧ delay(pr′′(x©CMPG), screen,∆lo res)
∧ delay(y, u,∆lo res)

etc.

10.1.4 Mapping

Next a mapping is proposed. Abstractly, a mapping is a set of paths through a given
network, one path for each of the four chains specified in SYSTEM. At a concrete
level, the paths are established by feeding appropriate switching commands into STB,
modem and lo res. In general there is a freedom in choosing these paths, for example
if alternative routing through the network exists. Even the choice of which screen
or interactive input is to be used is not a priori fixed. The four paths are shown in
figure 10.5 on the following page. In an informal way it is easy to check that the delay
and bandwidth constraints are not violated and the mapping is feasible.

To formalize the connections renaming is used, adapting port names to “wire
names”. The wire names are also shown in figure 10.5 on the next page. Note that
w4a, w4b and w4c together form a path from RC via lo res and modem to STB. The
other wire names are not used. Unused ports must be hidden and ports that go to the
external world must be renamed.

STB′ = STB[cable/channel, updown/exec,w4c/x,w1/v]
� control : channel2v x2exec \ (control, x, y)

hi res&PIP′ = hi res&PIP[w1/x] � control : x2screen \ (control, u,PIP)

RC′ = RC[w4a/u] � control : button2u \ (control, x)
lo res′ = lo res[w4a/y,w4b/u,w2/x, screen′/screen]

� control : x2screen y2u \ (control, v)
modem′ = modem[happy puppy/url1, the sign/url2,w4c/u,w3/v,w4b/z,w2/w]

� control : url12v url22w z2u \ (control, url3)

level2 robot′ = level2 robot[w3/x] � control : x2moving \ (control, u, feeling)

Finally the whole system implementation is described by

SYSTEM′ = (STB′ ⊗ hi res&PIP′ ⊗ RC′ ⊗ lo res′ ⊗modem′ ⊗ level2 robot′)
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Figure 10.5: Four paths and “wire names”

which has the syntactic interface (I′,O′), where

I′ = {cable, the sign, happy puppy, button}
O′ = {screen, screen′,moving, updown}.

The next questions is: how to express the formal correctness of the implementa-
tion? Background material P includes a correctness proof of the proposed mapping.

10.1.5 Discussion

The case study shows how Broy’s framework can deal with special controls and
events at an abstract level and with real-world interfaces. It can also deal with
bandwidth requirements and network delays very well. The case study does not have a
sophisticated performance model, but it is plausible that certain models can be made
using the same modeling style (for example if the delay is a function of the bit rate).

The case study shows one specification and one configuration of presentation
resources. Abstractly, the mapping between the two is a set of paths through the
network. Concretely, a mapping is a set of control commands, to be given to those
components that have switching capabilities. Maximal rate and delay requirements
can be checked formally, although the calculations are not surprising. Media types
are described by sets such as PAL andMPG, this implies that type compatibilities are
handled formally too.
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The model created focuses on the stream-based aspects; in this type of distributed
systems these aspects are most important at the architectural level. At a protocol
level, it is expected that reactive behavior is most important, and complementary state-
machine based models could be used (Ulrich and König, 1997).

The following research questions remain as options for future research: 1. How
to model dynamic aspects such as changing configurations and servers that build
presentations according to the “factory” paradigm; 2. How to scale-up the approach
when more and more technicalities have to be modeled (while keeping the math away
from media developers); 3. How to specify the general class of “mapping problems”
(instead of a single instance, as it was done now).

10.2 IPML mapping

As learnt from the formal study on the mapping issues in the previous section,
a mapping process is a set of controlling commands, to be sent through control
channels to the components that are capable of copying and combining streams
from input channels to output channels. All the actors in the IPML system are
all connected through channels in a PAC hierarchy and controlling commands
can be sent though these connecting channels (see chapter 8). Incorporating the
Simple Switch mechanism in the actors for copying and combining streams is also
straightforward. This section first show how this can be done, then briefly presents
the dynamic mapping in IPML system, which was not yet covered by the formal study
in the previous section.

10.2.1 Implementing the Simple Switch

Since the Channel patterns (see chapter 7 on page 77) are applied in the IPML system
to implement the communication channels, the switch mechanism proposed in the
previous section can be easily implemented. Let’s take the Streaming Channel pattern
as an example. Suppose an actor needs to combine input streams and send the
combined data stream to a output channel c through a proxy (ProxyStreamConsumer)
psc, the actor may use a output (Streamsupplier) u to connect to c. The output port u
can be implemented as an object of the class SimpleSwitch as follows:

SimpleSwitch
�(Push,DisconnectStreamConsumer,DisconnectStreamSupplier)
SteamConsumer,StreamSupplier

p : ProxyStreamConsumer

Push =̂ p.Push
DisconnectStreamConsumer =̂ [ ]
DisconnectStreamSupplier =̂ [ ]

where u.p = psc. Note that a SimpleSwitch object can act as not only an output
port (StreamSupplier), but at the same time an input port (StreamConsumer). If two
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input streams from two channels need to be combined, the actor can simply get a
ProxyPushSupplier from each of them and connect u to the proxy suppliers to receive
the data. If any of the input stream is no longer needed to be copied or combined, the
actor may disconnect u from the input channels at any time.

An alternative approach to implement the switch is to use channel compositions
to directly connect and disconnect the proxy suppliers from the input channels
and the proxy consumers from the output channel without using an intermediate
port, as explained in section 7.2.4 on page 84 (also see figure 7.6(a) on page 86).
However, with the intermediate port, other mechanisms, for example filtering, can be
implemented inside this port as well, if necessary.

Now all the actors are capable of doing what is required for mapping: listening to
the controlling commands, connecting and disconnecting channels to copy, combine
and cut off the streams, as it is specified in the previous section.

10.2.2 Dynamic Mapping

Chapter 4 presented how the requirements on the performance cast can be specified
by describing the actor types in an IPML script. Chapter 8 on page 99 formally spec-
ified the architecture of the IPML system where the real actors are connected to the
director via the virtual actors through channels (chapter 7) in a PAC hierarchy. When
all these come together, dynamic mapping is not anymore a mission impossible, but
rather easy instead. Here how the mapping can be handled in a dynamic setting is
briefly described.

Virtual actors

Virtual actors are required in the IPML system architecture (figure 8.7 on page 112)
as an essential layer of software PAC agents for dynamic mapping. These agents
can be provided by the vendors of the real actors as a software driver, or by the
content producers as an “recommended” actor if there is no real actor available. These
virtual actors can be provided by an installation package which requires the user to
install it in advance, or for example an Internet resource identified by a Uniform
Resource Locator (URL) such that the virtual actor can be downloaded and installed
automatically. Here one shall not try to cover the security and privacy consequences
of this automatic downloading and installation process, since it has been an issue
for all Internet applications and should be taken care of by dedicated protocols and
subsystems.

Once the virtual actors are available to the IPML system, it is then registered and
maintained by the mapping engine of the director.

Channel resources

The system also provides and maintains a distributed channel service over the
connected devices. Here it benefits from the design of the channel patterns presented
in chapter 7: all channels between actors and the director are distributed objects
managed by a channel service, hence the network resources can be easily monitored
and allocated with QoS and load balancing taken into account. The director may query



10.2 IPML Mapping 157

the channel service so that the communication conditions can be taken into account
during the mapping process. The example in the previous section can be used again
– the description of “But the STB−modem bandwidth is not enough . . . So the robot
must dance . . .” on page 146 now has a concrete footnote on how this can be reasoned
about in the IPML system.

Mapping heuristics

The IPML director has a list of available virtual actors together with their types given.
The director also has access to the channel service to query the channel resources to
find out whether a virtual actor is connected to a real actor. Given an actor type as the
requirement, the IPML uses the following heuristics to map the required actor type
to a virtual actor:

1. The user preference has top priority (see the “naughty boy” example on
page 47).

2. If after 1 multiple virtual actors can be selected, the ones having the“closest”
type have the priority over the others.

3. If after 2 multiple virtual actors can be selected, the ones with a real actor
connection have priority over those without.

4. If after 3 multiple virtual actors can be selected, the one that has been selected
most recently for this type is again selected. If none of them have ever been
selected, the director randomly selects one from these virtual actors.

5. If none of the virtual actors can be selected, the director creates a “dummy”
virtual actor for this type. The “dummy” virtual actor will do nothing but ignore
all requests.

In step 2, how to decide an actor is the “closest” to another among the others is not
clearly described. It depends on how the types are defined. For example it is possible
to apply a method that is similar to the one used for determining the “closest” media
type in section G.3 of background material G. In practice, one may also leave it to
an ontology reasoning system for example a semantic web tool for RDF or OWL type
descriptions, as it was briefly described in section 4.3.1 on page 46. Here let’s leave it
open to implementation.

During the action time, these heuristic conditions may change, for example, the
real actors may connect and disconnect from the “theater” at any time, and users may
change their minds at any time to have a “gentleman” instead of a “naughty boy” to
be the actor or vice versa. To dynamically update the mapping relations, the director
needs to repeat this mapping process on a regular interval basis.

Actor/director discovery

The problem now is how the virtual actors, the real actors and the director can
find each other for registration and connection. This is actually a well-known
device/service discovery problem and many middleware standards table 10.1 on
the following page have a solution for it. For example, JINI and Home Audio
Video Interoperability (HAVi) offer software elements like central lookup service and
distributed registry respectively, where the devices and services register and make
themselves “visible” to the other devices and services on the network. The clients
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query the lookup service or the registry via APIs in order to find the required service
or device. UPnP and Video Electronic Standards Association (VESA) offer a protocol
based solution for device/service discovery. UPnP uses the Simple Service Discovery
Protocol (SSDP) for device discovery, whereas VESA provides a software agent called
Home Network Broker (HNB) which helps the devices to find each other. In Open
Services Gateway Initiative (OSGi), the device discovery is done by OSGi device access
system which supports automatic attachment and detachment of devices and can
automatically download and start appropriate device drivers; devices can be plugged
and unplugged at any time and the device access system immediately responds to
changes.

Table 10.1: Middleware standards
Standard Data transport Developed by Information
JINI IP over any media Sun Microsystems www.jini.org
HAVi FireWire Philips, Sony, Hitachi, etc. www.havi.org
UPnP IP over any media Microsoft www.upnp.org
VESA FireWire and IP Samsung, Canon, HP, etc. www.vesa.org
OSGi Any media Ericsson, IBM, Philips, etc. www.osgi.org

So one may simply leave the discovery task of registering virtual actors to
the director and the task of connecting virtual actors and the real actors to these
middleware infrastructures. In the experimental implementation, JINI was used
wherever it is supported in the flavor of standard Java technology. The OSGi service
was also used for connecting a User Interface Markup Language (UIML) based GUI
actor on Philips iPronto because of its native OSGi support, also for experimenting
with a different discovery service. But the structure proposed here does not rely on a
particular middleware standard.

10.3 concluding remarks

This chapter did not try to fully formalize the dynamic mapping in distributed
environments, however, the exercise in formally specifying the mapping with a
case study helped the project gain enough insights in general mapping problems
and solutions. The work that had been done in formalizing the architectural
components such as actions, channels and actors, also helped turn these insights
easily into practice when the IPML mapping engine was implemented. These
formal specifications contributed to the design process by clarifying the idea and the
concepts, locating the potential design problems and bringing up the solutions at a
high level of abstraction other than loosing the focus in low level coding.

However, without coding, an ingenious formal speciation can never run and sing.
The best way to test these designs is to implement them, which is exactly the topic
coming up next.
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CHAPTER11
Implementations

As mentioned early in the first chapter, this project went through three design
iterations. During the first iteration, StoryML was developed and a demonstrator
called TOONS was implemented, as it is described in part I. During the second
and the third iteration, the concepts of the IPML design described in part II and
part III were gradually polished and put into practice. This chapter briefly presents
several demonstrators or applications that were implemented based on the IPML
architectural design.

11.1 DeepSea (2001-2003)

The DeepSea application, as a result of the ICE-CREAM project, is a distributed
interactive movie developed by Philips Research and de Pinxi (2003). Part of this
PhD project, supported by Philips Research, was carried out during the ICE-CREAM
project by contributing to DeepSea with the architectural design and participating
in the implementation to carry out the design concepts in the practice. De Pinxi
as an interactive 3D movie provider has a lot of experience in creating interactive
experiences in the domains both of leisure and of education with the aim of
“immersing” the participants into a truly interactive context (de Pinxi, 2003). De Pinxi
not only contributed to the project with the content and a proprietary 3Dmovie engine
to render the content, but also brought in their expertise in interactive and immersive
theaters to create impressive lighting and sound effects. Figure 11.1(a) on the next
page shows a demonstration setting exhibited in IBC (2003), and figure 11.1(b) on the
following page shows a family experiencing DeepSea.

11.1.1 Content

The final content structure follows the storyboard developed by de Pinxi early at the
beginning of the project (see section 2.2.2 on page 22 for details). The movie presents
an underwater virtual space for the user to explore. Figure 11.1(a) on the following
page shows the content structure of the movie. The movie starts with a submarine
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(a) DeepSea exhibited at IBC 2003 (b) A family experiencing DeepSea

Figure 11.1: DeepSea Demonstrations

sailing on a sea and after a while diving into the deep sea. When the submarine reach
the sea bed, the user will find a small TV set with a message that helps the user to
customize the presentation. The user may select a presentation language (English,
Dutch or French) and a presentation mode. There are three presentation modes:

Automated mode: This is also the default mode if the user does not select a mode
within a time limit. In this mode, the presentation becomes a traditional TV
program that presents the underwater scenery. The submarine moves slowly in
the space following a scripted route. The user will see different kinds of fish,
weeds, shipwrecks and landscapes.

Game mode: This mode allows the user to move the submarine in two directions, left
and right, to navigate the 3D space following the scripted route. The submarine
drives ahead in a fixed speed and the user does not have all the freedom to move
the submarine around. The user will get a score reward by avoiding obstacles
andmines in the route bymaneuvering the submarine to the left or right. When
a mine is hit, the movie shows the explosion with surrounding sounds, lighting
effects and vibration effects. The user will get a final score that correlates to the
performance of avoiding the mines and the time used to reach the end of this
mode.

Discovery mode: This mode allows the user to freely navigate the 3D space by
controlling both the direction (left, right, up and down) and speed of the
submarine (acceleration and brake). With higher freedom of navigation, the
user may explore the space, looking for more details of an interested object.
The user may also “collect” fish by driving the submarine closely enough to
“catch” one. Hitting a mine will trigger the same effects as in the Game mode,
but there is no score reward for avoiding the mines and obstacles.

The movie shows the selected mode with the first person view of the 3D space
from the submarine, during which the user may always switch to another mode. The
user can also stop the selected mode, or watch and play until the time limit has been
reached. At the end, the submarine floats back to the surface through a tunnel, after
which a graphical interface is shown so that the user may decide whether to start the
movie over again.
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Figure 11.2: DeepSea content structure
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11.1.2 Configuration

The prototype utilizes the object oriented features of MPEG-4 to create the 3D
virtual space with multimedia objects, such as multiple video and audio streams, 3D
graphics, still pictures and text. It also includes lighting effects, graphical interfaces
and vibrations as multimedia elements that are distributed over multiple devices. The
movie itself is rendered by a Linux PC running a 3D movie engine from de Pinxi
which simulates a DVB-MHP platform.

The following devices were used for presentation and interaction:

Primary display: A 42-inch plasma TV (figure 11.3(a) on the next page) is used to
present the 3D movie. Two HiFi speakers are connected to and placed near
the TV. They are driven by a sound sampler in order to carry realistic and
compelling stereo sounds.

Secondary display: An iPronto (figure 11.3(b) on the facing page) is used as a secondary
display. It is a small portable computer for controlling home appliances devel-
oped by Philips, with a 6-inch touch screen and wireless network connection
(Philips, 2003). A UIML based GUI interface was constructed on this
display for content navigation and customization, and to “collect” and “review”
multimedia objects.

Lights: Four lights were used to present the lighting effects. An orange and a red light
are attached behind the primary screen projecting towards the wall. Two stand
lamps (figure 11.3(c) on the next page) are placed in the corners. The lighting
effects in the virtual 3D space are connected to these physical lights in the room.
For example, when the mines blow off, the lamps take part in the effect of the
explosion and glare-up as red, orange and white lights; when the submarine
dives deeper into the sea, the light is dimmed; when the submarine floats out
of the surface, the light becomes bright again.

GamePad controller: A GamePad (figure 11.3(d) on the facing page) controller is used
for the navigation control of the submarine. The user needs both hands for the
navigation: the left hand to drive the submarine around by pressing left, right,
up and down buttons, and the right hand to control the speed by holding and
releasing an acceleration button.

LegoMarine: The user may also use a toy submarine for navigation instead of the
GamePad. The toy submarine (named LegoMarine, figure 11.3(e) on the next
page) can be perceived as the physical counterpart of the submarine in the
virtual space. The user may direct the virtual submarine by tilting the toy and
speeding it up by squeezing the toy. When the virtual submarine hits a mine or
an obstacle, the toy vibrates to give users a tangible feedback.

Before the implementation of the DeepSea application was started, the ideas
and concepts of the overall IPML architecture were not mature enough to be put
into production. Due to the time pressure also the nature of a cooperative project,
the DeepSea application was not fully based on the IPML architecture proposed in
previous chapters. However, during the implementation, these design ideas and
concepts were gradually becoming clear. The lower level architectural components,
such as actions, actors and channels, were put into practice in implementing
DeepSea. Several actors based on the concepts presented in chapter 6 on page 65
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(a) Plasma TV (b) iPronto

(c) Lamps (d) GamePad (e) LegoMarine

Figure 11.3: Devices used in the DeepSea prototype

and chapter 8 on page 99 were designed: A robotic actor on LegoMarine , a UIML
based GUI actor on iPronto, and a lighting actor based on the Velleman K8000 PC
interface board (Velleman, 2002). These actors were connected to the de Pinxi 3D
movie engine through the channel services (figure 11.4), and these channels were
implemented according to the concept described in chapter 7.

de Pinxi 

3D movie engine

GamePad
Lighting Actor on 

Velleman K8000

Robotic Actor on 

LegoMarine

UIML Actor on 

iPronto

IPML channels

Direct connection

Figure 11.4: IPML contribution to DeepSea

The timing and mapping concepts from the previous chapters were not imple-
mented in DeepSea. Instead, de Pinxi implemented the scheduling mechanisms
for the actors in their 3D movie engine by directly changing the source code. The
movie engine communicates with these actors by sending action service requests to
them and collecting the user interaction events from them. Since the communication
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protocol is fairly simple, these actors were developed (at Philips Research, Eindhoven)
and the movie engine was implemented (at de Pinxi, Brussels) without constant
meetings. Before the installation for the user evaluation (see chapter 12 for details),
there was only one technical meeting in between to define the communication
protocol together. Right before the user evaluation, it was fantastic to see how these
distributed actors1 started talking to the movie engine that was first time delivered to
the Philips HomeLab for user evaluation. The concept of loosely coupling the actors
through asynchronous channels worked.

Also notice that these software components in DeepSea are programmed in
several different languages on different platforms: The 3D movie engine is pro-
grammed in C++ and runs on Linux PCs, the lighting actor is programmed in
PASCAL, whereas the robotic actor on LegoMarin, the GUI actor on iPronto and the
channel services are programmed in Java.

11.2 TOONS in IPML (2003-2004)

After the ICE-CREAM project, the implementation of the IPML design was fully
started. Since the content from the TOONS application developed during the NexTV
project was available in open standard formats and did not require a proprietary movie
engine to playback the video clips, the content was reused to experiment with the
IPML design. The content followed the original TOONS scenario (see section 2.1
on page 11 for details), but with few more devices involved to simulate a distributed
environment.

The result was a demonstrator that included the following distributed components
and devices:

• A movie actor presenting the TOONS movie clips. It is implemented using
JMF, and is able to present all audio/video formats that are supported by JMF.
The movie actor runs on a Windows PC (pc1).

• A UIML actor presenting sideshows that are synchronized with the TOONS
movie, explaining what is going on in the movie. The UIML actor runs on
another Windows PC (pc2).

• A Linux Infrared Remote Control (LIRC) (Bartelmus, 2003) actor that detects
the input events according to a LIRC specification file for a particular remote
control, runs on pc1. A PlayStation 2 remote control was used.

• A robotic actor, Tony 1.5 (figure 11.5(a) on the facing page), and later upgraded
to Tony 2.0 (figure 11.5(b) on the next page), standalone.

• A virtual Tony robot, a virtual actor for real Tony, programmed using video clips
taken from real Tony, runs on pc1.

• The IPML director, with timing and mapping engines, runs on pc2.

1They were really distributed, over more than a hundred kilometers from Eindhoven to Brussels.
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(a) version 1.5 (b) version 2.0

Figure 11.5: Tony upgrated

All software components are programmed in Java. Two Windows PCs are
connected over an IP network. The remote control and Tony are connected to pc1
and pc2 respectively through infrared sensors that are connected to a serial port on
the PC.

This demonstrator has bee set up at the exhibition space of the Department of
Industrial Design at TU/e (figure 11.6(a)). It was also exhibited at IST 2004 (Hu,
2004, figure 11.6(b)) and presented at DesForm 2005 (Hu, 2005).

(a) TOONS at ID, TU/e (b) TOONS at IST 2004

Figure 11.6: TOONS demonstrations

11.3 TheInterview (2004)

Taking the TOONS application as a testing bed, the components designed for the
IPML system were implemented, including the director with timing and mapping
engines. Several hardware and software actors were created. Up to a point, the
IPML system was ready for new content and new actors. It was then tried with new
content - a movie called TheInterview2 written, designed, directed and shot specially

2The movie was made together with Christoph Bartneck.
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Scene: Interview. Shot: 8
Description: Murphy drops the papers
and looks at Justin “Thank you for ...”

Scene: Interview. Shot: 14
Description: “yes, the instructions ...”

Scene:Interview. Shot: 8
Description: “yeah, all that traffic...”

Scene:Interview. Shot: 9
Description: “Well, thing is...”

Figure 11.7: TheInterview screen shot descriptions

for this project, in order to conduct a cross cultural study to test the influences of
different cultural backgrounds on the user’s presence experience in interacting with
a distributed interactive movie (see chapter 13 on page 189 for details). Figure 11.7
shows part of the video plan sheet prepared for shooting TheInterview.

The software and hardware actors are reused, but with a different configuration:

• The movie actor on a Windows PC (pc1), presents the movie to a projected
screen.

• the Linux Infrared Remote Control (LIRC) (Bartelmus, 2003) connected to a
PlayStation2 remote control through a serial port with an infrared sensor, runs
on a Linux PC (pc2).

• Tony 2.0(figure 11.5(b) on the preceding page), standalone, connected to pc2
with an infrared sensor connected to another serial port.

• The virtual Tony robot, runs on pc1, or a wireless display connected to the third
computer, depending on the experiment configuration.

The IPML system was put in real use for the first time and tested with more than
50 users, each experiences the movie with a different setting or content three times.
The system was robust enough to sustain all these tests with different configurations
of users, devices and contents.
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(a) Love (b) Anger

(c) Fear (d) Sadness

Figure 11.8: Four selected emotions in Mov’in

11.4 Mov’in - Emotional Pillows (2005)

Since a well designed architecture should not be difficult to be understood, to be
extended and to be built new applications upon, the IPML system was handed over
to a group of 4 second-year students3 from the Department of Industrial Design
at Eindhoven University of Technology for an 8 week project “Mov’in: Ambient
Intelligent Movies” (Menges et al., 2005). The goal was to create movies that not only
distribute physical effects to people’s environments to enhance their experience, but
also sensible to people’s movements4 (hence “Mov’in”) and possibly their emotional
reactions. The students spent 5 weeks to come up with a concept to design a pillow
that would present itself to the IPML system as an actor. The pillow would react to the
movie events, showing the emotions in these events by movements and gestures. The
users may also react on the emotional outputs from the pillow also by movements and
gestures, for example by giving a hug to show love, by slamming it to show anger and
by hiding behind to show fear (figure 11.8). The user’s emotional input will be picked
up by the system to influence what’s happening in the movie.

3Rutger Menges, Jan v.d. Asdonk, Laurie Scholten and Lilian Admiraal.
4This project was also coached by Sietske Klooster, an expert in designing product movements.
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During the first 5 weeks four 2-hour workshops were organized for the students to
brush up their Java programming skills and to gain some experience with XML based
scripting. The architecture of IPML and the APIs were explained to the students by
the end of week 5. With basic Java programming skills and some previous experience
in programming LEGO mindstorms and microcontrollers, the students were able to
present a prototype which proves their concept 3 weeks later. Two actors were used in
their final prototype:

• The movie actor that comes with the IPML system, showing a Macromedia
Flash movie;

• A robotic pillow that not only shows emotions through movements, but also
reacts on the user’s emotional movements. Designed and implemented by
students themselves.

Figure 11.9(a) shows the “X” shaped emotional pillow and figure 11.9(b) shows what
is inside the pillow (one of the arms).

(a) “X” shaped pillow (b) What’s inside (one of the arms)

Figure 11.9: Prototype of the emotional pillow actor in Mov’in

11.5 Concluding remarks

The architecture has been mostly implemented in Java. Not counting the earlier
implementations of StoryML and testing code, the latest version of the IPML system
is a package of 40,542 lines of source code, organized in 324 classes. The architecture
has been applied in various projects, from a big EU project together with professional
developers, to a small educational project by a team of four second year university
students. Each resulted in a working demonstrator or prototype.

The underlying software infrastructure of the implementations varies, including
the standard Java Virtual Machine (JVM) from Sun microsystems on both Windows
and Linux, the Kaffe JVM for iPAQ with the Familiar Linux distribution, Insignia
Jeode JVM for PocketPCs, Tao intent JVM on iPronto, and LeJOS Virtual Machine
on Lego Mindstorms RCX. Although they are all implemented in Java, the proposed
architecture can also be implemented on a different object oriented platform.



CHAPTER12
Fun and Presence1

Ambient intelligent environments allow multimedia elements to be distributed to
multiple networked devices and to bring more compelling entertainment experiences
to the end users. This chapter presents the user evaluation results of DeepSea, a
distributed interactive movie in such an environment. The movie was presented to
single and multiple users with different levels of control and distribution in order
to find out the effects on the end user’s fun and presence experience. The results
suggest that the increased level of control has certain effects on the user’s experience,
and especially has significant impact on presence. However the effects of distribution
are found to be less clear and to be dependent on the involved devices and the content
modality. Participation of a second user improves the situation and invokes more
fun, but this observation needs to be further verified with more participants. These
results are discussed in this chapter in terms of the measurement instruments and
the experimental design.

12.1 Introduction

This chapter is going to discuss about the end user’s experience, however, the
definition of a user’s experience is currently still under heavy debate. Karat’s
definition of an entertainment experience is adapted, as being the experience people
are voluntarily going through for pleasure and fun in an entertainment activity
(Karat, Pinhanez, Karat, Arora, and Vergo, 2001). Hoonhout (2002) identified seven
constructs that are important for and related to the fun experience: enjoyability,
attention, curiosity, presence, situational factors and pride. Presence is a more widely
used construct and several validated measurement tools are available for it. A detailed
discussion of fun and presence is available in section 12.2 on the following page.

The user’s fun and presence experience may be influenced by the new interactive
technologies. These technologies contain two main aspects: distribution and level

1This part of work was done closely together with Hyun-joo Kong. This chapter is based on a paper
published in the proceedings of HCI International 2005 (Hu, Janse, and Kong, 2005).
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of control. The distributed devices and sensors confront the user with a multitude
of media presentations and control possibilities. Instead of watching a movie on a
single TV, the user now can experience a story on multiple displays and even the
lights in the room react to the events in the story. The effect of such a distributed
media presentation on the users is still not completely clear. For example, the
recent commercial success of multichannel home audio systems might suggest that
multichannel audio improves the user’s experience, but it has been shown that simple
stereo sound provides just as much presence as six audio channels (Freeman and
Lessiter, 2001).

The multimedia standards mentioned above push new interaction technologies
forward. The user may interact with the media content using various input methods,
such as speech, touch screens and game pads. The classic passive TV watching
can be turned into an interactive free exploration, but also intermediate levels of
interactivity are possible. All these interactivity levels differ on how much control the
user has on the media content. The effects that the different levels of control might
have on the user’s entertainment experience are not fully understood. Since these
technologies become paramount in the domain of networked audiovisual media and
home platforms, it appears important to study these effects. However, many previous
studies focused on single users whereas TV and movies in real life are often watched
together with others. The participation of others might have an important impact on
the user’s entertainment experience.

Based on the above discussions, three research questions are proposed:

1. What influence does the distribution of media presentation have on the user’s
fun and presence experience?

2. What influence does the level of control have on the user’s fun and presence
experience?

3. What influence does the participation of a second person have on the users’ fun
and presence experience?

Two experiments were conducted based on the DeepSea implementation (see
section 11.1 on page 161 for details) to address these questions. The first experiment
was designed to answer question one and two, and the second experiment to answer
question three. It has to be made clear that the prototype also set the boundaries for
the experiment. For example, using a bigger television screen would have influenced
some results (Lombart and Ditton, 1997). However, the prototype was designed to
represent plausible future home environments.

12.2 Measurements

This study wants to know how the user’s entertainment experience is influenced
by the features offered in the DeepSea, i.e., the distribution of interactive content
elements over devices, different levels of interactivity, and the cooperation of multiple
users. Before any sensible measurements are made, it is necessary to understand the
constructs of the entertainment experience and make them measurable.



12.2 Measurements 173

12.2.1 Fun and Presence

What is entertainment in the first place? Literally, entertainment is an amusement or
diversion intended to hold the attention of an audience or its participants. Langer
(1977) described entertainment as being “any activity without direct physical aim,
anything people attend to simply because it interests them”, while citing Whitehead’s
similar definition of entertainment as “what people do with their freedom”. Secondly,
what is experience? Over the last years, in the field of human-computer interaction and
interaction design, many agree that the user experience matters, but with so many
definitions of “experience” that it becomes a buzzword. Among these definitions,
there are basically three different ways of talking about “experience” (Forlizzi and
Ford, 2000):

1. as the constant stream that happens during moments of consciousness,
2. as a story to condense, to remember and to communicate with others, and
3. that has a beginning and an end, and affects the user and the context as a result.

The last one seems more appropriate for our purpose.
These definitions are beyond the scope of this thesis. For the purpose here,

entertainment experience can be defined as the experience people are voluntarily
going through for pleasure and fun in an entertainment activity (Karat et al., 2001).
This gives the study the direction for the experience evaluation, that is, the evaluation
of the entertainment experience in the context of DeepSea is narrowed down to a
matter of whether the user enjoys the movie and has fun.

Fun is a multidimensional construct. Hoonhout (2002) identified seven different
factors that are considered to be important for and related to the fun experience,
based on the taxonomy by (Malone and Lepper, 1987), the factors that contribute
to pleasure in using consumer products (Jordan, 1998), and the flow experience
(Csikszentmihalyi, 2000, 1991). Although these factors are not orthogonal and they
contribute to each other, they provide with a closer and more detailed view into the
fun experience:

Enjoyability: The degree of enjoyment that users reach when they are voluntarily
undergoing an experience that interests them and gives them some amount
of pleasure or release.

Attention: Attention is the degree to which a person focuses on the presented media
content. It is a cognitive process of selectively concentrating on one thing while
deliberately ignoring other things.

Challenge: Levels of challenge are considered to be high in the media contents that
stimulate people to think and where the outcome is uncertain.

Curiosity: The tendency of people to seek for something novel. It is a condition
for sustained interest and a pre-requisite for people to focus their attention.
Sensory curiosity involves, for example, attention-attracting variations and
changes in the light, sound or other sensory stimuli of an environment (Malone
and Lepper, 1987).

Control: The degree to which the users feel at ease and in control in the environment
where the entertainment takes place.
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Pride: The degree to which the users feel proud of possessing of the system or
consider it for the future use.

Presence: Presence is often referred to as a subjective experience of being in one place
or environment, even when one is physically situated in another. It is an illusion
of “being there”, “it is here” or “being together” (Schuemie, van der Straaten,
Krijn, and van der Mast, 2001; Slater, Linakis, Usoh, and Kooper, 1996; Witmer
and Singer, 1998). Lombart and Ditton (1997) defined presence in a more
general sense as “the perceptual illusion of nonmediation”. Freeman, Lessiter,
and IJsselsteijn (2001) identified 4 factors that are related to the presence
experience:

• Spatial Presence, a feeling of being physically located in the virtual space;

• Engagement, a sense of involvement with the narrative unfolding within
the virtual space;

• Ecological Validity, a sense of the naturalness of the mediated content;

• Negative Effects, a measure of the adverse effects of prolonged exposure to
the immersive content.

The presence experience can be influenced by the extent and fidelity of sensory
information, match between actions and reactions, the content and the user charac-
teristics (Freeman et al., 2001). The extent and fidelity of sensory information refer to
the ability of a technology to produce a sensorial rich mediated environment. Lombart
and Ditton (1997) refer to it as the “media form”, and these formal characters are
those that involve sensory richness and vividness. These variables are for example
the number and consistency of the sensory outputs, visual and aural presentation
characteristics, and stimuli for other senses.

According to this understanding, the DeepSea application has many features
that might contribute to presence. The distribution of the content using multiple
displays and lamps can be seen as a media form that could enrich the sensory
output; synchronized ambient lighting effects build a bridge between the virtual
and the real, and hence may blur the boundary of “being there” and “being here”;
the system reactions are not bounded by the user’s action space, but extended to
the surrounding environment; manipulating the objects in the 3D virtual space
introduces increased interactivity and may give the user more feeling of in-control.
Distributed presentation and interaction would make it easier for multiple users to
cooperate or to compete. Would these features bring more sense of presence as
expected, and would the distribution unfortunately break down the user’s illusion?

Appropriate measurement instruments are needed to evaluate the contribution of
these features to the fun experience, and among other factors, presence in particular.

12.2.2 Measurement instruments

It was decided to only use subjective instruments. Three instruments were used: 1)
The Appeal questionnaire from Philips Research (Hoonhout, 2002) covers all the
fun factors mentioned above. 2) The Television Commission Sense Of Presence
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Inventory (ITC-SOPI) from the UK Independent Television Commission (Freeman
et al., 2001; Lessiter, Freeman, Keogh, and Davidoff, 2001) addresses the Presence
factor. 3) Structured interviews were conducted after the participants had finished the
experiment and questionnaires.

Appeal questionnaire

The Appeal questionnaire was derived from a questionnaire that was being developed
in Philips Research for measuring the degree of enjoyability and fun that media
content or consumer electronic products provide for the end users. The original
questionnaire was in Dutch and it was translated into English for the multinational
participants. It contains in total 39 items that cover the following seven factors of
the fun experience: Enjoyablity (11 items), Attention (7 items), Challenge (5 items),
Curiosity (2 items), Presence (6 items), Control (4 items), and Pride (4 items).

Although the questionnaire was still in the process of validation, it had been used
for several projects in Philips Research. Bartneck (2002) used this questionnaire
to evaluate the enjoyability of a robotic interface. Stienstra (2003) used this
questionnaire to find out how much fun children might have in playing with
interactive toys.

In this questionnaire, only few questions are about the Presence factor. Since
special attention was going to be paid to presence, the dedicated ITC-SOPI question-
naire was used instead. The items about Presence were removed from the Appeal
questionnaire.

Presence questionnaire

ITC-SOPI is one of the few validated questionnaires for measuring the presence
experience of both interactive and noninteractive media. From the original ITC-
SOPI questionnaire, 15 items were selected, which were considered most applicable
(Freeman et al., 2001): Spatial Presence (9 items), Engagement (2 items), Naturalness
(1 item), and Negative Effects (3 items).

Although Freeman et al. (2001) suggested that one could not combine the scores
for each factor into one overall “media experience”, analyzing these factors separately
can provide a good insight into the presence experience.

Interviews

Interviews were conducted with prepared questions that address the presentation
modes and the role of the presentation device involved in the experiment. The
questions are tailored to the experimental conditions. The interview is complemen-
tary to the Fun and Presence questionnaires. The participants were also asked for
their comments and suggestions, because the feedback would help the developers to
improve their design and implementation.
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12.3 Experiments and Results

12.3.1 Experiment 1

A 3× (Level of Control)× 3 (Distribution) mixed between/within subjects experiment
was conducted. Level of Control was the within participant factor and had the condi-
tions low (LowControl), medium (MediumControl) and high (HighControl). Distribution
was the between participant factor and had the conditions None (NoneDistribution),
Lighting (LightingDistribution) and Second Display (DisplayDistribution). Due to practical
reasons, the Distribution factor was limited to NoneDistribution in the LowControl
condition, to LightingDistribution in the MediumControl condition and to DisplayDistri-
bution in the HighControl condition (see table 12.1).

Table 12.1: Conditions of experiment 1

Distribution
Level of Control

NoneDistribution LightingDistribution DisplayDistribution

LowControl yes – –

MediumControl yes yes –

HighControl yes – yes

Measurements

All the items from the Appeal questionnaire were used to measure the fun factors
except the Presence items: Enjoyablity (11 items), Attention (7 items), Challenge (5
items), Curiosity (2 items), Control (4 items), and Pride (4 items). The adapted
version of the ITC-SOPI questionnaire was used to capture the effects on Presence
which had in total 15 items: Spatial Presence (9 items), Engagement (2 items),
Naturalness (1 item), and Negative Effects (3 items).

Participants

Eighteen students (9 males, 9 females) from various backgrounds participated in this
experiment, nine Dutch, four Ukrainians, two Belorussians, and one Chinese, French
and Russian each. 50% of the students had a background in behavioral sciences and
the rest in engineering or natural sciences. The average age was 26 years, ranging
from 23 to 30 years. The participants watched one to two hours TV per day. Most
of them had experience with playing video games and about half of them frequently
played games (once or twice a month). They were rather unfamiliar with 3D movies
or virtual reality applications.

Setup

The presentation modes in the DeepSea allowed different levels of control. The
Automated mode was used for the LowControl condition, the Game mode for the
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(a) DeepSea HomeLab setup (b) A user interacting with the movie in
DisplayDistribution/HighControl conditions

Figure 12.1: DeepSea Evaluation

MediumControl condition, and the Discovery mode for the HighControl condition. The
possibility of switching between different modes during a presentation mode was
disabled. In order to catch the effects of distributed lighting, the secondary display was
removed from the environment in theMediumControl/LightingDistribution condition. In
order to catch the effects of multiple displays, the lighting effects are disabled in the
HighControl/DisplayDistribution condition. In all NoneDistribution conditions, only the
GamePad was used by the user for interacting with the movie, the secondary display
was removed and the lighting effects were disabled. In case the secondary display was
needed for starting or customizing the presentation, the operation was done by the
experimenters. The toy submarine was not used in this experiment.

The experiment was conducted in a 4m × 6m room in the HomeLab at Philips
Research Eindhoven. The 42 inches plasma TV was placed on the wall and 1.5 meters
high from the floor. The TV was 3 meters away from the user. When a secondary
display was needed, it was placed in front of the user within reach. Except the four
lights controlled by the system, there were no any other light sources used, including
the natural light. Figure 12.1(a) shows the HomeLab setup.

Procedure

The experiment started with a welcome session and a training movie. The training
movie had a similar content, lasted for 3 minutes and allowed the participants
to practice all the interaction devices that could be used. Afterwards, they had
the opportunity to ask questions about the process of the experiment. Next, the
real experiment started, which consisted of the movie with three configurations
and two questionnaires (Fun and ITC-SOPI) after each configuration. The order
of the conditions was randomized and counterbalanced. At last, a structured
interview was conducted with prepared questions. The whole experiment lasted
for about one hour. Figure 12.1(b) shows a user interacting with the movie in
DisplayDistribution/HighControl condition.
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Figure 12.2: Mean scores for all measurements in all Control Conditions

Results

The mean scores for all measurements, including their standard deviations are
presented in Table 12.2 on the next page. Due to the fragmented nature of the
Distribution factor it was not possible to conduct a single analysis of variance
(ANOVA) across all conditions. Instead, one ANOVA for the Level of Control factor
and two ANOVAs for the Distribution factor were conducted.

1. Level of Control Effect

Figure 12.2 shows the mean scores for all Level of Control conditions with
NoneDistribution.

A 3× (Level of Control) repeated measure ANOVA was conducted. Attention
(F(2, 16) = 8.54, p = .01), Challenge (F(2, 16) = 8.79, p = .01), Spatial Presence
(F(2, 16) = 34.79, p < .001), Engagement (F(2, 16) = 22.2, p < .001) and
Naturalness (F(2, 16) = 4.96, p = 0.03) were significantly influenced by the Level
of Control.

The Attention scores were significantly lower (t(8) = 2.64, p = .03) in the
LowControl condition (4.19) than in the HighControl condition (4.84). The Challenge
scores were significantly higher (t(8) = 2.94, p = 0.02) in theMediumControl condition
(4.49) than in the HighControl condition (3.87). The Spatial Presence scores were
significantly lower (t(8) = −6.27, p < .001) in the LowControl condition (2.64) than
in the MediumControl condition (3.85). The Engagement scores were significantly
lower (t(8) = −4.5, p < .001) in the LowControl condition (2.44) than in the
MediumControl condition (3.56). Finally, the Naturalness scores were significantly
higher (t(8) = −4, p < .001) in the HighControl condition (3.22) than in the
MediumControl condition (2.67).
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Table 12.2: Mean scores and standard deviations for all measurements

NoneDistribution LightingDistribution DisplayDistribution

Mean std.dev Mean std.dev Mean std.dev

Attention 4.10 0.46
Challenge 3.71 0.49
Pride 4.08 0.44
Curiosity 4.94 0.34
Enjoyability 4.62 0.31
Control 4.97 0.54
Spatial Presence 2.64 0.43
Negative Effects 2.22 0.50
Engagement 2.44 0.68

Lo
w
Co

nt
ro
l

Naturalness 2.56 0.53
Attention 4.96 0.38 4.67 0.55
Challenge 4.49 0.55 4.64 0.60
Pride 4.13 0.25 4.65 0.60
Curiosity 5.11 0.37 5.35 0.47
Enjoyability 4.53 0.67 5.03 0.60
Control 5.03 0.51 4.75 0.53
Spatial Presence 3.85 0.31 4.16 0.26
Negative Effects 2.59 0.46 2.26 0.43
Engagement 3.56 0.73 3.67 0.66

M
ed

iu
m
Co

nt
ro
l

Naturalness 2.67 0.71 3.56 0.73
Attention 4.84 0.68 4.63 0.42
Challenge 3.87 0.66 4.22 0.58
Pride 4.31 0.41 4.15 0.41
Curiosity 4.89 0.55 5.40 0.57
Enjoyability 4.32 0.64 4.52 0.37
Control 5.00 0.75 4.70 0.45
Spatial Presence 4.10 0.53 4.23 0.35
Negative Effects 2.56 0.53 2.44 0.29
Engagement 4.17 0.43 4.06 0.63

H
ig
hC

on
tr
ol

Naturalness 3.22 0.44 4.11 0.60
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Figure 12.3: Mean scores in the NoneDistribution and LightingDistribution conditions at
the level of MediumControl

2. Distribution Effect
Both groups of participants were in the LowControl condition which allows to

verify that there were no significant differences between the groups. Therefore, at
the same level of MediumControl, NoneDistribution condition was be used for analyzing
the effect of LightingDistribution; and at the same level of HighControl, NoneDistribution
was used for analyzing the effect of DisplayDistribution (see table 12.1 on page 176).
Lighting distribution: Figure 12.3 shows the mean scores for the NoneDistribution
condition and the LightingDistribution condition at the same level of MediumControl.

A 2× (Distribution) ANOVAwas performed. Distribution had a significant effect
on Pride (F(1, 16) = 5.92, p = .03), Spatial Presence(F(1, 16) = 5.13, p = .04)
and Naturalness (F(1, 16) = 6.92, p = .02). The Pride scores were significantly
lower (t(16) = −2.43, p = .03) in the NoneDistribution condition (4.14) than in the
LigthingDistribution condition (4.67). The Spatial Presence scores were significantly
lower (t(16) = −2.27, p = .04) in the NoneDistribution condition (3.85) than in
the LightingDistribution condition (4.16). The Naturalness scores were significantly
lower (t(16) = −2.63, p = .02) in the NoneDistribution condition (2.67) than in the
LightingDistribution condition (3.56).
Display distribution: Figure 12.4 on the next page shows the mean scores for the
NoneDistribution condition and the DisplayDistribution condition at the same level of
HighControl.

A 2× (Distribution) ANOVAwas performed. Distribution had a significant effect
only on Naturalness (F(1, 16) = 12.8, p < .001). The scores for Naturalness were
significantly lower (t(16) = −3.58, p < .001) in the NoneDistribution condition (3.22)
than in the DisplayDistribution condition (4.11).
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Figure 12.4: Mean scores in the NoneDistribution and DisplayDistribution conditions at
the level of HighControl

12.3.2 Experiment 2

A 2× (Number of Users) between participants experiment was conducted. A
participant would either interact with the system alone or in collaboration with a
second participant.

Measurements

This experiment used the same measurements as used in Experiment 1.

Participants

Twelve participants joined this experiment. They were three couples: 1) 2 males
(27 and 26 years old, both have a background in behavioral sciences), 2) 1 male
and 1 female (21 and 25 years old, they have a background in computer science and
industrial design respectively), 3) father and son (41 and 14 years old, the father works
for Philips Research as a software engineer), and six single participants (5 males, 1
female, average age 27 years, most of them have a background in behavior science,
engineering or natural science). The participants watched one to two hours TV per
day. Most of them had some experience with video games, but the concept of 3D
movies and virtual reality applications were new to many of them.
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Figure 12.5: Two users cooperating in DisplayDistribution and HighControl condition

Setup

This experiment used the same setup as for Experiment 1 (figure 12.1(a) on page 177),
except the fact that both the secondary display and the lighting effects were enabled
for the Single and Couple conditions. In the Couple condition, two users were sitting
next to each other, 3 meters away from the plasma TV screen. Both GamePad and the
Secondary display were placed in front of them within reach. It was up the couples
to decide who to use which controlling device. The toy submarine was removed from
the system in this experiment.

Procedure

The experiment started with a welcome session and the training movie as in
Experiment 1. The real experiment lasted for 20 minutes and the participants were
free to start with any of the presentation modes and to switch between different
presentation modes. The participants were observed and notes were taken. Videos
were recorded and used to substantiate the experimenter notes. Subjects were free
to stop the experiment at anytime during the session. After the movie session, the
participants were asked to fill out both the Appeal questionnaire and the ITC-SOPI
questionnaire. At the end, a structured interview was conducted with the same
questions that are also used for Experiment 1. Figure 12.5 shows two participants
cooperating in the DisplayDistribution and HighControl condition.

Results

Figure 12.6 shows the mean scores of the two conditions. An ANOVA was performed
and all measurements except Challenge and Spatial Presence were influenced by the
Number of Users (see table 12.3 on the facing page for the F and p values). Most of the
measurements of the fun experience are significantly higher in the Couple condition.
It may be concluded that the couples had more fun experience than the singles. As
to the effect on the experience of presence, the effect is mixed. The Couple condition
has less Negative Effects and Naturalness, but higher Engagement.
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Figure 12.6: Mean scores for all measurements in Single and Couple conditions

Table 12.3: F and p values of ANOVA on the effect of a second participant

F(1, 16) p

Attention 8.11 0.02
Challenge 0.62 0.45
Pride 10.25 0.01
Curiosity 12.25 0.00
Enjoyability 10.05 0.01
Control 5.88 0.04

F(1, 16) p

Spatial Presence 3.52 0.09
Negative Effects 129.94 0.00
Engagement 9.20 0.01
Naturalness 7.35 0.02

12.3.3 Results from the interviews (Experiment 1 & 2)

During the interviews the participants were asked for their opinions about every
presentation mode and device. One of the questions was to what extent (7 point Likert
scale) they agree the statement “I like this mode” about each presentation mode.

Figure 12.7 on the next page shows the distribution of the responses
from 21 participants who had experienced the movie in the conditions of
LowControl/NoneDistribution, MediumControl/LightingDistribution and HighControl/ Dis-
playDistribution (9 from Experiment 1 and 12 from experiment 2).

The participants were asked to elucidate further what they liked or disliked. What
they liked the most was the freedom to interact with the content in the Discovery
mode (HighControl/DisplayDistribution) and many of them considered this mode had
the biggest potential among the three modes. But they also complained that it was
not easy and comfortable to use two displays at the same time as it kept distracting
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(a) Automated mode: LowControl/NoneDistribution
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(b) Game mode: MediumControl/LightingDistribution
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(c) Discovery mode: HighControl/DisplayDistribution

Figure 12.7: Responses to the question “I like this mode”
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the attention. They suggested that there should be more cues for them to switch
attention between displays. Another issue was that iPronto was not tightly integrated
in the narrative, and participants tended to ignore the interaction with it. For instance
when they caught a fish, they just glanced at the iPronto to check the change on
iPronto without reading the text about the fish. It could have attracted more attention
if the information was presented with audio instead of text.

The strong points of the Game mode (MediumControl/LightingDistribution) men-
tioned by the participants were the challenge, the excitement, and a simple yet
concrete task. They were fascinated by the well synchronized lighting effects. They
wanted to have more and varying lighting effects. One of them suggested a blue
ambient wavy effect to simulate the underwater environment. Most of the participants
said that they would like to have such a lighting system in their homes. With regard
to the intensity of the lighting effects, all the female participants wanted to keep it as
it was, or decrease it, while all male participants wanted to increase it.

The participants were not very much impressed by the Automated mode (Low-
Control/NoneDistribution). A few of them liked it for its calm and relaxing presen-
tation. Lacking interactivity and a strong narrative, this mode disappointed many
participants. The participants became much more attentive and sensitive to the visual
quality of the content. They started noticing the small details of the graphics.

12.4 Discussion

12.4.1 Level of Control effect

The effects of Level of Control on the user’s presence experience were expected
and the significant differences in Spatial Presence, Engagement and Naturalness
confirmed the expectations (figure 12.2). This also confirms the results from many
other studies (Agah and Tanie, 1999; Regenbrecht and Schubert, 2002; Waterworth,
Waterworth, and R., 2001; Welch, Blackmon, Liu, Mellers, and Stark, 1996).
However, Level of Control effects on the measurements in the Appeal questionnaire
were less clear. The increase of Attention and Challenge correspond to the findings
in the ITC-SOPI presence questionnaire. The more control the users had, the more
difficult the task became.

But this did not necessarily result in more fun. No significant differences
were found for the other Fun concepts such as Pride, Curiosity, Enjoyability and
Control. There are two possibly explanations: either there were indeed not many
significant effects caused by increased level of control, or these effects were not
caught by the Appeal questionnaire. From the results, it seems that the validated
ITC-SOPI is more sensitive than the Appeal questionnaire when measuring the
effects of the interactivity. This might be because the ITC-SOPI was designed
with the consideration of interactive media, while the Appeal questionnaire was
originally designed for passive media and traditional consumer electronic produces.
Although it was being tweaked for the interactive media and products, it is still under
development and validation. The reliability of the results from this questionnaire
needs to be verified and possibly to be improved.
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12.4.2 Effects of distribution

Distribution is not a new idea for enhancing the entertainment experience. A
good example is the multi channel audio. Over the years, mono sound in early
days has been improved to multi channel sound in different levels: stereo (2.0),
stereo with bass (2.1), five channel surround (5.0), 5.1 Digital Theater Systems
(DTS) surround (five channels with bass). Recently 6.1 DTS surround (six channels
with bass) is appearing in the market. Distribution of the sound makes the
experience more compelling and more natural because of the nature of the human
multidirectional auditory system. Philips recently start producing televisions with
Ambilight technology that projects background light from the rear of the television
onto the wall, creating a halo around the television, which softly lights the room. Will
the distribution of visual content elements enhance the entertainment experience?
Both the lighting effects and the secondary display were used for distributing the
visual elements.

Less was found than it was hoped for in the results of the questionnaire.
Only Naturalness has been affected in both the LightingDistribution condition and
the DisplayDistribution condition. This corresponds to previous studies. Lessiter
et al. (2001) already suggested that: “The number, extent, and consistency of
sensory stimulation (media form variables) are therefore likely to enhance perceived
naturalness.” However, the other measurements remained suspiciously unaffected in
either direction.

From the interviews, it appeared that the distribution of the visual content could
distract attention and the participants felt less at ease and in control. This might be a
natural result of any kind of distribution - People have to switch their attention from
one device to another especially when the stimuli occupy the same sensory channel.
This reminds us to keep in mind that the visual channel of the human sensory is not
multidirectional in the same way as the auditory sense. Distribution in vision can be
distractive. In design, one should be careful with switching visual attention between
action spaces. In the LightingDistribution condition, although the lighting effects also
occupied part of the users visual sensory, it did not require attention. This explains
why Pride and Spatial Presence were significantly higher in this condition and not in
DisplayDistribution. In line with this finding, Philips Ambilight televisions are going
in a right direction.

The term “displayed environment” appeared in both the Appeal questionnaire and
the ITC-SOPI. The participants found it to be difficult to understand especially in
the distributed configurations. From the designer’s point of view, both the lighting
effects and the content elements presented on the secondary display were a part of
the movie, hence a part of the “displayed environment”. It was also stated clearly
in the introductions of both the questionnaires that “We use the term ‘displayed
environment’ here, and throughout this questionnaire, to refer to the film, video,
graphics, the virtual world and the physical effects that you have just encountered”.
This statement was from the original ITC-SOPI questionnaire and was revised to
adapt to the distributed configurations. It was possibly not stressed enough in the
experiments. In the interviews, it was found that some participants only took the 3D
virtual world presented by the plasma display as the “displayed environment” and did
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not consider all the distributed content as a whole. This might have increased the
deviations and hence hampered the reliability of the results.

12.4.3 Number of Users effect

The number of users had a strong effect on almost all measurements. The partici-
pation of a second user increased all the measurements of the Appeal questionnaire,
but the effects on the Presence measurements were mixed. A possible reason for this
could be that a second user takes away attention from the media presentation system
and thereby decreases its immersiveness. Both, Spatial Presence and Negative were
reduced, even though the reduction of Spatial Presence was not significant, possibly
because of the limited number of participants. Furthermore, the two participants had
to share certain devices and thereby reduced the number of available stimuli. This
has previously been shown to reduce Naturalness (Lessiter et al., 2001).

On the other hand, the second user increased Engagement, which could be
explained by the possible presence of a social facilitation effect. Humans tend to
try harder in the presence of others. The experimenter’s observations during the
experiment in combination with the results of the structured interviews lead us to
believe that people started with a division of tasks and that they were much more
motivated to explore the content in depth.

12.4.4 Content

To observe the effects of the interactivity and the distribution, the content itself was
tried to be kept as neutral as possible - to keep the audience not too excited nor
too bored by the content itself. The DeepSea application was derived from existing
content elements which de Pinxi (2003) originally designed for theme parks and a
larger audience. The narrative was reduced to a minimal level, that is, there was
not really a story plot in the content. From the interviews, this had resulted in low
motivation of the participants to interact with the content, and even boredom.

If the content was designed for production, and not for the experimental sake, this
should not have been done. The design of content should also be dedicated specifically
to the home environment and not be derived from the content for large audience
spectacles and theme parks. The motivation of the participants in both settings is
quite different. People carefully plan to go to a multimedia spectacle or to a theater,
they usually don’t go alone, they don’t leave halfway the show unless it is terribly bad
and it is a full evening/afternoon commitment. In contrast, behavior at home is much
more spontaneous. People don’t sit through a full program if they don’t like it, they
zap, they turn the system off, they make phone calls, they go to the fridge, etc. It takes
much more to keep themmotivated to stay with the program and to remain enticed to
interact with it. The feedback from the interviews showed that it was very important
to provide the users with stimuli that motivated them to explore and interact with
the content. A clear goal and more opportunities for interaction with objects in the
content support these motivational aspects. Support for this finding can also be found
in (Malone and Lepper, 1987).
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12.4.5 Experimental Design

The distributed lighting effects and graphical elements on the secondary display were
considered as a part of the content, but they were however not present in the basic
LowControl/NoneDistribution conditions. This might result in arguments whether the
content in different configurations are the same. If not, another variable actually
had been introduced in the experiment, that is, besides the interactively and the
distribution, the content should also have been considered as a variable, although it
was tried to keep the content difference between the interaction modes a minimum.

12.5 Concluding remarks

There were high expectations for distributing interactive media in an ambient
intelligent environment to bring more compelling entertainment experience to end
users. The ambitions of measuring the user’s entertainment experience were limited
to an operable level, that is, to look at the factors of the Fun experience, and the
Presence factors in particular.

These expectations were partially proved to be true in the experimental settings.
The increased level of control did have some positive effects on the user’s experience,
especially had significant impact on the Presence factors. As to the distribution
of content elements, the expectations had been lowered by the results from the
experiments. The effects were mixed. It also seems to be dependent on the devices to
which the content is distributed, the modalities of these distributed content. In this
study, distributed lighting seemed to have more positive effects on the user’s Fun and
Presence experience than distributed displays. Multiple users, or more precisely, two
users cooperating improved the situation and invoked more positive experience, but
this observation needs to be further verified with more participants.

The evaluation of the DeepSea application provided a lot of valuable feedback, for
the next iteration of the design process. The concept was perceived as very promising
and interesting by the participants and many said they “liked” it. The evaluation
also revealed that there is still a long way to go with regard to the development
of methodologies for evaluation, the design of the measurement instruments, the
exploitation of the possibilities for interaction with content by users in the home
environment, and the exploration of distributing ambiance effects in synchronization
with, or as a part of the content.



CHAPTER13
Culture Matters1

Through the evaluation of the DeepSea, certain effects of the level of control and the
distribution on the user’s fun and presence experience were found. However the
directions of the effects were mixed. Especially the effects on presence were less clear
than they were expected. This project started questioning what else could caused this.
Since the participants of the experiments were from various cultural backgrounds, it
was suspected that the user’s cultural background could have certain effects on their
experiences, and the variance in cultural background could have interfered with other
factors.

Based on the full implementation of the IPML architecture, a distributed interac-
tive movie (TheInterview) was developed and a cross cultural study was conducted to
test the influences of different cultural backgrounds on the user’s presence experience
in interacting with this movie.

13.1 Introduction

The user’s character (the combination of qualities or features that distinguishes one
person from another) is believed to influence the user’s feeling of presence. The
user’s cultural background is often mentioned as such a characteristic (Freeman
et al., 2001; IJsselsteijn, Ridder, Freeman, and Avons, 2000). A few cross-cultural
presence studies are available (Chang, Wang, and Lim, 2002), but none investigated
the relationship between the user’s cultural background and presence directly. As Sas
and O’Hare (2003, p.527) point out, a “large amount of work has been carried out in
the area of technological factors affecting presence”, but “Comparatively, the amount
of studies trying to delineate the associated human factors determinant on presence is
significantly less.” This influence of culture on presence is, at this point in time, more
of a conjecture than a proven fact, and therefore an empirical study was conducted to
investigate the relationship.

1This work was done together with Christoph Bartneck, published in the proceedings of the 8th Annual
International Workshop on Presence (Hu and Bartneck, 2005, PRESENCE 2005).

189
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13.1.1 Two cultures studied

In absence of a clear definition of what cultural factors may influence presence, a
good approach is to include participants from obviously different cultures. Using
Dutch and Chinese participants in our study optimized this cultural diversion.
Hofstede (Hofstede, 1993) provides an empirical framework of culture by defin-
ing several dimensions of culture, such as power distance, individualism/collec-
tivism, masculinity/femininity, uncertainty avoidance and long/short-term orienta-
tion. China and Holland differ substantially in all dimensions except uncertainty
avoidance (see table 13.1). Power distance, for example, refers to the extend to
which less powerful members expect and accept unequal power distributions within
a culture. The Dutch rank very low on this dimension, while the Chinese ranks very
high.

Table 13.1: Hofstede’s (1993) Culture Dimension Scores for Dutch and Chinese

Dutch Chinese

Power Distance 38L 80H
Individualism 80H 20L
Masculinity 14L 50M
Uncertainty Avoidance 53M 60M
Long Term Orientation 44M 118H

H = top third, M = medium third, L = bottom third (among 53 countries and
regions for the first four dimensions; among 23 countries for the fifth.)

There is another motivation to include Chinese participants in this study. Sacau
et al. (2005) reports that agreeableness2, one of the Big Five personality traits3

(McCrae and John, 1992), is positively associated with Spatial Presence. The dis-
cussion about the connection between personality traits and culture is controversial.
Still, the Chinese culture does include a very important concept of “Harmony”
(Hé Ú) which appears to be closely related to agreeableness. Triandis (2002)
believes that “agreeableness may be particularly important in cultures that emphasize
interpersonal harmony”; Cheung et al. (2001) even consider harmony as one of
the Chinese personality traits and their study shows that it significantly predicts
agreeableness. Harmony is so deeply embedded in the Chinese culture that it
would be unlikely if it would not result in more agreeableness. Chinese Taoism
stresses “harmony with nature” (Tiān Rén Hé Yı̄U<Ú�) and Chinese Buddhism
emphasizes “Harmony in six aspects” (Lìu Hé8Ú):

• harmony in understanding reaches agreement (Jìan Hé Tóng J̌ıe�ÚÓ)),
• harmony in habits brings mutual improvement(Jìe Hé Tóng Zūn+ÚÓ�),

2Agreeableness is a tendency to be compassionate and cooperative rather than suspicious and
antagonistic towards others.

3Neuroticism, Extroversion, Agreeableness, Conscientiousness, Openness to experience.
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• harmony in physical conditions brings co-habitation (Shēn Hé Tóng Zhù�Ú
Ó4),

• harmony in words avoids brawl (Yǔ Hé Wú Zhēng)�ÚÃ�),
• harmony in interests brings peace (Yì Hé Tóng Yùe¿ÚÓ�) and
• harmony in benefits brings co-existence (Lì Hé Tóng Jūn|ÚÓþ).

Even the word “monk” in Chinese (Héshang, Úÿ) itself means literally “Harmony
Preacher”.

From an application point of view, China currently has one of the most promising
and opportune economies. Its vast population and large physical size alone make
it a powerful global player. China’s gross domestic product (GDP) growth of over
seven percent indicates its steaming economic situation. Most Chinese already have
access to a television set and the local TV manufacturers satisfy the domestic market.
However, technology utilizing presence has not yet been produced or consumed.
Awareness of cultural differences in presence may help companies to create better
products for different markets.

13.1.2 Distributed interactive media

At the same time, distributed interactive media and their influences on the user’s
feeling of presence were interesting. A new media era is here: passive television
programs become interactive with the red button on your remote control (Bennett,
2004). Video games come with many different controlling interfaces such as dancing
mats, EyeToy R© cameras, driving wheels and boxing GametraksTM (In2Games, 2005).
The D-BOX R© OdysseeTM motion simulation system even introduces realistic motion
experiences, which were originally designed for theme parks, into our living rooms
(D-BOX, 2005). In the vision of Ambient Intelligence (Aarts and Marzano, 2003),
the next generation of people’s interactive media experience will not unfold only on a
computer or television, or in a head set, but in the whole physical environment. The
environment involves multiple devices that enable natural interactions and adapt to
the users and their needs.

Such a distributed environment might be perceived differently by users from
different cultures. Chua, Boland, and Nisbett (2005) conducted a relevant study in
which American and Chinese subjects viewed photographs. The Chinese tended to
look at the whole picture and rely on contextual information when making decisions
and judgments about what they see, whereas the Americans tend to be analytical
and pay more attention to the key or focal objects in a scene. Westerners might, for
example, concentrate on the woman in the “Mona Lisa” whilst easterners might pay
more attention to the rocks and sky behind her. These results might be of relevance to
distributed environments. Chinese participants might also take a more holistic view
here while the Dutch might focus more on specific objects. It is expected that the
focal view on specific objects would find visually distributed presentations to be more
distractive than the holistic view. Hence that the Dutch participants would feel less
engaged and less natural than the Chinese participants would.
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13.1.3 Embodiment and Interaction

The distribution of interactive content to multiple devices might also have a negative
effect. It might increase the complexity of interaction. The environment together
with the interactive content may become difficult to understand or control. To
relieve the situation, embodied characters, such as eMuu (Bartneck, 2002) or Tony
(Bartneck and Hu, 2004), may be used to give such an environment a concrete face.
These characters have a physical embodiment and may present content through their
behavior and interact with the user through speech and body language.

Moreover, the influence of embodiment on the user’s presence experience seems
unclear. On the one hand, embodiment extends the distributed content from an on-
screen virtual environment to a physical environment. The physical embodiment
improves the content’s liveliness and fidelity by stimulating more senses of the user.
This might result in an increased feeling of presence (Lombart and Ditton, 1997). On
the other hand, the physical embodimentmay transfermore attention from the virtual
environment to the physical environment. The physical embodiment may remind the
user of its existence in this world and may breakdown the illusion of being there and
hence could result in less feeling of presence (Freeman et al., 2001). The division of
attention in itself might also have such an effect.

To control interactive content, the user requires interaction devices. A physical
embodiment would invite direct manipulation. A robot could, for example, ask the
user to touch its shoulder in order to select an option. Interaction with a virtual on-
screen character may favor the use of a remote control. Embodiment in interactive
media can therefore not be studied without considering the interaction method.
Therefore two interaction methods were included in the study.

13.1.4 Research questions

In this framework of interactive distributed media the following three research
questions were proposed:

1. What influence does the user’s cultural background have on the users’ presence
experience when interacting with distributed media?

2. What influence does the embodiment of virtual characters have on the users’
presence experience?

3. Would direct touching of the presented content objects bring more presence
than pressing buttons on remote controls?

13.2 Experiment

A 2 (Culture) × 2 (Embodiment) × 2 (Interaction) mixed between/within subjects
experiment was conducted(see figure 13.1 on the next page). Interaction and culture
were the between participant factors. Interaction had the conditions RemoteControl
and DirectTouch, and culture had the conditions Dutch and Chinese. Embodiment was
a within participant factor. Embodiment had the conditions ScreenAgent and Robot.
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Figure 13.1: Conditions of the experiment with Chinese and Dutch participants

13.2.1 Measurements

The original ITC-SOPI (Lessiter et al., 2001) questionnaire was again used. But
different from the ITC-SOPI questionnaire used in the user evaluation of the DeepSea
application, only the definition of the Displayed Environment in the introduction was
adjusted to include the robot/screen character. The Chinese participants had a good
understanding of the English language and therefore no validated translation was
necessary. The questions remained unchanged and are clustered into four groups:

1. Spatial Presence, a feeling of being located in the virtual space;
2. Engagement, a sense of involvement with narrative unfolding in virtual space;
3. Ecological validity, a sense of the naturalness of the mediated content;
4. Negative effects, a measure of the adverse effects of prolonged exposure to the

immersive content.

13.2.2 Participants

Nineteen Chinese and twenty-four Dutch participants between the age of 16 and 48
(14 female, 29 male) participated in the experiment. Most of them were students
and teachers from Eindhoven University of Technology, with various backgrounds in
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(a) ScreenRemote/ScreenTouch (b) RobotRemote/RobotTouch

Figure 13.2: Experiment setup

computer science, industrial design, electronic engineering, chemistry, mathematics
and technologymanagement. The Chinese participants lived no longer than two years
in Holland. All participants had a good command of the English language and were
frequently exposed to English media, such as movies, web pages, news papers and
TV shows.

13.2.3 Setup

Three computers were connected to the public network of Eindhoven University of
Technology, with a bandwidth of 10M b/s, to serve three presentation terminals. One
laptop computer (Windows XP Professional, 1.4G HZ Pentium processor, 512 MB
DDR memory) was connected with a projector to serve the output of a movie actor
to a projected screen. The second computer had the same hardware configuration,
but the operating system was Linux 2.6 (Fedora Core 2). Two interaction devices
were connected to this computer: the real “Tony” (see figure 11.5(b) on page 167)
through an infrared tower connected to the serial port; and the Linux Infrared Remote
Control (LIRC) actor detecting the input from a PlayStation 2 remote with an infrared
sensor connected to another serial port. It also ran the IPML director that read the
movie script and scheduled the presentation tasks for the actors. The third computer
(Windows XP, 1GHZ Pentium processor, 256 MB DDRmemory) was connected to a
Philips DesXcape Smart Display through a firewalled local wireless network to serve
the virtual Tony actor to a touch screen (also see section 11.2 for details).

The experiment took place in a living room laboratory (see figure 13.2). The
participants were seated on a couch in front of a table. The coach was 3.5m away
from the main screen, which was projected onto a wall in front of the participant.
The projection had a size of 2.5m× 1.88m with 1024× 768 pixels. The second screen
was located 0.5m from the coach, standing on the table. The secondary screen was
30cm× 23cm with 1280× 1024 pixels LCD touch-screen.

In the ScreenAgent conditions, the secondary screen displayed a full screen agent
of the robot. In the Robot conditions, the secondary touch screen was replaced with
the Lego robot that had about the same height. The behavior of the screen based agent
and the Lego robot were identical. They played the role of a TV companion by looking
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Figure 13.3: Storyline of TheInterview

randomly at the user and the screen, but always looking at the user while speaking.
Speakers were hidden under the table to produce synthetic speech. At the start of
every movie, the character introduced himself and its role.

Even though a particular media content can be acceptable in one culture, in
another can be perceived as inappropriate, rude or offensive (Lu and Walker, 1999).
Therefore the movie was designed to be culturally neutral. The movie had an
international cast: the applicant and the employer by two Dutch, the secretary by an
American, and the passer-by by a Chilean. The actors spoke English. This study does
not investigate the influence of media content on presence and therefore the story
and movie cuts were neither too exciting nor too boring for both Dutch and Chinese
participants. Or they might have masked the effects of culture and embodiment.

The interactive movie, about 10 minutes, was about a job interview. The
participants had to make decisions for the applicant. The storyline was discussed with
several Chinese and Dutch people to assure that the actions of the characters would
be plausible in both cultures. The movie had two decision points, which resulted in
four possible movie endings (see figure 13.3). The participants could chose different
options during the decision points. At every decision point camera would zoom in
on the applicant’s forehead (see figure 13.4 on the next page). The actor then cycled
through two options in his mind. He looked first to the left and thought aloud about
one option, before he looked right and thought aloud about the second option. Then
the screen agent or the robot explained the interaction possibilities to the user. In the
RemoteControl conditions the screen would show one icon on the left and a different
icon on the right. The icons were identical to two icons on the remote control. In the
DirectTouch conditions, the participant had to touch the left or the right shoulder of the
screen agent or the robot to make the decision.
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Figure 13.4: A decision point

13.2.4 Procedure

After reading an introduction that explained the structure of the experiment the
participants started with a training session. In this session, the participants watched
an unrelated interactive movie that only had one decision point, during which the
participants could make the decision using a remote control. Afterwards, they had
the opportunity to ask questions about the process of the experiment. Next, the
participant was randomly assigned to one of the between-participant conditions, that
each consisted of two movies in a random order and a questionnaire after each movie.
Overall the within and between conditions were counterbalanced. The participant
received five Euros for their efforts.

13.3 Results

The mean scores for all measurements, including their standard deviations are
presented in table 13.2 on the facing page and graphically in figure 13.5 on page 198.

A 2(Culture) × 2(Embodiment) × 2(Interaction) repeated measures ANOVA was
conducted. Interaction had no significant influence on any of the measurements.
Embodiment and culture both had significant influence on almost all measurements
(see table 13.3 on page 199).

Interaction was removed as a factor from the further analyses since it had no effect
on the measurements. The means for all remaining conditions are summarized in
figure 13.6 on page 198 and were used as the basis for further analysis.

Paired Sample t-Tests were performed across both culture conditions. The
measurements for Spatial Presence were significantly (t(42) = 2.235, p = 0.031)
higher in the ScreenAgent condition than in Robot. Negative Effects were significantly
(t(42) = 2.38, p = 0.022) higher in the Robot condition than in ScreenAgent.

Independent Samples t-Tests were performed. All measurements between the
Dutch and the Chinese participants differed significantly, except that Engagement in
the screen conditions just missed the significance level (t(41) = 2.007, p = 0.051).
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Table 13.2: Mean and standard deviation for all measurements

Embodiment Culture Interaction Measurement Mean Std.Dev.

ScreenAgent Chinese RemoteControl Spatial Presence 3.08 0.18
Engagement 3.35 0.37
Naturalness 3.17 0.32
Negative Effects 1.96 0.55

DirectTouch Spatial Presence 2.79 0.37
Engagement 3.28 0.41
Naturalness 2.92 0.61
Negative Effects 1.83 0.52

Dutch RemoteControl Spatial Presence 2.56 0.29
Engagement 3.17 0.51
Naturalness 2.75 0.50
Negative Effects 1.46 0.43

DirectTouch Spatial Presence 2.44 0.45
Engagement 2.84 0.58
Naturalness 2.58 0.74
Negative Effects 1.50 0.36

Robot Chinese RemoteControl Spatial Presence 2.99 0.20
Engagement 3.33 0.24
Naturalness 2.73 0.17
Negative Effects 3.28 0.42

DirectTouch Spatial Presence 2.72 0.59
Engagement 3.22 0.43
Naturalness 3.08 0.32
Negative Effects 3.35 0.52

Dutch RemoteControl Spatial Presence 2.51 0.25
Engagement 3.07 0.61
Naturalness 2.55 0.66
Negative Effects 2.9 0.40

DirectTouch Spatial Presence 2.26 0.41
Engagement 2.86 0.56
Naturalness 2.42 0.59
Negative Effects 2.52 0.82
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Table 13.3: F and p values for culture and embodiment

Factor Measurement F (1,39) p

Embodiment Spatial Presence 4.789 0.035
Engagement 0.515 0.477
Naturalness 4.335 0.044
Negative Effects 119.973 0.001

Culture Spatial Presence 19.490 0.001
Engagement 4.962 0.032
Naturalness 7.494 0.009
Negative Effects 24.491 0.001

13.4 Discussion

13.4.1 Culture effects

The participants’ cultural background clearly influenced the measurements. Chinese
participants perceived more presence than Dutch participants did in all conditions.
This result is in line with the results of Chua et al. (2005). It appears that the Chinese
take a more holistic view thereby appreciating the distributed media presentation
more than the Dutch. Like Chua et al. (2005) predicted, the Chinese and Dutch
allocated attentional resources differently as they viewed the distributed environment.
East Asians are known to live in a relatively complex social networks (Nisbett and
Masuda, 2003). It is essential for them to consider the context in which events
happen. Also the results of Sacau et al. (2005) appear to be confirmed. The more
agreeable Chinese perceived more spatial presence. One might suspect that the more
agreeable attitude of the Chinese might have let them simply to be more polite in
answering the questionnaire. The measurements show that they also gave higher
scores to Negative Effects and therefore did not simply respond politely.

None of Hofstede’s (1983; 1993; 1988) culture dimensions appear relevant to
presence at first sight. However, onemight speculate that the long-term orientation in
Chinese culture would result in more patience and tolerance towards imperfections.
In our case the Chinese participants might have more easily tolerated the noise
emitted by the robot and the occasional visibility of a microphone in the movie.
Further studies are necessary to investigate this issue.

13.4.2 Embodiment effects

The influence of embodiment on all measurements does not conform to the expected
results defined in the construct of presence. According to Lessiter et al. (2001),
“Whilst in the current study Negative Effects was not strongly correlated (positively or
negatively) with Engagement or Ecological Validity, it was significantly but modestly
(and positively) related to Sense of Physical Space”.
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However, in the results Spatial Presence and Naturalness are higher in the
ScreenAgent condition, while Negative Effects were higher in the Robot condition.
Negative Effects appear to have been affected by something else than presence.

During the experiment, the robot’s motor emitted noise, which caused the
participants to look at it. A moving physical object is potentially dangerous and hence
attracts attention. Clearly, the robot emphasized the participants feeling of being in
the room and not in the movie and thereby reducing the presence experience. The
screen character did not emit noise and is unable to pose a physical danger to the user.
It therefore did not attract as much attention as the robot did. One could have played
synthetic noise for the screen robot to equalize the variable of motor-based noise.

The participants frequently switched between looking at the movie and the robot
and hence their attention was divided. This switching made it hard for the users
to stay focused and might have caused the high negative experience. Eggen, Feijs,
Graaf, and Peters (2003a) showed that a divided attention space reduces the users
immersion. Further research is necessary to determine if divided attention increases
the negative effects of multiple displays. The extra costs necessary to build and
maintain a robot for an interactive movie appear unjustified in relation to its benefit.

13.4.3 Effects of direct touching

The interaction methods (using a remote control or touching directly) had no
influence on the measurements. The participants did not experience more or less
presence when they interacted with a remote control or with the screen/robot directly.
This is to some degree surprising, since the participants had to move actively to
interact with the screen agent or the robot by leaning forward and touching it directly,
where the actions and reactions are tightly coupled. With the remote control, the
participants remained leaned back. The necessity to make a choice might have
overshadowed the difference in physical movement. To create a compelling sense
of presence it might be useful to pay more attention to the physical output than to the
input.

13.4.4 Future Research

In this study, several factors were investigated besides the cultural background of
the participants. The Chinese participants in this study have been living in the
Netherlands and might therefore form a non-representative group of Chinese. They
might have been to some degree westernized, but one could speculate that the effects
observed in this studymight be even be stronger for Chinese participants that also live
in China. This experiment would need to be run in China to gain full understanding
of this issue. Furthermore, this study investigated several factors besides the cultural
background of the participants. It might be beneficial to conduct a dedicated study on
the influence of culture on presence. Such a study could then also cover more than
the two cultures investigated in this study. In addition, it appears necessary to further
connect the results of such a study to existing results in other research areas, such as
cross-cultural communication studies. Qualitative interview might help to gain better
insights into social and cultural viewpoints of the participants in relation to presence.



CHAPTER14
Conclusions

This chapter presents the conclusions related to the design process itself. After that
the resulting design is reflected on.

14.1 Reflection on the design process

If back to the early phase of the NexTV project, the initial focus was on the user. It
was clear that the technology for interactive TV was becoming available and Philips
was looking for new applications. That was how this PhD design project started. In
this phase, I worked closely with Magdalena Bukowska and other project partners
to make the user requirements explicit. The scenarios proposed by the children,
being the intended users, revealed two wishes: 1) An active role for the user; 2)
multiple input and output devices including robots. The results and viewpoints were
adopted by the other partners, notably, FhG FOKUS and NOB. In this phase. software
design was considered themain tool to perform the first exploration, bring distributed
applications alive.

NexTV ended with interesting demonstrators based on the TOONS movie,
including a StoryML implementation. The ICE-CREAM project picked up the
technical challenges of distribution as well as evaluation studies with users. DeepSea
and the first version of IPML are amongst the results of the ICE-CREAM project.
After that the project continued in the Department of Industrial Design of Eindhoven
University of Technology towards a full IPML implementation, taking it one step
further with other demonstrators including “TheInterview” application.

The following observation and conclusions seem justified.

• The design process has been an iterative one with three main iterations, where
each cycle produced in at least one complete demonstrator.

• User involvement occurred at specific phases in every design cycle, see section
section 2.1, chapter 12 and chapter 13.
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• The technical design work was indispensable for these requirements and the
user inputs which were based on real working demonstrators.

• Conversely, the requirements obtained were essential for each next design
iteration. For example, the need for more complex narratives rather than only
linear structures became clear at the end of NexTV.

• After ICE-CREAM, the DeepSea application showed the need for an open
architecture. The intertwining of the content (3D movie) and the dedicated
software platform did not allow for clear supplier roles such as content vendors
and platform vendors.

• Running the technical system with real users has an added value for the tech-
nical work as well: it reveals problems such as software bugs and performance
bottlenecks, not easily found when the designer tests the software in his own
laboratory.

• To prove that the architecture itself is easy to use for new applications, someone
else would have to build an application. This is precisely what happened: Rutger
Menges, Jan v.d. Asdonk, Laurie Scholten and Lilian Admiraal, four 2nd year
TU/e students created Mov’in where interactive pillows were used to explore
“emotional” interaction.

• For the technical design work the ABD method turned out to be useful for
identifying and reusing architectural patterns. It provides an architectural view
which would not be covered by objects and patterns alone.

• The formal methods used, notably Object-Z, Broy’s component based frame-
work, and the Petri net based OCPN and ASE were helpful: They are abstract
enough to make mechanisms explicit in a clear way and at the same time they
are concrete enough to see the structure of the implementation.

• It was not possible to formalize every aspect of the system. The system is far
too complex for that. Yet several of the most important design concepts were
covered by formalizing them in a pragmatic way.

• Several formalisms and several types of “syntactic sugar” had to be used to keep
things manageable. As an example, an earlier version of part II tried to describe
the build-up of connect topologies and the runtime concurrent behavior of these
topologies in one specification using Timed Communication Object-Z (TCOZ).
It became so complex that the formalization was not helpful anymore.

14.2 Reflection on the resulting design

With respect to the resulting design, all the design decisions have been mentioned
already in part II and part III. Here only the main conclusions are given.
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• On top of existing network technologies and platform architectures, a generic
architecture has been designed to enable playing IPML in a networked environ-
ment with user preference and dynamic configurations taken into account.

• The architecture has been implemented and tested in Java. In total 40,542
lines of Java source code created 324 classes. The architecture has been used in
experiments with up to five different hardware platforms: desktop PCs, tablet
computers, handheld devices (iPAQ, iPronto), LEGO Mindstorms RCX and
programmable micro controllers such as Velleman K8000. Although it was all
implemented in Java, the underlying software infrastructure varies, including
the standard JVM from Sun microsystems on both Windows and Linux, the
Kaffe JVM for iPAQ with the Familiar Linux distribution, Insignia Jeode JVM
for PocketPCs, Tao intent JVM on iPronto, and LeJOS Virtual Machine on Lego
Mindstorms RCX.

• During the design process existing scientific and engineering results were
imported and used on every possible occasion. Examples are SMIL and XML
as the basis for IPML, CORBA for communication channel services, JINI
for service registration and lookup, MPEG-2, MPEG-4, MP3 and QuickTime
for content elements, Object-Z, Broy’s component based framework and Petri
nets for formalization, design patterns and object oriented design for software
structures, Hardman’s taxonomy of time concepts in multimedia applications,
research studies on the experience of presence and fun, and Hofstede’s theory
of culture dimensions.

• There are also contributions to the body of scientific and engineering results
(beyond the design results themselves, of course). Examples are the method
of rapid robotic prototyping (section 2.4), the extension of Petri nets as
action synchronization engine, and new architectural patterns such as Timed
Action (section 6.1), Synchronizable Object (section 6.2), Real-time Channel
(section 7.3) and Streaming Channel (section 7.4).

• The results of chapter 12 offer preliminary insights on how distribution, level
of control and number of users influence user’s fun and presence experience
in an AmI movie, notably the influence of the level of control and the number
of the users on their experiences. The influence of distribution on the user’s
experiences is also observed and there can be an effect depending on the type
of the distributed content and how the distribution is arranged.

• An effect of cultural background upon the perception of presence in a dis-
tributed setting (chapter 13) was found. As far as known this is the first study to
experimentally confirm this long-standing conjecture.
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Summary

The concept of Ambient Intelligence (AmI) is introduced by Philips Research as a new
paradigm in how people interact with technology. It envisions digital environments
to be sensitive, adaptive, and responsive to the presence of people. This PhD project
believes that AmI environments will change the way people use multimedia services.
The environments, which include many devices, will play interactive multimedia to
engage people in a more immersive experience than just watching television shows
or listening to radio programs. People will interact not only with the environment
itself, but also with the interactive multimedia through the environment.

For many years, the research and development of multimedia technologies have
increasingly focused on models for distributed applications, but the focus was mainly
on the distribution of the media sources. Within the context of AmI, not only are the
media sources distributed, the presentation of and the interaction with the media will
also be distributed across interface devices. This PhD project focuses on the design
of the structure of multimedia content and the distributed interfaces, believing that
the user experience of multimedia in a distributed environment can be enriched by
structuring both the media content at the production side and the playback system
architecture at the user side in a proper way. The structure should enable both
the media presentation and the user interaction to be distributed and synchronized
over the networked devices in the environment. The presentation and interaction
should be adaptive to the profiles and preferences of the users, and the dynamic
configurations of the environment.

The design process went through three design iterations, following a spiral model.
The first iteration was needed to get some first-hand experience and the preliminary
requirements. It was concluded with the structure of StoryML and a demonstrator
TOONS, which put the requirements for the second iteration on a stable foundation.
More user requirements and technical challenges emerged in the second iteration
during the development of the demonstrator DeepSea. DeepSea was used for the user
evaluation of the concept of interactive multimedia in distributed environments. The
design and development were brought forward based on the technical requirements
and the experience gained from the second iteration. The design was completed with
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a full implementation of the proposed architecture, based on open standards and
technologies. Three more demonstrators (TOONS in IPML, TheInterview, Mov’in)
were built to validate the design. TheInterview was used to test the effect of the
user’s cultural background on their perception of presence in interacting with these
multimedia presentations in a distributed setting. During the project, the proposed
architecture was used in implementing applications for various projects, ranging
from a big EU project together with professional developers, to a small educational
project by a team of four second year university students. Each resulted in a working
demonstrator or prototype.

During the design process, several formal methods were used, including Object-
Z, Broy’s component based framework, and the Petri net based OCPN and ASE. The
formal approaches were helpful: They are abstract enough to make mechanisms
explicit in a clear way and at the same time they are concrete enough to see the
structure of the implementation. However it was not possible to formalize every
aspect of the system. The system is far too complex for that. Several formalisms
and several types of “syntactic sugar” were used to keep things manageable. Yet the
most important design concepts were covered by formalizing them in a pragmatic
way.

As a direct result of this design, a generic architecture has been implemented
on top of existing network technologies and platform architectures, to enable playing
IPML scripts in a networked environment with user preference and dynamic config-
urations taken into account. Aside from the architecture, this project also contributed
to the body of scientific and engineering results. Examples are the method of rapid
robotic prototyping, the extension of Petri nets as action synchronization engine, and
new architectural patterns such as Timed Action, Synchronizable Object, Real-time
Channel and Streaming Channel.

The results of user evaluations offer preliminary insight into how distribution,
level of control and number of users influence user’s fun and presence experience in
interacting with an AmI movie. Notably the level of control, and the number of the
users, have a positive influence on the user experience. The influence of distribution
on the user experiences is also observed and there can be an effect depending on
the type of the distributed content and how the distribution is arranged. An effect of
cultural background upon the perception of presence in a distributed setting is also
observed. As far as known, it is the first time that the long-standing conjecture on
this effect is confirmed experimentally.



Samenvatting

Het concept van Ambient Intelligence (AmI) is geïntroduceerd door Philips Research
als een nieuw paradigma voor interactie tussen mens en technologie. In deze
visie worden omgevingen met digitale technologie sensitief, adaptief en responsief
met betrekking tot de aanwezigheid van mensen. Dit promotieproject gaat uit van
de overtuiging dat AmI-omgevingen veranderingen teweeg zullen brengen in de
manier waarop mensen multimedia-diensten gebruiken. De omgevingen, waarin
veel apparaten een rol spelen, zullen interactieve multimedia afspelen om mensen
te betrekken in een ervaring die veel meer een totaalervaring is dan gewoon kijken
naar televisieshows of luisteren naar radioprogramma’s. Mensen hebben niet alleen
interactie met de omgeving zelf, maar via die omgeving ook met de interactieve
multimedia.

In de loop der jaren zijn het onderzoek en de ontwikkeling van multimedia
technologieën steeds meer gericht op modellen voor gedistribueerde toepassingen,
maar de nadruk lag vooral op de distributie van de mediabronnen. In de context van
AmI zijn niet alleen de mediabronnen gedistribueerd, maar zullen ook de presentatie
van en de interactie met de media over interface-apparaten gedistribueerd zijn. Dit
promotieproject richt zich op het ontwerp van de structuur van demultimedia-inhoud
en de gedistribueerde interfaces, vanuit de overtuiging dat de gebruikerservaring
van multimedia in een gedistribueerde omgeving verrijkt kan worden door zowel de
media-inhoud aan de productiezijde als het afspeelsysteem aan de gebruikerszijde
op een goede manier te structureren. Deze structuur moet mogelijk maken dat
zowel de mediapresentatie als de gebruikersinterface worden gesynchroniseerd en
gedistribueerd over de genetwerkte apparaten in de omgeving. De presentatie en
interactie moeten adaptief zijn met betrekking tot de profielen en de voorkeuren
van de gebruikers, alsmede met betrekking tot de dynamische configuraties van de
omgeving.

In het ontwerpproces zijn drie ontwerpiteraties doorlopen volgens een spiraalmo-
del. De eerste iteratie was nodig om eerste ervaringen op te doen en om een voorlopig
programma van eisen te verkrijgen. Ze werd afgeslotenmet de structuur van StoryML
en een demonstratie opstelling TOONS, hetgeen een degelijke basis leverde voor
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het programma van eisen van de tweede iteratie. Aanvullende gebruikerseisen
en technische uitdagingen kwamen tevoorschijn tijdens de tweede iteratie bij de
ontwikkeling van de DeepSea-demonstratie-opstelling. DeepSea is gebruikt voor de
gebruikersevaluatie van het concept van interactieve multimedia in gedistribueerde
omgevingen. Het ontwerp en de ontwikkeling borduurden voort op de technische
eisen en de ervaringen van deze tweede iteratie. Het ontwerp is afgerond met
een volledige implementatie van de voorgestelde architectuur, die geheel gebaseerd
is op open standaarden en technologieën. Drie extra demonstatie-opstellingen
(TOONS in IPML, TheInterview, Mov’in) zijn gebouwd om het ontwerp te valideren.
TheInterview is gebruikt om het effect te onderzoeken van de culturele achtergrond
van de gebruikers met betrekking tot hun waarneming van ‘presence’ tijdens de
interactie met de multimediapresentie in een gedistribueerde opzet. Tijdens het
project is de voorgestelde architectuur gebruikt om toepassingen voor verschillende
projecten te implementeren, variërend van een groot EU-project met professionele
ontwikkelaars, tot een klein educatief project door een groep van vier tweedejaars
universiteitsstudenten. Elk resulteerde in een werkend demonstratiemodel of proto-
type.

Tijdens het ontwerptraject zijn verscheidene formele methoden gebruikt, inclu-
sief Object-Z, het op componenten gebaseerde raamwerk van Broy, en de op Petri-
netten gebaseerde OCPN en ASE. De formele methoden bleken nuttig: enerzijds zijn
ze abstract genoeg om bepaalde mechanismen op een duidelijke manier te explici-
teren, anderzijds zijn ze voldoende concreet om de structuur van de implementatie
nog te kunnen zien. Het was echter niet haalbaar om elk aspect van het systeem te
formaliseren. Daarvoor is het systeem veel te complex. Verscheidene formalismen
en verscheidene soorten ‘syntactische suiker’ zijn gebruikt teneinde een en ander
hanteerbaar te houden. Nochtans zijn de voornaamste ontwerpconcepten afgedekt
door ze op een pragmatische manier te formaliseren.

Als direct resultaat van dit ontwerp is een generieke architectuur gerealiseerd
bovenop bestaande netwerktechnologieën en platformen, die het mogelijk maakt om
IPML scripts af te spelen in een genetwerkte omgeving, rekening houdend met de
voorkeuren van de gebruikers en met dynamische configuraties. Naast de genoemde
architectuur heeft het project ook bijgedragen aan de stand van wetenschappelijke
kennis en techniek. Voorbeelden zijn de methode van ‘rapid robotic prototyping’,
de uitbreidingen van Petri-netten tot ‘action synchronisation engine’, en een aantal
nieuwe architectuurpatronen zoals Timed Action, Synchronizable Object, Real-time
Channel en Streaming Channel.

Daarnaast verschaffen de gebruikersevaluaties voorlopige inzichten hoe de mate
van distributie, de mate van ‘control’ en het aantal gebruikers van invloed zijn op het
plezier en presence-beleving bij een AmI-film. Met name de mate van control en het
aantal gebruikers hebben een positieve invloed op de beleving van de gebruikers. De
invloed van distributie op de beleving van de gebruikers is ook waargenomen en er
kan een effect zijn, afhankelijk van de aard van de gedistribueerde inhoud en hoe de
distributie in elkaar steekt. Ook is een effect van culturele achtergrond waargenomen
op de perceptie van presence in een gedistribueerde opzet. Voorzover bekend is het de
eerste keer dat deze reeds lang bestaande hypothese experimenteel bevestigd wordt.



Curriculum Vitae

Jun Hu is born on the 11th of February (Lunar calendar), 1969, in Jiangsu, China. In
1990, He graduated cum laude from Northwest University (Xi’an) with a Bachelor
of Science degree in Computational Mathematics. He was then working on digital
signal processing, information management systems and computer aided design
systems, for computational centers of an oil exploration company in Nanjing and a
constructionmachinery company in Xi’an, with qualified titles of Senior Programmer
and later System Analyst.

While working, he started his study again at Northwest University in 1996. He
graduated cum laude and received a Master of Engineering degree in Computer
Science in 1999. His dissertation Content-based Retrieval of a Medical Image Database
was awarded Outstanding Master Thesis by the university.

After some journeys he then moved to Holland and joined a 2-year postmaster
program in User-system Interaction at Eindhoven University of Technology. In 2001
he finished the project Distributed Interfaces for a Time-based Media Application at
Philips Research and received a Professional Doctorate in Engineering degree.

He continued the research and design of distributed architectures for interactive
media as a PhD project, at the department of Industrial Design of Eindhoven
University of Technology, in cooperation with Philips Research. Since 2003, he
has been a teacher at this department, where the students are determined to design
“intelligent products and services”.

233



This book comes with a CD-ROM. It contains a PDF copy of this thesis,
including the background materials, the glossary and the index that
are not printed herein. The content contained on this CD-ROM is
copyrighted and all rights are reserved by the author.



Background materials

235





BACKGROUND MATERIALA
Rapid Robotic Prototyping1

An increasing number of robots are being developed to directly interact with humans.
This can only be achieved by leaving the laboratories and introduce the robots to
the real world of the users. This may be at home, work or any other location that
users reside. Interactive robots are already commercially available, such as Aibo
(Sony, 1999), SDR (Sony, 2002) and the products of the iRobot company (iRobot,
2003). Their applications range from entertainment to helping the elderly (Gemperle,
DiSalvo, Forlizzi, and Yonkers, 2003), operation in hazardous environments (iRobot,
2003) and especially for this project, interfaces agents for AmI homes (Aarts et al.,
2001).

A major problem for the development of such robots is the definition of user
requirements. Since the users have usually no prior experience it is impossible to
simply interview them on how they would like their robot to be. To overcome this
problem a rapid robotic prototyping method has been used that directly relates to the
well-known rapid software prototyping method.

A.1 Problem Definition

Humans have generally very limited experience interacting with robots. Their
experiences and expectations are usually based on movies and books and therefore
cultural dependent. The great success of robotic show events, such as RoboFesta
(2002) and Robodex (2002), show that Japanese have a vivid interest in robots and
consider them as partners to humans. Their positive attitude may be based on years
of Anime cartoons, starting in the fifties with “Astro Boy” (Tezuka, 2002) and later in
“Ghost in the Shell” (Ito, 1992) in which robots save humanity from various threats.
In comparison, the attitude of Europeans is less positive. The success of movies such
as “2001 Space Odyssey” (Kubrick, 1968), “Terminator” (Cameron, 1984) and “The

1This part of work is revised from a paper written together with Christoph Bartneck, published in the
proceedings of the 8th Conference on Intelligent Autonomous Systems (IAS-8) (Bartneck and Hu, 2004).
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Matrix” (Wachowski and Wachowski, 1999) shows a deep mistrust towards robots.
The underlying fear is that robots might take over control and enslave humanity.

Against such a cultural load, the appearance of robots is of major importance.
It determines the attitude and expectations towards it. If, for example, it has a very
human form people are likely to start talking to it and would expect it to answer. If
the robot cannot comply with these expectations, the user will have a disappointing
experience (Diederiks, 2003).

The problem lies in the exact definition of how such a robot should look and how
it should behave. It is not possible to draw these requirements directly from users by
interviewing them, since they have no prior experience and are largely influenced by
culture as mentioned above. These difficulties should not tempt developers to ignore
these requirements. Too often complex and expensive robots are developed without
these requirements in mind (Bondarev, 2002). Once such a robot is finished and
showed to users it often conflicts with the user’s needs and expectations and therefore
does not gain acceptance.

Typical challenges in the development process of robots are discussed first, then a
method to tackle them is proposed.

A.1.1 Design challenges

Shape To reduce development costs many parts of a robot are based on standard
components. They are usually stacked on top of each other and once it is operational
a shell is build around it to hide it from the user. The shape of the robot is
only considered after the technology is built (Bondarev, 2002). Humans are very
sensitive to proportions of anthropomorphic forms and therefore these robots are
often perceived as mutants due to their odd shapes. The evolution of Honda’s Asimo
(Honda, 2002) is a positive example of integrating technology into a natural shape .

Purpose Building robots is a challenging and exciting activity and some engineers
build robots only for the fun of it. However, a robot in itself is senseless without a
purpose. A clear definition of its purpose is necessary to deduct requirements which
in turn increase the chance of the robot to become a success. An unfortunate example
of a wrong purpose is Kuma (Hafner, 1999). It was intended to reduce the loneliness
of elderly people by accompanying them during watching Television. It is unclear how
that would increase human contact and hence tackle the root of the problem. A robot
that improves communication (Gemperle et al., 2003) would be more successful.

Social role The robot will show intentional behavior and therefore humans will
perceive the robot to have a character (Bartneck, 2002). Together with its purpose
the robot plays a social role, for example the one of a butler. Such a role entails certain
expectations. For example, you would expect a butler to be able to serve you drinks
and food. A robot that would only be able to do the one and not the other would lead
to a disappointing experience.

Environment To be able to define the purpose and role of the robot it is necessary to
consider its environment. What are the characteristics of it in terms of architectural
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and social structures? Sony’s Aibo, for example, is not able to overcome even a small
step and therefore its action range is much more limited than the one of every dog.
This results in some frustration of its owners (Menzel and D’Aluisio, 2000).

Technical challenges Although people have different ideas of what constitutes a
robot, most of the specialists agree that robots should at least have a programmable
brain, a number of actuators that affect the environment, and possibly some sensors
keep tracking the environment. The robot’s computer or processor as the brain
controls the actuators, such as electric motors, solenoids, and hydraulic or pneumatic
systems, to make physical movements. Many robots have sensory systems, and few
have the ability to see, hear, smell or taste. The most common robotic sense is the
sense of movement - the robot’s ability to monitor its own motion. These are the
basic nuts and bolts of robotics. Specialists can combine these elements in an infinite
number of ways to create robots of unlimited complexity.

Building real robots is hard. Robots are complex systems which rely on software,
electronics and mechanical systems all working together. It requires the specialists
to have the knowledge and skills that cover all these disciplines to bring a robot
alive. Building robots such as the NASA’s Mars Pathfinder (Nasa, 2003) and the
Honda’s Asimo (Honda, 2002) is a mission impossible for an individual. A team
of top scientists and engineers from different backgrounds need to work together
closely in order to build such robots. These robots are therefore very expensive. Small
robots such as Sony’s Aibo are not cheap either. Although it is designed for home
entertainment and many families can afford one of the Aibo, Sony must have paid a
fortune for the designers, researchers and engineers in order to bring such a not-so-
expensive product into the market. Most robots to date have been more like kitchen
appliances. Specialists build them from the ground up for a fairly specific purpose.
They cost a lot but do not adapt well to radically new applications.

There are also obstacles that lie in the software design, specifically for human-
like robots. People may expect such robots to talk and think only because they
look like they can. Technologies such as speech recognition are still at a level of
pattern matching of sound signals and not yet mature enough to understand the
conversations. Artificial Intelligence may help the robot to understand, but AI itself
is still largely theoretical. AI is arguably the most exciting realm in robotics and has
successfully made computers to solve certain problems and learn in a limited capacity
but still many challenges remain. Those who expect off-the-shelf solutions from the
AI often get disappointed.

Empirical evaluation Another challenge in the development of interactive robots
is the definition of measurable benefits. These benefits are influenced by the
interaction with humans and hence difficult to measure. A wide range of methods
and measurement tools are available from the human computer interaction research
area (Nielsen, 1993) to help with the evaluation. Here only some of the common
challenges that developers experience in the evaluation process are described.

The first is of course not to do any evaluation. Simply stating that a certain
robot is fun to interact with is nothing more than propaganda. A first difficulty
in the evaluation process is to clearly define what the actual benefit of the robot



240 Rapid Robotic Prototyping

should be, how it can be measured and who the target user group is. Especially
for vague concepts, such as “fun”, it is difficult to find validated measurement tools.
Furthermore, too few participants that are possibly even colleagues of the developers
also often compromise the tests. A small and technical oriented group of participants
does not allow a generalization across the target group. The participants need to come
from the group of intended users. A problem with these users is the novelty effect
(Bartneck, 2002; Diederiks, 2003). Interacting with a robot is exciting for users that
have never done it before and hence their evaluation tends to be too positive.

A.2 Solution

Similar problems and difficulties as described above exist also in software engineer-
ing. The similarity of the problems and difficulties lie in the software engineering
suggests that the principles of rapid prototyping may also be applicable in the
development of interactive robots.

A.2.1 Rapid prototyping in software engineering

Requirements definition is crucial for a successful software development, but it
is often found to be difficult if only interviewing the users. Some users either
have expectations for computers that is high enough to lead requirements to more
than what is really needed, or disbelieve computers can solve certain problems
thus unconsciously hide the requirements from the developers. With limited prior
experience of existing software solutions, very often the users can not specify precisely
the requirements until they experience some of the solutions. Lacking of the user’s
domain knowledge, the software developers also often find it hard to explain to the
users what is feasible until they manage to visualize the ideas.

To tackle the problem, the rapid prototyping model is introduced against the
framework of the conventional water-fall life cycle models (Clapp, 1987; Davis, 1982;
Luqi and Berzins, 1988). The rapid prototyping model strives for demonstrating
functionality early in the development of a software development, in order to
draw requirements and specifications. The prototype provides a vehicle for the
developers to better understand the environment and the requirements problem
being addressed. By demonstrating what is functionally feasible and where the
technical weak spots still exist, the prototype stretches their imagination, leading to
more creative and realistic inputs, and a more forward-looking system.

Not only does rapid prototyping help to increase the software correctness with
regard to its functionality, but also it improves its usability by involving the end users
in the early development (Nielsen, 1993). It provents the developers from focusing
only on the functionality then later struggling to find a usable wrapping outfit for the
end users. The development of the final system can bemuch faster andmuch cheaper
by involving early usability evaluation based on the prototypes.

The final software system should not be an isolated thing. It has to fit into certain
hardware and software environments, and has to have a proper role in the user’s social
activities (Laurel, 1993). Rapid prototyping provides a test bed for the developers to



A.2 Solution 241

study where the fence line and the gates of the system should be, and how well it
can live along with the neighborhood. By experiencing with the prototype, hence with
a better understanding how the human-computer activities could be redefined and
reallocated, the usersmay provide valuable requirements and suggestions for a clearer
definition of the role of the system in these activities that fits the user’s expectations.

Before elaborating the details of rapid robotic prototyping, let’s first have a look at
what makes it different from software prototyping and why it is worth a discussion.

A.2.2 Difference between robotic prototyping and software prototyp-
ing

The first difference is that the target system of robotic prototyping is a robot, which
has its physical existence in the 3D world, while a software system is just an artifact
that exists digitally in a virtual space. One of the most important goals of rapid
robotic prototyping is to investigate the user requirements of the physical appearance
and behavior, hence implementing a robotic prototype is not just programming
to give it intelligence, but more importantly, to build its physical embodiments.
Software prototyping often uses existing software packages, modules and components
to accelerate the process, while robotic prototyping often needs electronic and
mechanical building blocks.

The physical embodiments of the interactive robots encourage naturally the tactile
human-robot interaction. The user and the robot exchange the tactile information,
ranging from force, texture, gestures to surface temperature. The tactile interaction
is seldom necessary in most of the software systems, the interfaces of which are often
confined in a 2D screen. The 2D interfaces of such could be easily prototyped using
low-fidelity techniques such as paper mock-ups, computer graphics and animations,
whereas these techniques are not suitable for prototyping the tactile interaction that
is essential to most of the interactive robotic systems.

Another difference lies in the intermediate prototype. The prototypes built during
the software prototyping can possibly be evolving or growing into a full functioning
system. This is so called evolutionary prototyping. During the process of evolution,
a software design emerges from the prototypes. Rapid robotic prototyping proposed
here is only for quickly eliciting the user requirements. To make the process faster,
the efficiency, reliability, intelligence and the building material of the robot is less of
importance. Hence the prototypes produced in robotic prototyping are not intended
to be ready for industrial reproduction.

A.2.3 Rapid robotic prototyping techniques

Keeping these differences in mind, it is now ready to review the often used proto-
typing techniques and propose the corresponding methods in robotic prototyping,
following two dimensions of robotic prototyping: Horizontal prototyping realizes
the appearance but eliminates depth of the behavior implementation, and vertical
prototyping gives full implementation of certain selected behaviors. If the focus is
on the appearance or the interface part of the robot, horizontal prototyping is needed
and it results in a surface layer that includes the entire user interface to a full-featured
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robot but with no underlying functionality; if prototyping is to explore the details of
certain features of the robot, vertical prototyping is necessary in order to be tested in
depth under realistic circumstances with real user tasks.

Scenarios Without any horizontal and vertical implementation, scenarios are the
minimalist, and possibly the easiest and cheapest prototype in which only a single
interaction session is described, encapsulating a story of a user interacting with
robotic facilities to achieve a specific outcome under certain circumstances over a
time interval. As in software prototyping, scenarios can be used during the early
requirement analysis to inspire the user’s imagination and feedback without the
expense of constructing a running prototype. The form of the prototype can be a
written narrative, or detailed with pictures, or even more detailed with video.

Paper mock-ups In software prototyping, paper mock-ups are usually based on the
drawings or printouts of the 2D interface objects such asmenus, buttons, dialog boxes
and their layout. They are turned into functioning prototypes by having a human “play
computer” and present the change of interface whenever the user indicates an action.
The system is horizontally mocked up with low fidelity techniques, vertically faked
with human intelligence.

Although they are also very useful in robotic prototyping to make the scenarios
interactive, paper mock-ups in robotic prototyping are of even lower fidelity. In
software prototyping, 2D interfaces are mocked up with the 2D objects on paper. To
reach the same fidelity level in robotic prototyping, the 3D robot should be mocked-
up with a box of sculptures or 3D “print-outs” instead of a pile of drawings, which
is time-consuming and expensive, though technically possible. Prototyping the 3D
robotic appearance and behavior on 2D paper is just like prototyping the 2D software
interface on a 1D line. Too much fidelity is lost. This argument has led us to mock-up
the robots using robotic kits.

Mechanical Mock-ups To keep the horizontal fidelity to a certain level, it is necessary
to mock up the physical 3D appearance andmechanical structure of the robot. Robotic
kits such as Evolution Robotics (Idealab, 2003) and LEGOMindstorms (LEGO, 2003)
are good tools to build such mock-ups. These kits come with not only common
robotics hardware such as touch sensors, rotation sensors, temperature sensors, step
motors and video cameras, but also mechanical parts such as beams, connectors and
wheels, and even ready made robot body pieces and joints. One can assemble a robot
easily and quickly according to the needs, and can expect less workload of mechanical
and electronic design.

To make a mock-up, only mechanical parts are needed to build up the skeleton.
With some simple clothing, the robot appearance can be built with a higher fidelity.
The behavior of the robot can be faked up by a human manipulating the prototype
like a puppet show, according to the designed interactive scenario.

Wizard of OZ The person who “plays computer” using paper mock-up or who
“operates the puppet” using the mechanical mock-up can be a disturbing factor since
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the user may feel interacting with the person, not the robot. One way to overcome
this is using the Wizard of OZ technique. Instead of operating the robot directly, the
person plays as a “wizard” behind the scene and controls the robot remotely with a
remote control, or from a connected computer. If controlled with a remote control,
the “wizard” takes the role of the sensors by watching the user in a distance, and
the role of the robot’s brain by make decisions for the robot. If controlled from a
connected computer, the “wizard” only acts as the brain.

The prototype needed is more complicated than the mechanical mock-up. It has
to be equipped with robotic hardware such as power supply, sensors, actuators and
a minimal power of processing to control sensors and actuators. A connection to a
remote computer is also needed.

To keep it easy and simple, these robotic components from the LEGOMindstorms
have been used in our projects. These components are shaped nicely to fit with other
mechanical parts, so that the mechanical mock-ups can be upgraded to “Wizard of
OZ” prototypes easily without building from the ground.

Prototypes with high fidelity of intelligence Using a human to take the role of the
robot’s brain in above techniques pushes the vertical prototyping to an extreme –
the robot tends to be smarter than it should be. In many cases there is a need to
prototype the intelligent behavior with a higher fidelity, for example, to investigate
how the appearance and the behavior match each other, to discover where the
technical bottlenecks are, and to observe how the robot interacts with its physical
environment. In short, it is possibly necessary to program the robot to enable its
machine intelligence.

Many robots use a generic computer as its central processing unit. When it is too
big to fit into the robots body, the computer is often “attached” to the robot via a wired
or wireless connection. The advantage is that the programming environment is not
limited by a specially designed robotic platform. The developer can choose whatever
is convenient. The disadvantage is that the connection between the body and brain
might become a bottleneck. The mobility of the robot is limited by the distance of the
connection, and the performance is limited by the quality of the connection.

It would be better that the robot has its embodied processing unit that comes with
an open and easy programming environment. This brings the LEGO Mindstroms
on the table again. From the set, the RCX is programmable, microcontroller-based
brick that can simultaneously operate three motors, three sensors, and an infrared
serial communications interface. The enthusiasts have developed various kinds of
firmware for it, which enables programming in Forth, C, and Java, turning the brick
into an excellent platform for robotic prototyping (Bagnall, 2002).

Once the platform is selected, a good strategy of modeling and programming
the robot helps to speed up the prototyping process. Considering the memory and
processing power limitations of the RCX, the behavior-based AI model was used and
a design pattern for the robots was developed in our projects. The behavior-based
approach does not necessarily seek to produce cognition or a human-like thinking
process. Instead of designing robots that could think intelligently, this approach aims
at the robots that could act intelligently, with successful completion of a task as the
goal. The similarty of the low level behavior of these robots leads us to develop an
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object-oriented design pattern that can be applied and reused.

A.3 Examples

Next four examples are introduced briefly, in which the rapid robotic prototyping has
been successfully used to gain insight into user requirements. The first two examples
are from this PhD project.

A.3.1 Tony

Tony is designed for an interactive television show as a companion robot for the
audience in the NexTV project. Using LEGO Mindstorms, the first version of Tony
(figure A.1(a)) was quickly built and shown to the users. The results from the user
evaluation changed the role of Tony from a simple control device to a companion
robot (figure A.1(b), figure A.1(c)). Tony watches the show together with the user, at
the same time performing certain actions and behaviors according to the requests
from the show and influencing the show back according the instructions from the
user (Hu, 2001, 2003). More implementation details can also be found in chapter 11.

(a) version 1.0 (b) version 1.5 (c) version 2.0

Figure A.1: Tony

A.3.2 LegoMarine

LegoMarine (figure A.2 on the next page) is developed for the DeepSea application in
the ICE-CREAM project. The 3D virtual world in the movie is extended and connected
to the user’s environment by distributing sound and lighting effects and using
multiple displays and robotic interfaces. LegoMarine was designed and developed
as the physical counterpart of a submarine in the virtual underwater. The user can
direct the virtual submarine to navigate in the 3D space by tilting LegoMarine, or
speed the submarine up by squeezing it. When the submarine hits something,
LegoMarine also vibrates to give tactile feedback. The other behaviors of both are
also synchronized, such as the speed of propeller and the intensity of the head lights.
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At the beginning of the project, engineers from de Pinxi built an robotic submarine by
putting sophisticated electronics into a shell striped from a toy submarine, but later
found out it is impossible to frequently change the shape and functions according
to the user’s feedback. So the LegoMarine was born. LegoMarine does not move as
many other robots does, but it is still considered as a robot because the device alone
as a toy has its autonomous behavior, not only being reactive to user’s interaction,
but also being proactive to show certain behavior even when nobody is playing with
it. It also adapts to the environment – if there is no other device around, it acts as a
standalone toy, but if it is placed in a AmI environment it communicates with other
devices to about the user interactions and listens to the requests from the others to
perform and to behave. More implementation details of LegoMarine can be found in
chapter 11.

Figure A.2: LegoMarine Figure A.3: eMuu

A.3.3 eMuu

eMuu (figure A.3) is intended to be an interface between an AmI home and its
inhabitants (Bartneck, 2002). To gain acceptance in the homes of users the robot
needs to be more than operational. The interaction needs to be enjoyable. The
embodiment of the robot and its emotional expressiveness are key factors influencing
the enjoyability of the interaction. Two embodiments (screen character and robotic
character) were developed using the Muu robot (Okada, 2001) as the base for the
implementation. The sophisticated technology of Muu was replaced with Lego
Mindstorms equipment to quickly go though several prototyping cycles. The final
version added an eyebrow and lip was added to the body to enable the robot to
express emotions. The rapid robotic prototyping method was valuable to the project
because the goal of the project was not to establish a convincing technical solution,
rather, to experiment with different shapes and to find proper facial constructs
for the evaluation how the embodied interaction and the robot’s facial expressions
would help the user to communicate with the AmI environments. The evaluation
of the robot showed that the embodiment did not influence the enjoyability of the
interaction, but the ability of a robot to express emotions had a positive influence.
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A.3.4 Mr. Point, Mr. Ghost and Flow Breaker

These robots are developed for the research on the gaming experiences. Mr. Point
(figure A.4(a)) and Mr. Ghost (figure A.4(b)) were created for the well-known Pac
Man game, as support robots respectively for the player and the ghosts in the game
(de Graaf and Feijs, 2002). From this study the researchers learned that it is
difficult to attract the attention of the users to the perception space formed by the
physical agents. This observation led the researcher to explore physical and on-screen
strategies to break game flow in an effective and user acceptable way. The prototype
of Mr. Point was reused again, but renamed to Flow Breaker (figure A.4(c)), with
some modifications to fit onto the physical Pac Man maze (Eggen, Feijs, and Peters,
2003b). These studies were conducted by the researchers who are also specialists in
electronics and software. To build prototypes quickly, it is not necessary for them to
use robotic kits to speed up the process. Still, these robots reflect the principles of
rapid robotic prototyping: reusing existing components, building simple prototypes
quickly and evaluating with real users.

(a) Mr. Point (b) Mr. Ghost (c) Flow Breaker

Figure A.4: Game Support Robots

A.4 Discussion

Rapid prototyping is a powerful method for defining the user requirements for
interactive robots, as it is in software engineering. Many prototyping techniques from
software engineering are still valid, but need to be adjusted for the nature of robots
and the tactile human-robot interaction. Non-specialists were encouraged to use
robotic kits such as Lego Mindstorms to build robotic prototypes. In the experience
of this project, using robotic kits simplifies and accelerates the prototyping process.

In this project, it also noticed that the Lego Mindstorms could not satisfy all the
needs for rapid prototyping. Limited memory and speed of the processor, limited
number of connected sensors and actuators, and poor infrared connections need a lot
of improvements. It opens an opportunity for the industry to develop better robotic
kits for prototyping and building interactive robots.



BACKGROUND MATERIALB
StoryML DTD (Document Type
Definition)

<?xml encoding="iso−8859−1"?>
< !−−

XML document type definition (DTD) for StoryML 1.0.
Date: 2003/05/30
Author: Hu, Jun < j .hu@tue.nl>

−−>

< !−− Generally useful entities −−>
< !ENTITY % id−attr "id ID #IMPLIED">
< !ENTITY % title−attr " title CDATA #IMPLIED">
< !ENTITY %media−attr "

src CDATA #IMPLIED
content CDATA #IMPLIED
actor IDREF #IMPLIED
type (audio|video|audiovisual

| text | image|behavior) ’ audiovisual ’
">

< !−− StoryML Document−−>
< !−−
The root element StoryML contains all other elements.

−−>

< !ELEMENT StoryML (environment?,story?)>
< !ATTLIST StoryML

%id−attr;
>

< !−− Environment Element−−>
< !−−

Environment contains Presentation actors .
−−>
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< !ELEMENT environment (actor∗)>
< !ATTLIST environment

%id−attr;
>

< !−− actor Element−−>

< !ELEMENT actor EMPTY>
< !ATTLIST actor

%id−attr;
type (audiovisual | robot) "audiovisual"

>

< !−− Story Element−−>

< !ELEMENT story ( storyline ∗, interaction +)>
< !ATTLIST story

%id−attr;
%title−attr;

>

< !−− Storyline Element−−>

< !ELEMENT storyline EMPTY>
< !ATTLIST storyline

%id−attr;
%media−attr;

>

< !−− Interaction Element−−>

< !ELEMENT interaction (dialog∗)>
< !ATTLIST interaction

%id−attr;
>

< !−− Dialog Element−−>

< !ELEMENT dialog (feedforward∗, response∗)>
< !ATTLIST dialog

%id−attr;
begin CDATA #IMPLIED
end CDATA #IMPLIED
wait CDATA #IMPLIED
type (immediate|delayed) "delayed"

>

< !−− Feedforward Element−−>

< !ELEMENT feedforward EMPTY>
< !ATTLIST feedforward

%id−attr;
%media−attr;

>

< !−− Response Element−−>
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< !ELEMENT response (feedback∗)>
< !ATTLIST response

%id−attr;
actor IDREF #IMPLIED
event CDATA #IMPLIED
switchto IDREF #IMPLIED
default (yes|no) "no"

>

< !−− Feedback Element−−>

< !ELEMENT feedback EMPTY>
< !ATTLIST feedback

%id−attr;
%media−attr;

>
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TOONS in StoryML

<?xml version="1.0"?>
<!DOCTYPE StoryML SYSTEM "StoryML.dtd">
<!−−

This is the XML document for TOONS.
Date: 2003/05/30
Author: Hu, Jun < j .hu@tue.nl>

−−−>
<StoryML>
<environment id="ToonsPlatform">
<actor id="tv" type="audiovisual" />
<actor id="Tony" type="robot" />

</environment>

<story id="TOONS" title="TOONS (c) ID, TU/e">
< storyline id="happygarden"
src="rtp:// localhost/happygarden.mpg" ="tv"/>

< storyline id="angrygarden"
src="rtp:// localhost/angrygarden.mpg" actor="tv"/>

< interaction >
<dialog id="sleepTony" begin="03000ms" end="24000ms" >
<feedforward content="sleeping"
type="behavior" actor="Tony" />

</dialog>

<dialog id="wakeupTony" begin="24000ms" end="170000ms" >
<feedforward content="awake"
type="behavior" actor="Tony" />

</dialog>

<dialog id="whichdoortoenter"
begin="34000ms" end="53000ms" wait="51000ms">
<feedforward content="exciting"
type="behavior" actor="Tony" />

<response actor="Tony" event="left"
switchto="happygarden" default="yes">
<feedback id="openleftdoor"
src="rtp:// localhost/left_door_open.mpg"
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type="video" actor="tv" />
</response>
<response id="openrightdoor"
actor="Tony" event="right" switchto="angrygarden">
<feedback id="openrightdoor"
src="rtp:// localhost/right_door_open.mpg"
type="video" actor="tv" />

</response>
</dialog>

<dialog id="happyTony" begin="55000ms" end="170000ms"
storyline ="happygarden">
<feedforward content="happy"
type="behavior" actor="Tony" />

</dialog>

<dialog id="happyTonybeboring" begin="127000ms" end="170000ms"
storyline ="happygarden">
<feedforward content="sad"
type="behavior" actor="Tony" />

</dialog>

<dialog id="sadTony" begin="55000ms" end="120000ms"
storyline ="angrygarden">
<feedforward content="sad" type="behavior" actor="Tony" />

</dialog>
</ interaction >

</story>
</StoryML>



BACKGROUND MATERIALD
DTD of IPML Extension to SMIL

D.1 IPML layout module

< !−− IPML Layout Module =−−>
< !−− file: IPML−layout.mod

This module extends the SMIL 2.0 Layout Module, by adding Actor
elements.

Date: 2004/10/30
Author: Hu, Jun < j .hu@tue.nl>

= −−>

< !−− = BasicLayout =−−>

< !−− = BasicLayout Profiling Entities = −−>

< !ENTITY % SMIL.layout. attrib "">
< !ENTITY % SMIL.region.attrib "">
< !ENTITY % SMIL.rootlayout. attrib "">
< !ENTITY % IMIL.actor . attrib "">

< !ENTITY % SMIL.layout.content "EMPTY">
< !ENTITY % SMIL.region.content "EMPTY">
< !ENTITY % SMIL.rootlayout.content "EMPTY">
< !ENTITY % IPML.actor.content "EMPTY">

< !−− = BasicLayout Entities = −−>
< !ENTITY % SMIL.common−layout−attrs "

height CDATA ’auto’
width CDATA ’auto’
%SMIL.backgroundColor.attrib;

">
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< !ENTITY % SMIL.region−attrs "
bottom CDATA ’auto’
left CDATA ’auto’
right CDATA ’auto’
top CDATA ’auto’
z−index CDATA #IMPLIED
showBackground (always|whenActive) ’always’
%SMIL.fit. attrib ;

">

< !ENTITY % IPML.actor−attrs "
type %URI.datatype; #IMPLIED

">

< !−− = BasicLayout Elements =−−>

< !−−
Layout contains the region and root−layout elements defined by
smil−basic−layout or other elements defined by an external layout
mechanism.

−−>

< !ENTITY % SMIL.layout.qname "layout">
< !ELEMENT%SMIL.layout.qname; %SMIL.layout.content;>
< !ATTLIST %SMIL.layout.qname; %SMIL.layout.attrib;

%Core.attrib;
%I18n.attrib;
type CDATA ’text/smil−basic−layout’

>

< !−− = Region Element =−−>

< !ENTITY % SMIL.region.qname "region">
< !ELEMENT%SMIL.region.qname; %SMIL.region.content;>
< !ATTLIST %SMIL.region.qname; %SMIL.region.attrib;

%Core.attrib;
%I18n.attrib;
%SMIL.backgroundColor−deprecated.attrib;
%SMIL.common−layout−attrs;
%SMIL.region−attrs;
regionName CDATA #IMPLIED

>

< !−− = Actor Element =−−>

< !ENTITY % IPML.actor.qname "actor">
< !ELEMENT%IPML.actor.qname; %IPML.actor.content;>
< !ATTLIST %IPML.actor.qname; %IPML.actor.attrib;

%Core.attrib;
%I18n.attrib;
%IPML.actor−attrs;

>

< !−− = Root−layout Element =−−>

< !ENTITY % SMIL.root−layout.qname "root−layout">
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< !ELEMENT%SMIL.root−layout.qname; %SMIL.rootlayout.content; >
< !ATTLIST %SMIL.root−layout.qname; %SMIL.rootlayout.attrib;

%Core.attrib;
%I18n.attrib;
%SMIL.backgroundColor−deprecated.attrib;
%SMIL.common−layout−attrs;

>

< !−− = AudioLayout =−−>

< !ENTITY % SMIL.AudioLayout.module "IGNORE">
<![%SMIL.AudioLayout.module;[
<!−− = AudioLayout Entities = −−>
< !ENTITY % SMIL.audio−attrs "

soundLevel CDATA ’100&#37;’
">

< !−− = AudioLayout Elements =−−>
< !−− = Add soundLevel to region element =−−>
< !ATTLIST %SMIL.region.qname; %SMIL.audio−attrs;>

]]> < !−− end AudioLayout.module−−>

< !−− = MultiWindowLayout =−−>

< !ENTITY % SMIL.MultiWindowLayout.module "IGNORE">
<![%SMIL.MultiWindowLayout.module;[
<!−− = MultiWindowLayout Profiling Entities = −−>
< !ENTITY % SMIL.topLayout.attrib "">
< !ENTITY % SMIL.topLayout.content "EMPTY">

< !−− = MultiWindowLayout Elements =−−>
< !−−= topLayout element =−−>
< !ENTITY % SMIL.topLayout.qname "topLayout">
< !ELEMENT%SMIL.topLayout.qname; %SMIL.topLayout.content;>
< !ATTLIST %SMIL.topLayout.qname; %SMIL.topLayout.attrib;

%Core.attrib;
%I18n.attrib;
%SMIL.common−layout−attrs;
close (onRequest|whenNotActive) ’onRequest’
open (onStart |whenActive) ’onStart ’

>
]]> < !−− end MultiWindowLayout.module−−>

< !−− = HierarchicalLayout = −−>

< !ENTITY % SMIL.HierarchicalLayout.module "IGNORE">
<![%SMIL.HierarchicalLayout .module;[
<!−− = HierarchicalLayout Profiling Entities = −−>
< !ENTITY % SMIL.regPoint. attrib "">
< !ENTITY % SMIL.regPoint.content "EMPTY">

< !−− = HierarchicalLayout Elements =−−>
< !ENTITY % SMIL.regPoint.qname "regPoint">
< !ELEMENT%SMIL.regPoint.qname; %SMIL.regPoint.content;>
< !ATTLIST %SMIL.regPoint.qname; %SMIL.regPoint.attrib;
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%Core.attrib;
%I18n.attrib;
%SMIL.regAlign.attrib ;
bottom CDATA ’auto’
left CDATA ’auto’
right CDATA ’auto’
top CDATA ’auto’

>
]]> < !−− end HierarchicalLayout.module−−>

< !−− end of IPML−layout.mod−−>

D.2 IPML Media Object Module

< !−− IPML Media Objects Modules =−−>
< !−− file: IPML−media.mod

This module extends the SMIL 2.0 Media Object Module, by adding Action
elements.

Date: 2004/10/30
Author: Hu, Jun < j .hu@tue.nl>

= −−>

< !−− = Profiling Entities = −−>

< !ENTITY % SMIL.MediaClipping.module "IGNORE">

<![%SMIL.MediaClipping.module;[
<!ENTITY % SMIL.mo−attributes−MediaClipping "

%SMIL.MediaClip.attrib;
">

]]>

< !ENTITY % SMIL.mo−attributes−MediaClipping "">

< !ENTITY % SMIL.MediaClipping.deprecated.module "IGNORE">

<![%SMIL.MediaClipping.module;[
<!ENTITY % SMIL.mo−attributes−MediaClipping−deprecated "

%SMIL.MediaClip.attrib.deprecated;
">
]]>

< !ENTITY % SMIL.mo−attributes−MediaClipping−deprecated "">

< !ENTITY % SMIL.MediaParam.module "IGNORE">
<![%SMIL.MediaParam.module;[
<!ENTITY % SMIL.mo−attributes−MediaParam "

erase (whenDone|never) ’whenDone’
mediaRepeat (preserve| strip ) ’preserve’
sensitivity CDATA ’opaque’

">
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< !ENTITY % SMIL.param.qname "param">
< !ELEMENT%SMIL.param.qname; EMPTY>

< !ATTLIST %SMIL.param.qname; %SMIL.param.attrib;
%Core.attrib;
%I18n.attrib;
name CDATA #IMPLIED
value CDATA #IMPLIED
valuetype (data| ref | object ) "data"
type %ContentType.datatype; #IMPLIED

>
]]>

< !ENTITY % SMIL.mo−attributes−MediaParam "">

< !ENTITY % SMIL.MediaAccessibility.module "IGNORE">

<![%SMIL.MediaAccessibility.module;[
<!ENTITY % SMIL.mo−attributes−MediaAccessibility "

readIndex CDATA #IMPLIED
">

]]>

< !ENTITY % SMIL.mo−attributes−MediaAccessibility "">

< !ENTITY % SMIL.BasicMedia.module "INCLUDE">

<![%SMIL.BasicMedia.module;[
<!ENTITY % SMIL.media−object.content "EMPTY">
< !ENTITY % SMIL.media−object.attrib "">

< !−− = Media Objects Entities = −−>

< !ENTITY % SMIL.mo−attributes−BasicMedia "
src CDATA #IMPLIED
type CDATA #IMPLIED

">

< !ENTITY % SMIL.mo−attributes "
%Core.attrib;
%I18n.attrib;
%SMIL.Description.attrib ;
%SMIL.mo−attributes−BasicMedia;
%SMIL.mo−attributes−MediaParam;
%SMIL.mo−attributes−MediaAccessibility;
%SMIL.media−object.attrib;

">

< !ENTITY % IPML.action.content "(%IPML.event.qname;)∗">

< !ENTITY % IPML.action−attributes "
%Core.attrib;
%I18n.attrib;
%SMIL.Description.attrib ;
%SMIL.media−object.attrib;
src CDATA #IMPLIED
type %URI.datatype; #IMPLIED
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observe CDATA #IMPLIED
">

< !−−
Most info is in the attributes , media objects are empty or
have children defined at the language integration level:

−−>

< !ENTITY % SMIL.mo−content "%SMIL.media−object.content;">

< !−− = Media Objects Elements =−−>
< !ENTITY % SMIL.ref.qname "ref">
< !ENTITY % SMIL.audio.qname "audio">
< !ENTITY % SMIL.img.qname "img">
< !ENTITY % SMIL.video.qname "video">
< !ENTITY % SMIL.text.qname "text">
< !ENTITY % SMIL.textstream.qname "textstream">
< !ENTITY % SMIL.animation.qname "animation">
< !ENTITY % IPML.action.qname "action">

< !ENTITY % SMIL.ref.content "%SMIL.mo−content;">
< !ENTITY % SMIL.audio.content "%SMIL.mo−content;">
< !ENTITY % SMIL.img.content "%SMIL.mo−content;">
< !ENTITY % SMIL.video.content "%SMIL.mo−content;">
< !ENTITY % SMIL.text.content "%SMIL.mo−content;">
< !ENTITY % SMIL.textstream.content "%SMIL.mo−content;">
< !ENTITY % SMIL.animation.content "%SMIL.mo−content;">
< !ENTITY % IPML.action.content "%IPML.action.content;">

< !ELEMENT%SMIL.ref.qname; %SMIL.ref.content;>
< !ELEMENT%SMIL.audio.qname; %SMIL.audio.content;>
< !ELEMENT%SMIL.img.qname; %SMIL.img.content;>
< !ELEMENT%SMIL.video.qname; %SMIL.video.content;>
< !ELEMENT%SMIL.text.qname; %SMIL.text.content;>
< !ELEMENT%SMIL.textstream.qname; %SMIL.textstream.content;>
< !ELEMENT%SMIL.animation.qname; %SMIL.animation.content;>
< !ELEMENT%IPML.action.qname; %IPML.action.content;>

< !ATTLIST %SMIL.img.qname;
%SMIL.mo−attributes;

>

< !ATTLIST %SMIL.text.qname;
%SMIL.mo−attributes;

>

< !ATTLIST %SMIL.ref.qname;
%SMIL.mo−attributes−MediaClipping;
%SMIL.mo−attributes−MediaClipping−deprecated;
%SMIL.mo−attributes;

>

< !ATTLIST %SMIL.audio.qname;
%SMIL.mo−attributes−MediaClipping;
%SMIL.mo−attributes−MediaClipping−deprecated;
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%SMIL.mo−attributes;
>

< !ATTLIST %SMIL.video.qname;
%SMIL.mo−attributes−MediaClipping;
%SMIL.mo−attributes−MediaClipping−deprecated;
%SMIL.mo−attributes;

>

< !ATTLIST %SMIL.textstream.qname;
%SMIL.mo−attributes−MediaClipping;
%SMIL.mo−attributes−MediaClipping−deprecated;
%SMIL.mo−attributes;

>

< !ATTLIST %SMIL.animation.qname;
%SMIL.mo−attributes−MediaClipping;
%SMIL.mo−attributes−MediaClipping−deprecated;
%SMIL.mo−attributes;

>

< !ATTLIST %IPML.action.qname;
%IPML.action−attributes%;

>

]]>
< !ENTITY % SMIL.mo−attributes−BasicMedia "">

< !−− BrushMedia−−>
< !ENTITY % SMIL.BrushMedia.module "IGNORE">
<![%SMIL.BrushMedia.module;[
<!ENTITY % SMIL.brush.attrib "">
< !ENTITY % SMIL.brush.content "%SMIL.mo−content;">
< !ENTITY % SMIL.brush.qname "brush">
< !ELEMENT%SMIL.brush.qname; %SMIL.brush.content;>
< !ATTLIST %SMIL.brush.qname; %SMIL.brush.attrib;

%Core.attrib;
%I18n.attrib;
%SMIL.Description.attrib ;
%SMIL.mo−attributes−MediaAccessibility;
%SMIL.mo−attributes−MediaParam;
%SMIL.media−object.attrib;
color CDATA #IMPLIED

>
]]>

< !−− end of IPML−media.mod−−>

D.3 IPML Linking Module

< !−− IPML Linking Module =−−>
< !−− file: IPML−link.mod

This module extends the SMIL 2.0 Linking Module, by adding Event
elements.

Date: 2004/10/30
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Author: Hu, Jun < j .hu@tue.nl>

= −−>

< !−− = LinkingAttributes Entities = −−>
< !ENTITY % SMIL.linking−attrs "

sourceLevel CDATA ’100&#37;’
destinationLevel CDATA ’100&#37;’
sourcePlaystate (play |pause|stop) #IMPLIED
destinationPlaystate (play |pause) ’play’
show (new|pause|replace) ’ replace ’
accesskey %Character.datatype; #IMPLIED
target CDATA #IMPLIED
external ( true | false ) ’ false ’
actuate (onRequest|onLoad) ’onRequest’
%SMIL.tabindex.attrib;

">

< !−− = BasicLinking Elements =−−>
< !ENTITY % SMIL.BasicLinking.module "IGNORE">
<![%SMIL.BasicLinking.module;[

<!−− = BasicLinking Entities = −−>
< !ENTITY % SMIL.Shape "(rect| circle |poly| default )">
< !ENTITY % SMIL.Coords "CDATA">
< !−− comma separated list of lengths −−>

< !ENTITY % SMIL.a.attrib "">
< !ENTITY % SMIL.a.content "EMPTY">
< !ENTITY % SMIL.a.qname "a">
< !ELEMENT%SMIL.a.qname; %SMIL.a.content;>
< !ATTLIST %SMIL.a.qname; %SMIL.a.attrib;
%SMIL.linking−attrs;
href %URI.datatype; #REQUIRED
%Core.attrib;
%I18n.attrib;

>

< !ENTITY % SMIL.area.attrib "">
< !ENTITY % SMIL.area.content "EMPTY">
< !ENTITY % SMIL.area.qname "area">
< !ELEMENT%SMIL.area.qname; %SMIL.area.content;>
< !ATTLIST %SMIL.area.qname; %SMIL.area.attrib;
%SMIL.linking−attrs;
shape %SMIL.Shape; ’ rect ’
coords %SMIL.Coords; #IMPLIED
href %URI.datatype; #IMPLIED
nohref (nohref) #IMPLIED
%Core.attrib;
%I18n.attrib;

>

< !ENTITY % IPML.event.attrib "">
< !ENTITY % IPML.event.content "EMPTY">
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< !ENTITY % IPML.event.qname "event">
< !ELEMENT%IPML.event.qname; %IPML.event.content;>
< !ATTLIST %IPML.event.qname; %IPML.event.attrib;
%SMIL.linking−attrs;
href %URI.datatype; #IMPLIED
nohref (nohref) #IMPLIED
%Core.attrib;
%I18n.attrib;

>

< !ENTITY % SMIL.anchor.attrib "">
< !ENTITY % SMIL.anchor.content "EMPTY">
< !ENTITY % SMIL.anchor.qname "anchor">
< !ELEMENT%SMIL.anchor.qname; %SMIL.anchor.content;>
< !ATTLIST %SMIL.anchor.qname; %SMIL.anchor.attrib;
%SMIL.linking−attrs;
shape %SMIL.Shape; ’ rect ’
coords %SMIL.Coords; #IMPLIED
href %URI.datatype; #IMPLIED
nohref (nohref) #IMPLIED
%Core.attrib;
%I18n.attrib;

>
]]> < !−− end of BasicLinking−−>

< !−− = ObjectLinking =−−>
< !ENTITY % SMIL.ObjectLinking.module "IGNORE">
<![%SMIL.ObjectLinking.module;[

<!ENTITY % SMIL.Fragment "
fragment CDATA #IMPLIED

">

< !−− = ObjectLinking Elements =−−>
< !−− add fragment attribute to area, and anchor elements−−>
< !ATTLIST %SMIL.area.qname;

%SMIL.Fragment;
>

< !ATTLIST %SMIL.anchor.qname;
%SMIL.Fragment;

>
]]>
< !−− = End ObjectLinking =−−>

< !−− end of IPML−link.mod−−>

D.4 IPML Language Profile DTD driver

< !−− IPML DTD−−>
< !−− file: IPML.dtd −−>
< !−− IPML DTD

IPML is an extension of SMIL 2.0, by replacing its layout
module, Media Object module, and Linking module.

Date: 2004/10/30
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Author: Hu, Jun < j .hu@tue.nl>

−−>

< !ENTITY % NS.prefixed "IGNORE" >
< !ENTITY % SMIL.prefix "" >

< !−− Define the Content Model−−>
< !ENTITY % smil−model.mod

PUBLIC "−//W3C//ENTITIES SMIL 2.0 Document Model 1.0//EN"
"smil−model−1.mod" >

< !−−Modular Framework Module ................................... −−>
< !ENTITY % smil−framework.module "INCLUDE" >
<![%smil−framework.module;[
<!ENTITY % smil−framework.mod

PUBLIC "−//W3C//ENTITIES SMIL 2.0 Modular Framework 1.0//EN"
"smil−framework−1.mod" >

%smil−framework.mod;]]>

< !−− The IPML includes the following sections:
C. The SMIL Animation Module
D. The SMIL Content Control Module
G. The IPML Layout Module
H. The IPML Linking Module
I . The IPML Media Object Module
J . The SMIL Metainformation Module
K. The SMIL Structure Module
L. The SMIL Timing and Synchronization Module
M. Integrating SMIL Timing into other XML−Based Languages
P. The SMIL Transition effects Module

The SMIL Streaming Media Object Module is optional .
−−>

< !−−
< !ENTITY % smil−streamingmedia.model "IGNORE">
<![%smil−streamingmedia.model;[
<!ENTITY % smil−streaming−mod
PUBLIC "−//W3C//ELEMENTS SMIL 2.0 Streaming Media Objects//EN"
"SMIL−streamingmedia.mod">

%smil−streaming−mod;
]]>
−−>

< !ENTITY % SMIL.anim−mod
PUBLIC "−//W3C//ELEMENTS SMIL 2.0 Animation//EN"
"SMIL−anim.mod">

< !ENTITY % SMIL.control−mod
PUBLIC "−//W3C//ELEMENTS SMIL 2.0 Content Control//EN"
"SMIL−control.mod">

< !ENTITY % IPML.layout−mod
SYSTEM "IPML−layout.mod">

< !ENTITY % IPML.link−mod
SYSTEM "IPML−link.mod">

< !ENTITY % IPML.media−mod
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SYSTEM "SMIL−media.mod">
< !ENTITY % SMIL.meta−mod
PUBLIC "−//W3C//ELEMENTS SMIL 2.0 Document Metainformation//EN"
"SMIL−metainformation.mod">

< !ENTITY % SMIL.struct−mod
PUBLIC "−//W3C//ELEMENTS SMIL 2.0 Document Structure//EN"
"SMIL−struct.mod">

< !ENTITY % SMIL.timing−mod
PUBLIC "−//W3C//ELEMENTS SMIL 2.0 Timing//EN"
"SMIL−timing.mod">

< !ENTITY % SMIL.transition−mod
PUBLIC "−//W3C//ELEMENTS SMIL 2.0 Transition//EN"
"SMIL−transition.mod">

%SMIL.struct−mod;
%SMIL.anim−mod;
%SMIL.control−mod;
%SMIL.meta−mod;
%IPML.layout−mod;
%IPML.link−mod;
%IPML.media−mod;
%SMIL.timing−mod;
%SMIL.transition−mod;

< !−− end of IPML.dtd−−>





BACKGROUND MATERIALE
Specifications of the Timed Action
Pattern

This background material presents the formal specification of the components of the
Timed Action pattern that is introduced in section 6.1 of chapter 6.

E.1 ActionService

An ActionService defines the behavior and the state of an action service supplier and
implements the actual actions on its state element – in the IPML system it is often a
media object. Let’s first introduce a type that identifies each action:

ActionID == 1 . . n

with which n : N operations are assumed to be served as the interface to the actions,
and each operation has a name Opi that can be identified by an i ∈ ActionID. The
ActionService can then be modeled in Object-Z as follows:

ActionService
Op1 =̂ [ p?, r! : Dictionary ]

Op2 =̂ [ p?, r! : Dictionary ]

· · ·
Opn =̂ [ p?, r! : Dictionary ]

Each Opi (i ∈ ActionID) operation accepts a set of parameters p? and produces a
set of r!. Since it is not yet known what exactly the input parameters and the output
results are, both parameters and results are modeled as of type Dictionary:

Dictionary == String 7→ O
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that contains name 7→ value pairs, where name is of type

[String]

that declares all possible text strings, and value is an object of any type. The symbol O
is defined as

O == ↓Object

where Object is the root superclass for all the classes in the system. ↓Object is the
set of all the objects of the class Object and its subclasses – the object universe of the
system. Hence O denotes the object universe (Duke and Rose, 2000; Smith, 2000).

Passing named parameters and returning named values are a common technique
in object oriented systems to invoke functions and get the results so that the
parameters and the results do not have to be explicitly defined in advance, nor in a
fixed order. The invoked function gets the input values by looking up the parameters
dictionary using the name string as the keyword. The invoking procedure gets the
output values from the function in the same way. Some object oriented languages,
for example Python(Pilgrim, 2004), natively integrate this technique as an option for
function definition and invocation.

The technique used here supports passing and returning values of any object
types, but not primary types. To extend this technique for all types of values, a global
total function O is defined as

[X ]
O : X → O

∀ x : X • if x ∈ O thenO(x) = x
elseO(x) ∈Wrapper[X ] ∧ O(x).x = x

that turns any type of value to an object, whereWrapper is a simple class that wraps a
single state variable x of type X :

Wrapper[X ]

x : X

Let’s also define another global total function V :

[X ]
V : O → X

∀ o : O • if o ∈Wrapper[X ] thenV(o) = o.x
elseV(o) = o

The function O works as an encoder to transform values of any type to an object, and
the function V works as a decoder to retrieve the original value.
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For convenience, two general operations are also defined to put a name 7→ value
pair into aDictionary and to consult aDictionary to get the value according to the given
name:

[X ]
Put : Dictionary× String × X → Dictionary
Get : Dictionary× String → X}

∀ d : Dictionary; s : String; v : X •
Put = d⊕ {s 7→ O(v)}

∀ d : Dictionary; s : String •
Get = if s ∈ dom(d) thenV(d(s)) else null

Put(d, s, v) returns a new dictionary which agrees the old Dictionary d everywhere
except the entry of s; but also adds the new entry s 7→ O(v). Get(d, s) returns the value
of the entry s if the Dictionary d contains such an entry, otherwise returns null. The
operator ⊕ applies the relational overriding of two relations of the same type. For
example, if Q and R are relations of the same type, Q ⊕ R is a relation that agrees
with Q everywhere outside of the domain of R, but agree with R where R is defined
(ISO/IEC, 2002).

E.2 Action

To execute a particular operation from ActionService asynchronously, the operation
need to be stored, identified, and retrieved together with its input parameters. An
often used technique in this situation, described in the GoF book (Gamma et al.,
1995) as the Command pattern, encapsulates the operations in objects, to control
their selection and sequencing, and otherwise manipulate them. This technique is
used to wrap the operations from ActionService as objects. First an Action class is
introduced:

Action

eq : ExecutionQueue
as : ↓ActionService
p : Dictionary [ Parameters]
tr : TentativeResult [ Tentative result of this action]

INIT
tr.INIT

Execute =̂ [ ]
Enqueue =̂ eq.Enqueue(self )

and an abbreviation

Action(I) ==
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ActionI
Action
Execute =̂ as.OpI(p) o

9 tr.Complete

where I is used as a generic parameter for the abbreviation. For each Opi (i ∈
ActionID) in ActionService, a corresponding class Action(i) is then defined, which ex-
tends the class Action and implements the operation Execute to invoke corresponding
operation as.Opi.

Every Action object has a backward reference “as” to the associated ActionService
object, a p : Dictionary to store the input parameters, and a tr : TentativeResult (see
TentativeResult on page 275) to notify the others the completion of the operation, or for
others to query the operation output. The initial state of an Action object requires the
attribute tr : TentativeResult to be initialized first, which is to set the state tr.tentative
to be true. The operation Execute outputs the stored parameter list as input for the
corresponding operation OpI in “as”. The result of the operation is in turn used as
input for tr to complete.

An Action(i) (i ∈ ActionID) object can be executed directly by invoking the
operation Execute, however there is a problem: once an Action(I) object is in
execution, other Action(i) (i ∈ ActionID) objects will be blocked from execution if
they are invoked from the same process. This can cause a performance bottleneck
in scheduling unless the action execution is asynchronously separated from the
scheduling process. The solution is to employ an execution queue with a process
that is independent of the scheduling process.

Every Action object has a reference eq : ExecutionQueue to such a process. Instead
of the operation Execute, the operation Enqueue puts the object itself into the execution
queue and return immediately, leaving the execution task to the process of eq.

E.3 ExecutionQueue

An ExecutionQueue object has an independent process, accepting Action objects into
its queue and dequeuing them for execution:

ExecutionQueue
�(INIT,Enqueue)

todo : seq ↓Action
INIT
todo = 〈 〉

Enqueue
∆(todo)
a? : ↓Action

todo′ = todoa 〈a?〉

Dequeue
∆(todo)
a! : ↓Action

todo = 〈a!〉a todo′
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IdleTick
¬ pre(Execute)
τ ′ = τ + 1

Execute =̂ (Dequeue • a!.Execute) \ (a!)
PROCESS =̂ µEQ • (Execute [] IdleTick) o

9 EQ

The only visible Operation of the class ActionService, specified with a visibility list
�(INIT,Enqueue), is the operation Enqueue that takes an object a? : ↓Action as input
and puts it in a first-in-first-out (FIFO) queue todo. Notice that INIT is the initial state,
not an operation. The operation Dequeue dequeues and outputs an Action object from

the queue if the queue is not empty. The predicate todo = 〈a!〉a todo′ requires todo to

have at least one element, otherwise 〈 〉 = 〈a!〉a todo′ would always result in false.
The operation Execute dequeues an object a! : ↓Action and invokes the Execute

operation in a!. The scope enrichment operator • is used to enrich the environment
of the rest of the operation Execute with the auxiliary output variable a! from Dequeue.
The hiding operator \ at the end hides the output a! from the scope enrichment
operation. So the operation Execute as a whole does not communicate with its
environment.

The class ActionService has to have an active process to dequeue the actions and
execute them automatically. Considering that later a notion of time also needs to be
incorporated, the following gives the Object-Z extension that models real-time active
processes in a system, introduced by Dong, Colton, and Zucconi (1996), in which the
basic time type is modeled as natural numbers

T == N

that represents the absolute discrete time domain. Let’s assume every Object-Z class
implicitly has a common superclass Object as the root of the class hierarchy:

Object

∆
τ : T

Every Object-Z class then inherits the secondary attribute τ : T (originally called now :
T by Dong et al. (1996)) to represent the absolute current time such that the absolute
time is shared by every object in a system:

∀ o1, o2 : O • o1.τ = o2.τ

As a secondary attribute, τ is included in the ∆-list of the state schema of every
object - it may be changed by any operation. Every operation of any Object-Z class
also implicitly includes the predicate

τ ′ > τ
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to ensure time cannot go backwards.
With the timing extension to Object-Z, the classActiveService can then bemodeled.

It has a process of its own, which runs in a different thread than its client’s. The
operation PROCESS is a recursive non-terminating process in a finite representation
form. It describes a unique continuous sequence of the operations, including the
operation IdleTick that does nothing but takes one time unit when no other operation
meets its precondition. The predicate ¬ pre(Execute) ensures that the operation
IdleTick can occur only when the operation Execute can not occur.

Dong et al. (1996) used this technique only in the top level system class to model
the real time behavior. It is extended to model all the active objects in a system, in
which the appearance of the continuous operation PROCESS identifies an active object
as the operationMAIN does in Timed Communication Object-Z (TCOZ) (Mahony and
Dong, 2000). Since it is modeled as an indefinite recursive loop, the post state of
this operation can never be reached, neither can the post conditions be evaluated.
Hence it makes no sense to use this operation in other classes and operations. As a
consequence, the PROCESS operation does not communicate with its environment – it
has no input nor output. It is to be scheduled and run by the system. The PROCESS

operations of all the active objects in a system are assumed to run in parallel. Since
the appearance of PROCESS makes an object already “active”, the operation PROCESS

implicitly includes the state initialization INIT. As in TCOZ, inheriting an active object
does not automatically makes an subtype active, unless PROCESS is explicitly included
in the definition of the subtype.

In ExecutionQueue, the PROCESS operation

µEQ • (Execute [] IdleTick) o
9 EQ

means there is a unique operation EQ that first executes the operation Execute if its
preconditions are met, or the operation IdleTick for one time unit otherwise, then

executes EQ again. The choice operator [] defines an operation that makes an angelic
choice between two given operations.

The sequential composition operator o
9 in the operation PROCESS guarantees the

synchronized access to the operation Execute and hence the action operations – none
of them will be executed in parallel. In the case of serving the actions on a media
object through an ActionService object, actions are easily synchronized in parallel with
the media object thread in which the element is busy with other processes. This
will free us from the worry whether the media object has internal synchronization
mechanisms.

E.4 TimedAction

For scheduling an Action object to be executed at a planned time, the object must
be associated with that time. The association can be made inside the scheduler by
maintaining a list of maplets and updating the maplets as the system time changes.
The change update mechanism in the Observer pattern may be reduced, but then the
maplets have to be wrapped up as an Observer object:
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TimedAction
Observer[Updateo/Update]

t : T [ Planned execution time]
a : ↓Action [ Action to do]

Update =̂ Updateo o
9 a.Enqueue

A TimedAction wraps an Action with an attribute of planned execution time.
However having the time does not mean it knows the time. It can of course be
implemented as an active object that has a PROCESS polling the current system time
and execute itself if the planned time has reached. But as the number of the
TimedAction increases, too many active processes may become a bottleneck of the
system performance. Instead of implementing each TimedAction as an active object,
the system rather centralize the scheduling in a Scheduler for all the TimedAction
objects. Every TimedAction object needs to be registered to the Scheduler and the
Scheduler notifies the observing TimedAction objects when their planned execution
times have been reached. The Observer pattern is applied to the Scheduler and the
TimeAction components to realize this timing dependency. The TimedAction overrides
the operation Update in Observer (see Observer on page 62): it invokes the operation
Update0 (renamed from the operation Update in its super class Observer) to consume
the input o? : Observable, followed by the operation a.Enqueue to add the Action
component a to the todo list in ExecutionQueue.

Instead of including an Action object as an attribute, the class TimeAction might
also inherit the class Action to implement the relation between the action and the
planned time. However doing so would put the class TimedAction at the same level
of Action(i) (i ∈ ActionID) in the inheritance tree, which would cause difficulties to
identify which Opi (i ∈ ActionID) a TimedAction is related to.

E.5 Scheduler

A Scheduler is an Observable (see definition on page 62) object:

Scheduler
�(INIT,Subscribe,Unsubscribe)
Observable[Notifyobl/Notify]
tas == obs ∩ TimedAction [ TimedAction observers]

IdleTick
¬ pre(Notify)
τ ′ = τ + 1

Notify =̂∧ta : tas | ta.t = min({x : tas • x.t}) ∧ ta.t 6 τ •
ta.Update(self ) ∧ Unsubscribe(ta)

PROCESS =̂ µS • (Notify [] IdleTick) o
9 S
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The class Scheduler extends the class Observable (see Observable on page 62), in
which the operation Notify is canceled and redefined to decide which TimedAction
objects to execute and unsubscribe next, instead of notifying all the managed
observers. Only TimedAction observers (tas == obs ∩ TimedAction) whose planned
execution times are the earliest (ta.t = min({x : tas • x.t}) in the list and have
been passed (ta.t 6 τ ) will be notified and then unsubscribed from the waiting list.
The relation between the observable (Scheduler objects) and the observer (TimedAction
objects) are tighter than what is offered by theObserver pattern – The Scheduler knows
it is managing the TimedAction objects, not general Observer objects.

A design decision has been made here to separate the action scheduling process
and the action execution process. The TimedActions might have been designed to
be executed in the process of the scheduler instead of leaving it to the ActionService
to reduce the number of active processes. To ensure synchronized access to the
actions, the update notification to the observers has then to be sequential, instead

of the simultaneous composition∧ in the operation Notify. However, if many actions
requires to be executed at the same time, the performance of the scheduler is crucial
and may become a bottleneck of the overall parallelism.

Another benefit of this separation is the possibility of sharing a scheduler among
multiple action services. What the scheduler manages are TimedAction objects. It
does not require these objects to be from the same ActionService object. Sharing the
scheduler can decrease the number of active process. However, it may also increase
the workload of the scheduler. Whether to share a scheduler among action services
depends on on the capability of the physical system and the requirements on the
actual performance. Here let’s leave the decision to implementation.

E.6 ActionServiceProxy

The class ActionServiceProxy applies the Proxy pattern (Gamma et al., 1995) to hide
complexity of scheduling and access control, and to provide an interface that allows
clients to invoke the public operations to plan the actions as if these actions are
accessible directly from the ActionService.

It is necessary to model the creation of the TimedAction objects, but Object-Z does
not address the creation or the destruction of objects per se: it is asserted that objects
always exist (Duke and Rose, 2000, p.21). However, the creation of an object can be
modeled by introducing its identity (or reference) into a specification in which this
identity is not currently available (e.g. adding the identity to a specified set of object
identities). Similarly, object destruction can be modeled by removing the identity of
an object from a specification (e.g. removing the identity from a specified set) (Smith,
2005). Since object creation and destruction are very often used operations especially
in dynamic structures, it is assumed that there is a unique global pool that stores the
references to the created objects in the system:

gObjectPool : P O

and every object in the system has a secondary variable ρ that refers to this pool. So
from now on, the root class Object is defined as
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Object

∆
τ : T
ρ : P O

ρ = gObjectPool

and object creation can be modeled as an abbreviation:

new(c1, c2, ..., cn,C) == ({c1, c2, ..., cn} ⊂ C ∧
{c1, c2, ..., cn} ∩ ρ = ∅ ∧
ρ′ = ρ ∪ {c1, c2, ..., cn})

It declares n number of objects, c1, c2, ..., cn, of the class C, which are not currently
in gObjectPool. It also adds these objects to gObjectPool such that they will not be
created again until they are removed from gObjectPool. The object destruction can
also modeled as

delete(c1, c2, ..., cn) == (ρ′ = ρ \ {c1, c2, ..., cn})

that removes these objects from the global pool.
The class ActionServiceProxy makes the operations Opi (i ∈ ActionID) visible to its

clients. These operations accepts the parameter lists as the corresponding operations
in the class ActionService do, and accepts a time parameter as well for specifying the
planned execution time. ActionServiceProxy has references to the related ActionService,
and two active processes ExecutionQueue and Scheduler that work together to maintain
and execute the actions at specified times:

ActionServiceProxy
�((INIT, as, eq, s),Op1,Op2, . . . ,Opn)

as : ↓ActionService
eq : ExecutionQueue©C
s : Scheduler

INIT
eq.INIT

The attribute eq is a “contained” ( ©C) object of the type ExecutionQueue, which
means that no two ActionServiceProxy can have the same ExecutionQueue object.
This ensures the execution queue is only used by the containing object. The
ExecutionQueue eq is initialized with an empty queue. However the Scheduler s is
not required to be initialized because as said, s might be shared and could have been
initialized by other objects.
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Although the initial state predicate and the state variables as, eq, s are also visible
to in the environment of an object of ActionServiceProxy, they should be “protected”
from the objects outside the “package” of the pattern or the objects outside the
inheritance tree. The clients of Timed Action pattern should only be able to access the
operations Op1,Op2, . . . ,Opn. Object-Z’s visibility list defines the “public” members
that are visible to any objects in the system and the ones not shown in the list will be
“private” or hidden. However, it does not have facilities to specify such “protected”
members in a “package” or in the inheritance tree as in UML and many object-
oriented programming languages (for example, Java, C++, C#). To compensate, these
“protected” members are parenthesized in the visibility list.

A local abbreviationNewTimedAction(I) is introduced to simplify the specification.
NewTimedAction(I) is a Factory Method (Gamma et al., 1995; Metsker, 2002), which
creates a new TimedAction object ta! and a new TentativeResult object tr!:

NewTimedAction(I) ==

NewTimedActionI
t? : T}

p? : Dictionary
ta! : TimedAction
tr! : TentativeResult

new(ta!,TimedAction) ∧ new(tr!,TentativeResult)
new(ta!.a,Action(I)) ∧ ta!.a.INIT
ta!.a.as = as ∧ ta!.a.eq = eq ∧ ta!.a.p = p? ∧ ta!.a.tr = tr!
if t? = null then ta!.t = τ else ta!.t = t?

NewTimedAction(I) accepts parameters p? : Dictionary and a time value t? : T} as
input. The input p? and t? as well as the reference to the ActionService Object and the
ExecutionQueue object are stored in ta!.a. It associates an object of the type Action(I)
to the created TimedAction object (ta!.a ∈ Action(I)).

A new type is introduced that extends the type T with an undefined value null:

T} ::= T | null

There is often such a situation that a null symbol is convenient to describe that a
value is not defined and that this value is different from any value of a given type X .
A generic free type is introduced to include such a null value

X} ::= X | null

for a given type X .
If t? is undefined, i.e., has a value of null, it is then converted to the current

absolute time upon the creation of the new TimedAction object ta!. It allows the clients
to request an action to be executed as soon as possible rather than at a defined absolute
time:

if t? = null then ta!.t = τ else ta!.t = t?
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Upon creation, the Action(I) object ta!.a also initiates an TentativeResult object
ta!.a.tr that is exposed to the environment as an output.

Op1 =̂ NewTimedAction(1)[o!/ta!] o
9 s.Subscribe

Op2 =̂ NewTimedAction(2)[o!/ta!] o
9 s.Subscribe

· · ·
Opn =̂ NewTimedAction(n)[o!/ta!] o

9 s.Subscribe

In each Opi (i ∈ ActionID), I in NewTimedAction(I) is replaced by i to form
a concrete operation that takes input p? and t? from its client. It creates a ta! :
TimedAction where ta!.a is of the type Action(i). The created ta! : TimedAction is
then renamed to o! as the input for the Subscribe operation of the object s : Scheduler.
The TentativeResult output tr! is passed through and output to the invoking process.

E.7 TentativeResult

The TentativeResult uses the Future pattern (Grand, 2002). At the architecture
level together with the completion mechanism of asynchronous tasks in other
components, it also falls into the Proactor pattern (Schmidt et al., 2000), in which
the TentativeResult object acts as an event completion token for the clients. It allows a
client to obtain the result of an action after the Action is executed at the planned time:

TentativeResult
Observable

r : Dictionary [ Results]
tentative : B

INIT =̂ [ tentative ]

Complete =̂ r := r? ∧ tentative := false o
9 Notify

When a client requests an action (Opi, i ∈ ActionID) through an
ActionServiceProxy, a TentativeResult is produced immediately for the client, in which
r : Dictionary is reserved in Action(i) to store its results. In this specification,
TentativeResult is defined as an Observable (see Observable on page 62), so that the
clients may register themselves to the TentativeResult as Observers in order to get
notified when the TimedAction completes the action execution and makes the result
ready. Or, instead of using the Observer pattern, a client may also “rendezvous”
(Grand, 2002, p. 541) with the TentatvieResult to get the result by either blocking or
polling until it is no longer “tentative”.





BACKGROUND MATERIALF
Specifications of the Synchronizable
Object Pattern

This background material presents the formal specification of the components of the
Synchronizable Object pattern that is introduced in section 6.2 of chapter 6.

F.1 Synchronization states

Let’s first prepare some concepts used by Synchronizable objects. A synchronizable
object is a simple finite state machine with four states stopped, ready, started, paused
as shown in figure F.1 on the next page. The initial state is stopped. A synchronizable
object must get ready before it can be started. A ready state is necessary to model many
multimedia objects that requires computational resources to be allocated and certain
amount of data to be prefetched before it can be started immediately. Once it has been
started, it can be paused and be restarted again.

In some multimedia systems, for example in PREMO (Duke et al., 1999; Herman
et al., 1998), similar objects are used for synchronization, but these objects also have
a waiting state. The difference between waiting state and the paused state is that waiting
can only be caused by an internal operation, otherwise they are the same state. The
design here prefers a simplified state machine without a waiting state.

A free type SyncState is introduced to identify these states:

SyncState ::= stopped | ready | started | paused

F.2 Coordinates

A synchronizable object controls the position and progress along its own coordinates.
Different synchronizable objects may use different coordinates. For example, a video
stream might use frame numbers as coordinates, and a clock might simply take T as
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started

stopped
Stop

Stop, Pause,Start

Start, Ready

paused

Pause, Ready

Stop

ready

Stop

Ready

Start

Start

Pause

Ready, Pause

Figure F.1: State transitions of a synchronizable object

its coordinates. A synchronizable object may have a function to map the coordinates
to time and time constraints can be added to the operations – however the coordinates
are not necessarily always time related, for example, a TTS engine may take white
spaces or punctuation locations between words or sentences as coordinates. The
concept of coordinates is more general than the time. To model the progression steps,
the coordinates C is introduced

[C]

and defined as a discrete set of points that can be ordered with a relation < (also see
figure F.2 on the facing page):

< : C ↔ C

∀ c : C • ¬ (c < c) [ Irreflective]
∀ c1, c2, c3 : C • c1 < c2 ∧ c2 < c3 ⇒ c1 < c3 [ Transitive]
∀ c1, c2 : C • c1 < c2 ⇒ ¬ (c2 < c1) [ Antisymmetric]
∀ c1, c2 : C • c1 < c2 ∨ c1 = c2 ∨ c2 < c1 [ total]

The coordinates C is discrete, which means every coordinate has a “closest”
coordinate on each side, unless there is no coordinate on that side:

∀ c1, c2 : C • c1 < c2 ⇒ ∃ c3 : C • c1 < c3 ∧ @c4 : C • c1 < c4 < c3
∀ c1, c2 : C • c1 < c2 ⇒ ∃ c3 : C • c3 < c2 ∧ @c4 : C • c3 < c4 < c2

F.3 Repeating positions

A client of a synchronizable object might want to traverse the coordinates more than
once, or possibly traverse in an infinite loop, for example, repeating a multimedia
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presentation several times or repeating it forever. This means a given point within
the coordinates may be visited multiple times. A new type is defined to combine a
point in the coordinates with a visit number,

Position == C× N

and a total order is defined over Position:

prec : Position↔ Position

∀ c1, c2; n1, n2 •
(c1, n1) prec (c2, n2) ⇔ n1 < n2 ∨ (n1 = n2 ∧ c1 < c2)

F.4 Progression directions

A synchronizable object may advance along its coordinates, or backward in an
inverted direction:

Direction ::= forward | backward

Figure F.2 shows a subset of Position, which has a finite set of coordinates {c1, c2,
. . ., cn} to be visited 3 times in the direction of forward.

c1 c2 cn

(c1, 0) (c2, 0) (cn, 0)

(c1, 1) (c2, 1) (cn, 1)

(c2, 2) (c2, 2) (cn, 2)

repeat

syncSpan

C

Figure F.2: A subset of Position

F.5 Synchronization Events

Some of the coordinates can be attached with synchronization events. Event is defined
as the super class for all the events that the objects need to notify others:

Event

source : O}
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SetSource =̂ [∆(source) s? : O} | source′ = s? ]

which has an attribute source storing the reference to the originating object if desired.
Other details are left to subclasses. To distinguish synchronization events from other
events (for example, user input events), SyncEvent is defined as a subclass of Event:

SyncEvent
Event

Subtyping can be used to identify different types of SyncEvent objects, and the
subclasses may also add other state variables to carry extra information. Instead of
giving all the possible different types in advance, which is often not feasible, subtyping
is a more flexible and extensible solution for identifying objects (Simons, 2002). For
example, if the transition between different SyncStates is interesting for other objects,
a new class StateSyncEvent can be defined as:

StateSyncEvent
SyncEvent

oldState, newState : SyncState

oldState 6= newState

and an object se : ↓SyncEvent can be identified as a StateSyncEvent object if se ∈
StateSyncEvent is true.

F.6 Synchronizable

Let’s first give a visibility list that declares the visible state variables and operations:

Synchronizable
�( eventDispatcher, repeatNumber, repeatCount, syncState, begin, end,

current, syncElements, direction, [ Visible state variables]

INIT,Start,TryStart,Stop,Pause,Visit,Step,
setRepeatNumber, setDirection, setBegin, setEnd, setBeginEnd,
attachSyncEvent, detachSyncEvent, addSyncElements,
removeSyncElements [ Visible operations]

)

State variables The state schema is then defined as follows:
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Readable state variables:
eventDispatcher : ↓EventDispatcher
repeatNumber : N [ How many times to repeat]
repeatCount : N [ How many times repeating completed]
syncState : SyncState [ Current synchronization state]
syncElements : C ↔ ↓SyncEvent [ Synchronization elements]
begin : C} [Where to begin]
end : C} [Where to end]
current : C} [ Current location in the coordinates]
syncSpan : P C [ Synchronization span between begin and end]
direction : Direction [ traversal direction]

Local state variables that are invisible to others:
positions : PPosition [ Positions to be traversed]
curPosition : Position} [ Current position]
lastPosition : Position} [ The position visited last time]
≺ : Position↔ Position [ Order of traversal]

syncSpan = (if begin = null thenC else{c : C | begin 6 c})∩
(if end = null thenC else{c : C | c 6 end})

[ begin and end define the synchronization span]
positions = syncSpan× (if repeatNumber = 0 thenN

else{n : N | n < repeatNumber})
[ Positions are always defined by syncSpan and repeatNumber]

if curPosition = null then current = null ∧ repeatCount = 0
else curPosition = current 7→ repeatCount

[ Decompose current position to its coordinate and repeat count]
direction = forward⇒ ( ≺ ) = ( prec )
direction = backward⇒ ( ≺ ) = ( prec∼ )

[ Traversal direction defines the order of the positions]

The class aggregates an object of ↓EventDispatcher. An alternative could be to
inherit the event handling mechanisms from the type ↓EventDispatcher. However
doing so would interweave the synchronization process with the event handling
process. Aggregation allows to separate them in independent processes and to
dispatch the events asynchronously.

The attributes repeatNumber keeps the total number of the traversal loops. If
repeatNumber is 0, the range of postions to be traversed is set to cover all integer
numbers, which means the Synchronizable object will repeat forever if it is not
interrupted.

The set syncSpan defines the span of the synchronization coordinates – The client
of a Synchronizable object may define the boundaries to limit the synchronization
to a subset of coordinates. This is an often required behavior for example when
synchronizing a multimedia object, where the client might specify the begin and the
end time within the actual duration of the object.
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The relation syncElements attaches SyncEvent objects to certain coordinates. Note
that one coordinate may have multiple SyncEvent objects attached.

The attribute positions defines the positions (pairs of coordinates in syncSpan and
the repeat counter) that will be passed during traversal. The attributes curPosition and
lastPosition keeps track of the current traversal position, and the position that has just
visited last time. The relation ≺ defines the order of the traversal according to the
specified direction. The attributes positions, curPosition and lastPosition are for internal
use and hence they are not visible to other objects.

Initial state Upon initialization, The repeat number by default is 1 and the repeat
count starts from 0. The synchronization state is set to be stopped and there are no
syncEvent attached to any coordinates. The syncSpan covers all the possible coordinates
and the traverse direction is forward. The attribute curPosition and lastPosition are set
to null, which means there is no last visited position, and the current position is not
given yet.

INIT
repeatNumber = 1 ∧ repeatCount = 0
direction = forward ∧ syncSpan = C
syncState = stopped ∧ syncElements = ∅
curPosition = null ∧ lastPosition = null

Next the operations are going to be defined.

Synchronization operations Many operations may cause the synchronization
state change and trigger corresponding StateSyncEvent. A schema Transit is defined
to catch this common behavior:

Transit0
∆(syncState, syncState′)
e! : StateSyncEvent}

if syncState 6= syncState′

then e! 6= null ∧ e!.source = self ∧
e!.oldState = syncState ∧ e!.newState = syncState′

else e! = null

Transit =̂ Transit0 o
9 ([ e? : StateSyncEvent} ] •

(if e? 6= null then eventDispatcher.Dispatch))

The operation Transit0 outputs a well defined StateSyncEvent with its source
pointing to the producing object if the state transition happens, otherwise it outputs
a null value. The operation Transit picks up the output from Transit0, passes it to the
operation Dispatch of eventDispatcher, or simply consumes the output if e? is null (the
anonymous empty operation [ ] does nothing).
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For easy reading, the if . . . then . . . else . . . operator from standard Z is extended
here for Object-Z operation composition, which is equivalent to an abbreviation

(if p thenOp1 elseOp2) == ([ p ] ∧ Op1 [] [¬ p ] ∧ Op2)

when it is used for operation compositions. Further, if Op2 is an empty operation,
let’s write

if p thenOp1

instead of

if p thenOp1 else [ ]

The operations that manipulate the synchronization state are defined next. The
operation Stop puts the synchronizable object into the stopped state from any other
state. Stopping an object also causes its repeat counter, the current position and the
last visited position to be reset to their initial state.

Stop0

∆(syncState, repeatCount, curPosition, lastPosition)

syncState′ = stopped ∧ repeatCount′ = 0
curPosition′ = null ∧ lastPosition′ = null

Stop =̂ Stop0 ∧ Transit

The operation Ready gets the stopped synchronizable object ready for starting.
This operation has no effects if the object is in any state other than stopped:

Ready0
∆(syncState)

syncState = stopped⇒ syncState′ = ready
syncState ∈ {started, paused, ready} ⇒ syncState′ = syncState

Ready =̂ Ready0 ∧ Transit

The operation Ready tends to be extended when defining a multimedia object ,
which will possibly engagemore complicated prefetching behavior than just changing
the state to ready as it is shown here.

A synchronizable object can be started when it is ready or paused. However, to start
from ready, the object must have a position to start from, which requires that either
the begin location is given, or there exists theminimum1in the coordinate system. The
operation has no effects if the object has already been started, or if it is stopped:

1 Let’s define minimum as a total function that finds the minimum element of a set X with regard to a
relation r as follows:

minimum[X ] == λ r : X ↔ X ; a : PX • (x : X} |
if lowerBound(r, a) = ∅ then x = null else{x} = a ∩ lowerBound(r, a))
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Start0
∆(syncState, curPosition)

syncState = ready⇒
curPosition′ = minimum( ≺ , positions)
if curPosition′ = null then syncState′ = stopped

else syncState′ = started
syncState = paused⇒ syncState′ = started
syncState = started⇒ syncState′ = syncState

Start =̂ Start0 ∧ Transit

For a stopped object to start, it must get ready first. The operation TryStart tries to
start the synchronizable object from any states:

TryStart =̂ if syncState = stopped thenReady o
9 Start elseStart

Once the synchronizable object has been started, it can be put in to the paused
by the operation Pause defined below. This operation does not have any effect if the
object is in any synchronization states other than started:

Pause0
∆(syncState)

syncState = started⇒ syncState′ = paused
syncState ∈ {stopped, ready, paused} ⇒ syncState′ = syncState

Pause =̂ Pause0 ∧ Transit

Position operations The following operations are so called “setter” operations
that change the value of the state variables explicitly. These operations are straight-
forward, nonetheless it should be noticed that because the postcondition of every
operation must yield to the predicates in the state schema, changing values of the
state variables may implicitly change the value of the others. For example a new begin
value will result in a new syncSpan and in turn a new set of positions, and a new
direction will also result in new meaning of ≺.

SetRepeatNumber =̂ [ syncState = stopped ] ∧
[ n? : N ] • repeatNumber := n?

SetDirection =̂ [ syncState = stopped ] ∧
[ d? : Direction ] • direction := d?

where the total function

lowerBound[X ,Y] == λ r : X ↔ Y; b : PY • {x : X | ∀ y : b • x 7→ y ∈ r}

defines the lower bound of a set b through a relation r, as the set of those elements of the source type of r
that are related to all elements in b by r.

It is easy to prove that the minimum, if any, is unique if the relation is antisymmetric.
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The syncSpan and the positions can be changed by setting the minimum element
of the synchronization coordinates, or the maximum element, or both at the same
time:

SetBegin =̂ [ syncState = stopped ] ∧ [ begin? : C} ] • begin := begin?
SetEnd =̂ [ syncState = stopped ] ∧ [ end? : C} ] • end := end?
SetBeginEnd =̂ SetBegin ∧ SetEnd

All these “setter” operations are not allowed to take place when the object is
in any other states except the stopped state, to avoid semantic confusion. It is
however technically possible to enable these operations in all other states, but then the
developer has to take care of the state variables positions, curPosition and lastPosition
so that they are not conflicting with each other, and so that the resulting state should
be easily understandable.

Event operations The operation SetEventDispatcher associates an event dis-
patcher to the synchronizable object:

SetEventDispatcher =̂ [ ed? : EventDispatcher ] • eventDispatcher := ed?

The next two operations manipulate the synchronization events by attaching a
SyncEvent object to a coordinate or detaching it:

AttachSyncEvent
∆(syncElements)
c? : C
e? : ↓SyncEvent

syncElements′ =
syncElements ∪ {c? 7→ e?}

DetachSyncEvent
∆(syncElements)
c? : C
e? : ↓SyncEvent

syncElements′ =
syncElements \ {c? 7→ e?}

It can also be desirable to have the operations that add or remove a set of
synchronization elements all together, for example in the case of setting up a
“periodic” synchronization behavior:

AddSyncElements
∆(syncElements)
ses? : C ↔ ↓SyncEvent

syncElements′ = syncElements ∪ ses?

RemoveSyncElements
∆(syncElements)
ses? : C ↔ ↓SyncEvent

syncElements′ = syncElements \ ses?

Once a position is being visited, all the events attached to the coordinates from the
last visited position (excluded) to the current position (included) should be triggered:
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GetEventsQueue
eq! : seqPSyncEvent
pq : seqPosition

pq = sort( ≺ ,
dom(syncElements)C

({curPosition} ∪
if lastPosition = null then∅

else{p : Position | lastPosition ≺ p ≺ curPosition}
)

)
#eq! = #pq
∀ i : 1 . . #eq! • eq!(i) =

{se : syncElements | first(se) = first(pq(i)) • second(se)}

Although the positions after the last visited position and before the current
position might not have been visited, the events attached to these positions should
not be ignored. The operation GetEventsQueue first finds out all the related positions
which have coordinates attached with synchronization events, sort2 them into a
sequence, then output another sequence of SyncEvent sets in the order of the position
sequence. The output is serialized into a sequence instead of a set, because the order
information is important for the following operation DispatchEventsQueue, so that the
synchronization events can be triggered sequentially along the positions. The events
attached to a position before other positions may have their semantic effect to happen
first. Also notice that the events attached to a coordinate can be included more than
once at different positions because of repeating.

The operation DispatchEventsQueue takes a sequence of SyncEvent sets as input,
sends the head of the sequence to the operation DispatchSyncEvents, then directs
the tail of the sequence back to the operation DispatchEventsQueue until the input
sequence is empty, using a recursive definition:

DispatchEventsQueue =̂ [ eq? : seqPSyncEvent ] •
if eq? 6= 〈 〉 then(DispatchSyncEvents(head(eq?)) o

9

DispatchEventsQueue(tail(eq?)))

where the operation DispatchSyncEvents simultaneously sends the events to the event
handler for dispatching:

DispatchSyncEvents =̂ [ se? : PSyncEvent ] •
∧e : se? • eventDispatcher.Dispatch(e)

2 The total function sortmaps a finite subset of a given type X to a sequence according to a given relation
r, by squashing (Spivey, 1992, p.121) any bijective function that maps a set of nature numbers to the given
finite subset:

sort[X ] == λ r : X ↔ X ; a : FX •
∀ f : N1 �→ pos | ∀ n1, n2 : dom(f ) • n1 < n2 ⇔ f (n1) 7→ f (n2) ∈ r • squash(f )
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Progression operations Having defined the event operations, it is ready to give
“visiting a position” a preliminary meaning:

Visit =̂ [ syncState = started ∧ curPosition 6= null ∧
curPosition 6= lastPosition ] ∧

(GetEventsQueue o
9 DispatchEventsQueue)

which does noting but dispatching the events. This operation tends to be extended
or overwritten to give the actual meaning in a concrete synchronizable object.
Depending on the type of the synchronizable objects, while visiting the object it
may for example perform data presentation for any data identified by the current
coordinate, or invoke extra operations that take attached events as input before
dispatching them.

Once the current position has been visited, the following CurToLast operation
should be invoked to record the current position before visiting the next position:

CurToLast =̂ [∆(lastPosition) | lastPosition′ = curPosition ]

Besides event handling, so far the progression of a synchronizable object is
modeled by specifying the coordinates as milestones, unfolding repetition into
positions, and defining the visiting order as per direction. The object has now the
static basis for dynamic progression. However, the dynamic behavior, that is, how the
synchronized object moves from one position to another, is not yet clear.

A default “stepping” behavior is described as follows, assuming the next position
to visit is the closest position after the current one, without knowing whether it is
driven by its own process or by anything else:

NextVisit
∆(curPosition)

curPosition 6= null
curPosition′ = minimum( ≺ , {p : positions | curPosition ≺ p})

Step =̂ if syncState = started ∧ curPosition = null thenStop
else(Visit ‖ CurToLast ‖ NextVisit)

For the operation Step to succeed, the current position must be visitable (see the
conjoined conditions on the operation Visit on this page). If the current position
is set to null, there is no way to find the immediate next and it will Stop by
itself. This may happen when there is no next position to visit. The parallel
composition operator ‖ allows concurrent component operations, but also enables
inter-object communication between the components by equating any input to one
of the components of ‖ with any output from the other component that has the
same base name. When there is no inter-object communication, it behaves like the
conjunction operator. However Conjoining an inherited operation in the inheriting
class does not affect the meaning of other inherited operations which are defined in
terms of this operation (Smith, 2000, p.47), whereas the parallel operator does not
have this constraint.
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Visiting a position, storing the current position to lastPosition and finding out the
position to visit next should be done simultaneously. It can also be done sequentially
to fulfill almost the same functionality, but the parallel composition means that the
next position must be found while visiting the current position, so that there are no
extra activities between two visits in sequential steps (Step o

9 Step), to achieve seamless
and continuous visiting.

This finishes the definition of the abstract specification of a synchronizable object.
It is defined as such so that no media specific semantics is directly attached to it.
For example, there is no notion of time although it is crucial for time-based media
objects. Subclasses, realizing specific media control should, through specification,
attach concrete semantics to the object through their choice of the type of the internal
coordinate system, through a proper specification of what “visiting a position” means,
and through a proper specification of how the object should move from the current
position to the next.

F.7 ActiveSynchronizable

Some synchronizable objects can be self-driven – it has its own process to step
forward:

ActiveSynchronizable
�(· · · ) [ Visibility list same as in Syncronizable]
Synchronizable

IdleTick
¬ pre(Step)
τ ′ = τ + 1

PROCESS =̂ µAS • (Step [] IdleTick) o
9 AS

The visibility list in Object-Z is not inherited by the subtypes (Smith, 2000). It is
however trivial to include the same list from a super class. Let’s write �(· · · ) to include
all the visible state variables and operations from the super classes to the visibility list.

A good example of ActiveSynchronizable is a piece of text being rendered by a TTS
engine, where white spaces and punctuation locations can be used as coordinates
that separate the text to short sentences. The engine then renders the text sentence
by sentence. There are no time constrains – how long it will take to render the text
depends on the rendering configurations. But once started, the engine should render
the sentences one after another automatically.

F.8 SyncMediaObject

The example of text being rendered by a TTS engine is not only Synchronizable, but
also a MediaObject. A media object is to be consumed (for example, read, heard,
viewed), hence it has to “present” something from somewhere in physical means (for
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example lights, sounds, images and moving pictures), so that the users can in some
way receive it into their sensory systems. First three special types are introduced:

[D,R]

and

S
String

where D represents “something” – the data in the digital world, and S is a special type
of string that represents “somewhere” – the source of the data. “In physical means”
is model as presenting data to the “real physical world” R.

To separate the concern, these additional attributes and behaviors are modeled as
of typeMediaObject:

MediaObject

src : S

Retrieve =̂ [ c? : C; d! : D} ]

Present =̂ [ d? : D}; r : R; pr : D → R | d? 6= null⇒ r = pr(d?) ]

The operation Retrieve, which takes a coordinate as the parameter, retrieves the
corresponding data from the source as output. A MediaObject is able to Retrieve
needed data, and has an operation to Present the data into something physical. Note
that the operation Retrieve may fail to get the required data, either because there is
no data associated with the coordinate c?, or because the data can not be available in
time during retrieving. In either case, Retrieve outputs a null value and Present does
nothing.

A SyncMediaObject is then a Synchronizable MediaObject which retrieves and
presents the data while visiting the current position:

SyncMediaObject
�(· · · )
Synchronizable[Visits/Visit]
MediaObject

Visit = Visits ‖
(Retrieve(current) ‖
[ d? : D} ] • if d? = eof thenStop elsePresent)

The source of the media object may explicitly send a signal of the “end of file” (( eof ) :
D) to indicate that there is no further data available for presentation. In this case the
operation Stop is invoked.
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F.9 ActiveSyncMediaObject

Therefore, a TTS media object should inherit both the active synchronization
behaviors from the type ActiveSynchronizable and the data operations from the type
MediaObject. It can be defined as of the type ActiveSyncMediaObject:

ActiveSyncMediaObject
�(· · · )
ActiveSynchronizable
MediaObject

Visit = Visits ‖
(Retrieve(current) ‖
[ d? : D} ] • if d? = eof thenStop elsePresent)

PROCESS =̂ µAMO • (Step [] IdleTick) o
9 AMO

Since only inheriting the active type ActiveSynchronizable does not make
ActiveSyncMediaObject automatically active, the operation PROCESS is explicitly defined.

F.10 Timer

It is now the time for a Timer. For time-based synchronization, such a Timer is often
needed in order to add time constraints to operations. The type T is discrete and has
the order relation < defined (see required properties on page 278), therefore it can be
naturally used as a coordinate system. A Timer is defined as a Synchronizable object
with its coordinate system replaced by T:

Timer
�(· · · )
ActiveSynchronizable[T/C]

A Timer object may advance faster or slower according to the request. It has a state
variable speed that takes a non-zero real number as the speeding factor, and a function
timing maps each position to the total time that should be used to advance from the
first position to a given position at the given speed.

speed : R
timing : Position 7→ T

speed 6= 0
∀ p : positions • timing(p) =

#{p1 : positions | p ≺ curPosition} ÷ speed

The function timing will be updated whenever a new set of positions is defined or
a new speed is given. An extra operation SetSpeed is needed for the other objects to
change the speed:
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SetSpeed =̂ [ syncState = stopped ] ∧ [ speed? : R ] • speed := speed?

Note that in the coordinate system of a Timer object, the distance between two
successive time coordinates is 1 time unit, hence the total time that should be used to
move from one position to another can be calculated by simply counting the number
of positions in between. Speeding requires this total time to be divided by the speed
factor – faster means less time should be used.

The crucial part of a Timer object is its NextVisit operation:

NextVisit
∆(curPosition)
pmin, pmax : Position}

pmin = minimum( ≺ ,
{p : positions | τ ′ − τ = timing(p)− timing(curPosition)})

pmax = maximum( ≺ , positions)
if pmin 6= null then curPosition′ = pmin

else if pmax 6= null ∧ pmax 6= curPosition
then curPosition′ = pmax else curPosition′ = null

The operation NextVisit first tries to find such a position that

• the total time spent from curPosition to this position

timing(p)− timing(curPosition)

is enough to finish the current visit,

• the actual time used (τ ′ − τ ) for visiting current position can be more than the
necessary minimum, but must be equal to this total time.

• it should be as close as possible to curPosition.

If such a position does not exist and the maximum3 position, if exists, has not been
visited, it means that the time needed to finish the current visit is beyond the time
distance between curPosition and the last position. The last position should however
not be ignored, otherwise the events attached to the positions after curPosition would
never be dispatched. In this case, the operation NextVist forces the last position to be
visit next. If all of the above fails, The operation sets the next position to null.

A Timer object has a process of its own to move forward:

PROCESS =̂ µT • (Step [] IdleTick) o
9 T

3 The total functionmaximum on a set X with regard to a relation r is a “dual” function ofminimum (see
footnote on page 283):

maximum(r, a) == λ r : X ↔ X ; a : PX • minimum(r∼, a)
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F.11 TimedSynchronizable

Many media objects, for example MP3 audio and MPEG-4 video, are time based.
These objects have their own coordinate systems, for example, frame numbers in
a video stream. However when playing back, every frame has to be presented in a
fixed or variable rate, which often is referred as the framerate (for video streams) or
the bitrate (for audio streams). There is a mapping between their own coordinate
systems and the require presentation time.

There are two ways to establish such a mapping. The first would implement a
media object as a timer, which replaces its coordinate system with time. The second
would synchronize the media object with a timer, where the coordinate systems of
both the object object and the timer are kept intact. Although the first solution seems
straightforward, the second solution is preferable for the following reasons:

• It is then possible to share a timer among media objects, so that the timing
control (starting, stopping, pausing, fast forwarding and rewinding) can be
centralized and shared.

• It provides the flexibility for the user or the client of a media object to decide
with which referencing coordinate system to control it. For example, a video
object can then be paused at a specified time, or a given frame number.

• As defined on page 290, a Timer object is an ActiveSynchronizable that has its
own process to keep track of time, whereas the media object should have a
separate process to “visit” its own coordinates and to present the related content.
Implementing a media object as a timer would make it difficult to separate the
processes.

The class TimedSynchronizabe implements the second solution, applying the
Decorator pattern (Gamma et al., 1995; Metsker, 2002), decorating a Timer with
ActiveSynchronizable interfaces. Timed media objects are not immediately modeled,
because there is a need for something that is more generic, to schedule tasks that do
not have media content to present and that the task execution time is related to a to
coordinate system.

To enable event based synchronization between a TimedSynchronizabe object
and a Timer, as already mentioned on page 279, a particular type of time based
synchronization events should be defined in order to identify them:

TimedSyncEvent
SyncEvent

The following TSEventHandler couples a TimedSynchronizable object with an
EventHandler which is only interested in the events from the associated timer:

TSEventHandler
EventHandler



F.11 TimedSynchronizable 293

ts : TimedSynchronizable

INIT
iterestedSources = {ts.timer}

and more specifically a TimedSyncEventHandler:

TimedSyncEventHandler
TSEventHandler

INIT
interestedEvents = TimedSyncEvent

HandleEvent =̂ ts.HandleTimedSyncEvent

which implements the HandleEvent operation of an EventHandler object (see defini-
tion on page 299), forwarding the event, if it is of type TimedSyncEvetn, to a associated
TimedSynchronizable object for further processing.

The TimedSynchronizable objects should be controlled, or more precisely, pre-
pared, started, stopped and paused together with the associated Timer. Since a Timer
can be associated with multiple TimedSynchronizable objects and the state transitions
of the Timer should affect all the associated objects, it is convenient to reuse the
event handling mechanism to coordinate the states among these objects. Every
TimedSynchronizable object is then associated with a StateSyncEventHandler to handle
the state transition events:

StateSyncEventHandler
TSEventHandler

INIT
interestedEvents = TimedSyncEvent

HandleEvent =̂ ts.HandleStateSyncEvent

The class TimedSynchronizable is defined as follows:

TimedSynchronizable
�(· · · , timer)
ActiveSynchronizable[Readyas/Ready,Startas/Start,

Pauseas/Pause,Stopas/Stop]

timer : Timer
timing : C 7� T [Maps coordinates to time]
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tseHandler : TimedSyncEventHandler
sseHandler : StateSyncEventHandler

timing(| syncSpan |) = timer.syncSpan
repeatNumber = timer.repeatNumber
repeatCount = timer.repeatCount
direction = timer.direction
tseHandler.ts = sseHandler.ts = self

It has a Timer, which is made visible to other objects so that the Timer object can
be controlled directly. The controlling operations inherited from ActiveSynchrinizable
are renamed and hidden so that later they can be redefined to incorporate the state
control of the timer. Each TimedSynchronizable has an injective partial function timing
that maps each coordinate in the synchronization span (syncSpan) to a different
time in the syncSpan in the timer. Since timing is injective, its inverse timing∼ is
also a function, by which a given time in the syncSpan of the timer can also be
mapped back to a coordinate in the syncSpan of the TimedSychronizable object. It
is required the syncSpan of the timer stays as the relational image of the syncSpac
of the TimedSychronizable object under the function timing, so that the change
on either of them updates another. The state variables repeatNumber, repeatCount
and direction are required to be the same as those in the timer all the time. The
TimedSynchronizable object has two event handlers tseHandler and sseHandler to
process timed synchronization events and state transition events respectively.

The initial state of TimedSynchronizable object requires the associated objects to
be in the initial state as well:

INIT
timer.INIT ∧ tseHandler.INIT ∧ sseHandler.INIT

The following operation AddTimedSyncEvents attaches a TimedSyncEvent to each
time coordinate of the timer if there is not one attached:

AddTimedSyncEvents =̂∧t : Timer.syncSpan •
if@se : timer.syncElements •

first(se) = t ∧ second(se) ∈ TimedSyncEvent
then [ e : TimedSyncEvent | e.source = timer ] •

timer.attachSyncEvent(t t; e e)

To get the TimedSynchronizable object into the ready state, each time in the
syncSpan of the timer is attached with a TimedSyncEvent, the event handlers tseHandler
and sseHander are subscribed to the eventDispatcher of the timer, and then the
operation Ready of the timer is invoked:

Ready =̂ AttachTimedSyncEvents ∧
timer.eventDispatcher.Subscribe(tseHandler) ∧
timer.eventDispatcher.Subscribe(sseHandler) o

9

timer.Ready
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The operation Ready does not directly put the TimedSynchronizable object directly into
the ready state. Instead, when the timer is ready, it will notify all the event handlers
about the state change using its eventDispatcher. The TimedSynchronizable object will
react on the event and finally adapt its state with the timer. The same procedure holds
for all other state control operations.

The operation Stop first unsubscribes its event handlers from the timer, then
invokes the operation Stop of the timer:

Stop =̂ timer.eventDispatcher.Unsubscribe(tseHandler) ∧
timer.eventDispatcher.Unsubscribe(sseHandler) o

9

timer.Stop

The operations Start and Pause are redirected to the corresponding operations in
the timer:

Start =̂ timer.Start
Pause =̂ timer.Pause

Whenever the timer changes its synchronization state, the state transition event
will be dispatched to all interested event handlers and the TimedSynchronizable has
the following operation to react on the event, changing its own synchronization
state accordingly by invoking the controlling operations inherited from its superclass
ActiveSynchronizable:

HandleStateSyncEvent =̂ [e? : StateSyncEvent] •
if e?.newState = ready thenReadyas
else if e?.newState = started thenStartas
else if e?.newState = paused thenPauseas
else if e?.newState = stopped thenStopas

Timed synchronization events are also received and handled when the timer
advances its time:

HandleTimedSyncEvent =̂ [e? : TimedSyncEvent] •
if timer.current ∈ ran(timing)

then curPosition′ = timing∼(timer.current) 7→ repeatCount

This operation updates the state variable curPosition with the position mapped from
the current time of the timer. The TimedSynchronizable object has its own active
process to step forward, visiting the updated curPosition:

Step =̂ if syncState = started ∧ curPosition = null thenStop
else(Visit ‖ CurToLast)

PROCESS =̂ µT • (Step [] IdleTick) o
9 T

Note that the operations Step and HandleTimedSyncEvent are asynchronous. The
operation Step is carried out in the process of the TimedSynchronizable object, but
the events are handled in the process of the event dispatcher of the timer, or if the
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event dispatcher is not implemented as an active process, they are handled in the
process of the timer. In either way, it can be the case that visiting a position takes
more time than expected, and curPosition is updated more than once. Only the last
update will take effect for the next step and the ones in between are skipped. If the
TimedSynchronizable is a video stream, this may result in frames being dropped.

F.12 TimedMediaObject

The class TimedMediaObject inherits the active timing behavior from
TimedSynchronizable, and also as a MediaObject, it implements the operations
Ready and Retrieve with a Prefetcher:

TimedMediaObject
�(· · · )
TimedSynchronizable[Readyts/Ready]
MediaObject

prefetcher : Prefetcher

prefetcher.positions = positions
prefetcher.( ≺ ) = ( ≺ )
prefetcher.src = src

Ready =̂ prefetcher.Prefetch o
9 Readyts

Retrieve =̂ prefetcher.Reterive
Visit = Visits ‖

(Retrieve(current) ‖
[ d? : D} ] • if d? = eof thenStop elsePresent)

Step =̂ if syncState = started ∧ curPosition = null thenStop
elseVisit ∧ CurToLast ∧ NextVisit

PROCESS =̂ µAMO • (Step [] IdleTick) o
9 AMO

To ensure immediate Start operation, the TimedMediaObject must get ready by
utilizing a Prefetcher object to Prefetch certain amount of data. The Prefetcher shares
the same synchronization positions, the same position order and the same data source
as the served TimedMediaObject so that the data is prefetched along the same direction
as the object steps forward. The Prefetcher also guarantees immediate return of data
retrieving, though it does not guarantee return with the required data.

An example Prefetcher is defined as follows. It implements the prefetching pool
as a table that holds data with a maximum capacity, and indexes the data with the
corresponding positions:
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Prefetcher

positions : PPosition
≺ : Position↔ Position

src : S
pool : Position 7→ D
readyAmount, capacity : N
next : Position}

fetch : C → D}

readyAmount < capacity
#pool < capacity
next = let u == maximum( ≺ , dom(pool)) •

if u = null
thenminimum( ≺ , positions)
elseminimum( ≺ , {pos : positions | u ≺ pos})

The state variable readyAmount defines the least amount of data that is required for
immediate Start operation and the capacity of the pool should be big enough to satisfy
this requirement. The variable next always points to the next position of themaximum
element of the positions in the pool. If there is no such a next position, next has a
null value. The actual capability of a MediaObject to fetch data from the source src is
modeled as a function fetch without any further specification.

When the Prefetcher is invoked to Retrieve data related to a given coordinate, it
serves the data directly from the pool. However if the required data is not yet in the
pool, a null value is returned. It might be the case that the pool is so big that multiple
positions in the pool have the same coordinate, then the first one in the order of “≺”
is served. Once a position is served from the pool, the positions prior to this position
are removed from the pool to leave the space for pooling the data from new positions:

Retrieve
∆(pool)
c? : C
d! : D}

p : Position}

p = minimum( ≺ , {p : dom(pool) | first(p) = c?})
if p 6= null then d! = pool(p) ∧

pool′ = {pos : positions | p ≺ pos}C pool
else d! = null

The operation Pooling first clears the data that are not related to the current
positions from the pool, then if the pool is not full, fetches the data of the next position
into the pool:
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Pooling =̂ pool := (positionsC pool) o
9

[#pool < capacity ∧ next 6= null ] ∧
let n == fetch(first(next)) •
if n 6= null then pool := pool ∪ next 7→ n

The operation Prefetch recursively keeps pooling the data until the amount of the
data in the pool has reached the “readyAmount”:

Prefetch =̂ if#pool < readyAmount ∧ #pool < #positions
thenPooling o

9 Prefetch

While the TimedMediaObject is busy presenting the data retrieved from the pool,
the Prefetcher should run as a separate process that keeps pooling the data so that
continuous presentation is possible:

IdleTick =̂ [¬ pre(Pooling) ∧ τ ′ = τ + 1 ]
PROCESS =̂ µF • Pooling [] IdleTick o

9 F

F.13 EventDispatcher

An EventDispatcher is necessary for every Synchronizable object to send synchroniza-
tion events around to those which are interested in certain types of events. The
Reactor pattern (Schmidt et al., 2000) is employed:

EventDispatcher
�(Subscribe,Unsubscribe,Dispatch)

handlers : P ↓EventHandler
INIT
handlers = ∅

Subscribe =̂ [ handler? : ↓EventHandler ] •
handlers := (handlers ∪ {handler?})

Unsubscribe =̂ [ handler? : ↓EventHandler ] •
handlers := (handlers \ {handler?})

Dispatch =̂ [ e? : ↓Event ] •
∧h : handlers | e? ∈ h.interestedEvents ∧

e?.source ∈ h.interestedSources •
h.HandleEvent(e?)

where the EventDispatcher keeps a handlers registry of the target EventHandler objects
through the operations Subscribe and Unsubscribe, dispatches the events to these
handlers if the events and the sources are of their interests.

The Reactor pattern is related to the Observer pattern, where all the dependents
are informed when a single subject changes. In the Reactor pattern, a single handler
is informed when an event of interest to the handler occurs on a source of events
(Schmidt et al., 2000). The observer pattern is not enough in this situation, because
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once the event is triggered, neither the Synchronizable nor the dispatcher should store
the dispatched events for the observers to check what has happened – events are
not part of the observable state. Further, the event handlers, which are receiving the
events, should only be associated with particular types and sources of Events – the
Observer pattern is not designed for this purpose.

The Proactor (Schmidt et al., 2000) can also be used to support asynchronously
demultiplexing and dispatching of multiple events. The ActiveEventDispatcher keeps
the incoming events in a queue and dispatches the events from the queue in a separate
process:

ActiveEventDispatcher
�(Subscribe,Unsubscribe,Dispatch)
EventDispatcher[Dispatched/Dispatch]

events : seq ↓Event
INIT
events = 〈 〉

Enqueue =̂ [ e? : ↓Event ] • events := (eventsa 〈e?)〉
Dequeue =̂ [∆(events)e! : ↓Event | events = 〈e!〉a events′ ]
Dispatch =̂ Enqueue
Dispatching =̂ Dequeue o

9 Dispatched

IdleTick =̂ [¬ pre(Dispatching) ∧ τ ′ = τ + 1 ]
PROCESS =̂ µAED • Dispatching [] IdleTick o

9 AED

F.14 EventHandler

The EventHandler contains the information about interested events and originating
sources. It implements a single operation, HandleEvent, which is used by the
EventDispatcher to dispatch events. The event itself, carries the information of its
type, and the source of the event:

EventHandler

interestedEvents : P ↓Event
interestedSources : P O

HandleEvent =̂ [ e? : ↓Event ]

The advantage of the single-method interface is that it is possible to add new
types of events without changing the interface and existing event handlers. However
this approach encourages the use of switch statements in the subclass’s HandleEvent
method. This can be overcome by partitioning the events, and coupling a particular
type of EventHandler to the actual handling objects as it is demonstrated in the
TimedMediaObject (see specification on page 292). An alternative solution is to
define separate virtual hook operations for each type of the interested events in the
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EventHandler so that it is easier to selectively override operations in the base class
and avoid further demultiplexing (Schmidt et al., 2000). However it requires the
types of the events to be set in advance, which is rather not possible in designing
synchronizable objects at an abstract level.



BACKGROUND MATERIALG
Specifications of the Action Service
Factory Pattern

This background material presents the formal specification of the components of the
Action Service Factory that is introduced in section 6.3 of chapter 6.

G.1 SyncService and concrete actions

The Timed Action pattern requires the operations of the ActionService to have unified
input and output interfaces

[ p?, r! : Dictionary ]

where the input parameters and the output results are wrapped into name 7→ value
pairs. To apply this pattern to Synchronizable objects so that the synchronization
operation can be provided as action services, these operations must be adapted to
yield to the name 7→ value interface, using the Adapter pattern (Gamma et al., 1995;
Metsker, 2002).

The class SyncService extends the ActionService, renaming Opi (i : ActionID) to real
operation names. A SyncService is an “Adapter” for a synchronizable object that is
referred as sbl:

SyncService
�(Ready,Start,SetBegin,GetBegin, · · · )
ActionService[Ready/Op1,Start/Op2,SetBegin/Op3,GetBegin/Op4, · · · ]

sbl : ↓Synchronizable

The control operations such as Ready and Start from the Synchronizable object
sbl do not have any input and output. They are wrapped with the operation [ p? :

301
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Dictionary ] that accepts any input, and the operation [ r! : Dictionary | r! = ∅ ] that
returns an empty set of name 7→ value pairs. Any input is accepted, but will be silently
ignored:

Ready =̂ [ p? : Dictionary ] o
9 sbl.Ready o

9 [ r! : Dictionary | r! = ∅ ]

Start =̂ [ p? : Dictionary ] o
9 sbl.Start o

9 [ r! : Dictionary | r! = ∅ ]

· · ·

For those operations from sbl that have inputs and outputs, the input parameters
in form of name 7→ value pairs are passed through a “decoding” operation that outputs
the parameters for the operation from sbl. After the operation from sbl is invoked, the
outputs from this operation is then put into another operation that “encodes” the
results in form of name 7→ value pairs again. An example is how to adapt sbl.SetBegin
to the required input and output interface:

SetBegin =̂ [ p? : Dictionary; begin! : C} | begin! = Get(p?, “begin”) ] o
9

sbl.SetBegin o
9 [ r! : Dictionary | r! = ∅ ]

· · ·

In addition, a SyncService object may also provide “getter” operations for visitable
state variables of the object sbl so that state queries to sbl can be scheduled too:

GetBegin =̂ [ p?, r! : Dictionary | r! = {“begin” 7→ O(sbl.begin)} ]

· · ·

All these operations that will be available to the clients are then encapsulated as
corresponding Action objects so that they can be stored and retrieved for scheduling.
For example, the operations Ready and Start are encapsulated in

ReadyAction
Action
Execute =̂ as.Ready(p) o

9 tr.Complete

and

StartAction
Action
Execute =̂ as.Start(p) o

9 tr.Complete

respectively.

G.2 SyncServiceProxy

The class SyncServieProxy implements the interfacing class ActionServiceProxy with
the concreted actions defined for the class SyncService. The interfaces are created for
the client to schedule the synchronization operations with an extra time parameter:
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SyncServiceProxy
�((INIT, as, eq, s),Ready,Start, . . . )
ActionServiceProxy[SyncActionService/ActionService,

Ready/Op1,Start/Op2, · · · ]

NewTimedReadyAction
t? : T}

p? : Dictionary
ta! : TimedAction
tr! : TentativeResult

new(ta!,TimedAction) ∧ new(tr!,TentativeResult)
new(ta!.a,ReadyAction) ∧ ta!.a.INIT
ta!.a.as = as ∧ ta!.a.eq = eq ∧ ta!.a.p = p? ∧ ta!.a.tr = tr!
if t? = null then ta!.t = τ else ta!.t = t?

NewTimedStartAction
· · ·

· · ·
Ready =̂ NewTimedReadyAction[o!/ta!] o

9 s.Subscribe
Start =̂ NewTimedStartAction[o!/ta!] o

9 s.Subscribe
· · ·

So far the SyncService for the synchronization tasks have been defined on a
Synchronizable object , the concrete Actions that wrap these tasks as objects and
the SyncServiceProxy interfaces for the client to schedule these tasks. The other
participants in the Timed Action pattern, such as TimedAction, ExecutionQueue,
TentativeResult and Scheduler (see figure 6.1 on page 68), can be employed directly
without changing the definition.

The next could be defining the factories that dynamically create all needed
participants in the Timed Action pattern and link them all together for a given media
object according to its type. However it is necessary to understand and express these
media types first.

G.3 Media types

Let’s introduce a type to identify different types of media content

[M]

and a global relation B on this type

B : M ↔ M

∀m : M • ¬ (m B m) [ Irreflective]
∀m1,m2,m3 : M • m1 B m2 ∧m2 B m3 ⇒ m1 B m3 [ Transitive]
∀m1,m2 : M • m1 B m2 ⇒ ¬ (m2 B m1) [ Antisymmetric]
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that evaluates whether a given media type “is a” subtype of another media type, for
example, mp3 is a subtype audio type, mp4 is a subtype of video, and audio and video
are subtypes of timedmedia. For the convenience, its reflective version Q may also be
used. Note that B and Q are partial relations and one shall not model these different
media types into a static class hierarchy. Such a static hierarchy is feasible only when
the entire inheritance tree is given before the system is up and running. It is necessary
to deal with a dynamic media ontology that is defined by both the content itself and
playback components in the runtime. The issue of media compatibility is a complex
topic in itself. Here a pragmatic approach is adopted.

The following global total function finds one of the closest type of a given media
type from a set of media types:

closest == λm : M; M : P M •
let a == {m1 : M | m Q m1 ∧ (@m2 : M • m B m2 B m1)} •

(m0 : M} | if a = ∅ thenm0 = null elsem0 ∈ a)

If the given type m is in the setM, the closest one is itself, otherwise the function tries
to find a type in M such that there is no other types in between in chain of B. If the
type is not found inM, a null value is returned to indicate the situation.

Let’s also define a global total function that determines the media type from a
given source:

stype : S → M}

which also includes the case that the media type can not be determined. In this case,
the function stype returns a null value.

G.4 AbstractSyncFactory

The class AbstractSyncFactory defines the interfaces for creating synchronizable
objects for the given media sources, and creating event dispatchers for these
synchronizable objects:

AbstractSyncFactory
�(CreateSyncronizable)
CreateEventDispatcher =̂ [ ed! : ↓EventDispatcher ]
CreateSynchronizable0 =̂ [ src? : S; sbl! : ↓Synchronizable} ]

AttachEventDispatcher =̂
[ sbl? : ↓Synchronizable}; ed? : EventDispatcher ] •
if sbl? 6= null then sbl?.SetEventDispatcher(ed?)

CreateSynchronizable =̂ ((CreateEventDispatcher ‖
CreateSynchronizable0) ‖!
AttachEventDispatcher) \ (ed!)

The parallel composition operator ‖! is a variation of the parallel operator ‖ .
The difference is that ‖! does not hide the output of a matching input/output
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communication pair. The operation CreateSynchronizable hides the output ed! but
leaves the created sbl! exposed.

It is up to the concrete factories to decide which types synchronizable objets
should be created and how, and to decide which event dispatching strategy (active or
passive, shared or multiple) should be applied. It also suggests the inheriting factories
should only make the operation CreateSynchronizable visible to the clients.

G.5 SyncFactoryImpl

Let’s give an example definition of the class SyncFactoryImpl, which creates synchro-
nizable objects according to its capability. The capability is modeled as a partial
function cap that maps a given media type to a set of synchronizable objects.

SyncFactoryImpl
�(CreateSyncronizable)
AbstractSyncFactory

cap : M 7→ P ↓Synchronizable
created : P ↓Synchronizable
ed : ↓EventDispatcher}

It also keeps track of the created synchronizable objects. A created object should
not be created for a second time until recycled. This example factory maintains an
EventDispatcher variable ed for all created objects. Upon initiation, ed is set to null and
created is empty:

INIT
ed = null ∧ created = ∅

The following operation creates a new ActiveEventDispatcher object as when being
invoked for the first time, and outputs this dispatcher ever since:

CreateEventDispatcher
∆(ed)
ed! : ↓EventDispatcher

if ed = null thennew(ed′,ActiveEventDispatcher) ∧ ed! = ed′

else ed! = ed

The following operation outputs a synchronizable object according to the media
type of the source from the input. It first checks whether the source is of a valid media
type then finds the “closest” media type in its capability list. If it is capable of dealing
with this type of media, a synchronizable object, if still available, will be delivered to
the client. The delivered object is also added to the set of “created” so that it won’t be
delivered again.
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CreateSynchronizalbe0
∆(created)
src? : S
sbl! : ↓Synchronizable}
letm == stype(src?) •

ifm = null then sbl! = null
else let found == closest(m, dom(cap)) •

if found = null then sbl! = null
else let available == cap(found)) \ created •

if available = ∅ then sbl! = null
else sbl! ∈ available ∧ created′ = created ∪ {sbl!}

sbl! ∈ MediaObject⇒ sbl!.src = src?

The sets of Synchronizable objects in the range of the function cap can be both
infinite and finite, however in practice, the factory might only be capable of creating
a certain number of a particular type of Synchronizable objects because of for example
limited processing or presentation resources. So often in implementation, it is
important to recycle the no longer used Synchronizable objects so that they can be
delivered again to the clients:

RecycleSynchronizable =̂ [ sbl? : ↓Synchronizable ] •
created := (created \ {sbl?})

G.6 AbstractSyncServiceFactory

Once a Sychronizable object is created, the next step is to wrap it in a SyncService object
and create a SyncServiceProxy so that the client can schedule the synchronization
tasks. The class AbstractSyncServiceFactory encapsulates these object creation
processes and provides a single interface CreateSyncServiceProxy that takes a
Synchronizable object as input and delivers the related SyncServiceProxy to the client.
It is still abstract, because it only defines the output interface for the operation
CreateScheduler and leaves the details to the concrete factory. The concrete factory
may then decide whether every proxy should have a separate scheduling process, or
share one.

AbstractSyncServiceFactory
�(CreateSyncServiceProxy)
CreateScheduler =̂ [ s! : Scheduler ]

CreateSyncService =̂ [ sbl? : ↓Synchronizable; ss! : SyncService|
ss!.sbl = sbl! ]

CreateSyncServiceProxy =̂ CreateScheduler ‖ CreateSyncService ‖
[ s? : Scheduler; ss? : SyncService; ssp! : SyncServiceProxy}|
if ss? = null then ssp! = null else ssp!.as = ss? ∧ ssq!.s = s? ]
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G.7 SyncServiceFactoryImpl

The following is an example implementation of the class SyncServiceFactoryImpl. It
implements the operation CreateScheduler from its abstract super class, by creating a
Scheduler object when it is invoked for the first time, and returns this object ever after.

SyncServiceFactoryImpl
�(CreateSyncServiceProxy)
AbstractSyncServiceFactory

s : Scheduler}
INIT
s = null

CreateScheduler
∆(s)
s! : Scheduler

if s = null thennew(s′,Scheduler) ∧ s′ = s! else s! = s

G.8 An Example

To provide an overview of how everything comes together, let’s first assume there is
an actor who owns a syncFactory of the type SyncFactoryImpl and a syncServiceFactory
of the type SyncServiceFactoryImpl:

syncFactory : SyncFactoryImpl;
syncServiceFactory : SyncServiceFactoryImpl.

The syncFactory has a list of capacities:

syncFactory.cap = {mp3 7→ Mp3MediaObject, audio 7→ AudioMediaObject}

which claims that it can create not only dedicatedmp3 media objects that are specially
designed for playing back mp3’s, but also more generic audio media objects that play
back many media types:

mp3 B audio ∧ wav B audio ∧ au B audio.

BothMp3MediaObject and AudioMediaObject extend TimedMediaObject to use a Timer
and a Prefetcher to present streamed audio.

Suppose the actor receives a request from the client to play a live mp3 stream at a
specific time t0, and when that is ended, play another piece of wav file but the first 2
seconds of the wav are requested to be skipped. Assume the mp3 is from the source
“http : //www.server.com/file.mp3” ∈ S:

stype(“http : //www.server.com/file.mp3”) = mp3
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and the wav is from the local storage “file : ///c : /mymusic/file.wav” ∈ S:

stype(“file : ///c : /mymusic/file.wav”) = wav.

The actor uses the source ofmp3 as input to the syncFactory to get a synchronizable
object

syncFactory.CreateSynchronizable(src “http : //www.server.com/file.mp3”).

Since

closest(mp3, dom(syncFactory.cap) = mp3,

checking against the capability list syncFactory.cap, syncFactory creates a
MP3MediaObject as output. Let’s denote it as mp3object. Using a sequential
composition, this output can then be used as the input for syncServiceFactory to wrap
it with an action proxy:

syncServiceFactory.CreateSyncServiceProxy(sbl mp3object).

Let’s write mp3proxy to denote the SyncServiceProxy product of this operation, and
mp3service to denote the intermediate SyncService product. Note that

mp3proxy.as = mp3service ∧ mp3service.sbl = mp3object.

The actor uses the same procedure to create the Synchronizable object and the
proxy for the action service. Although there is no dedicated media object for wav,
the syncFactory finds that the AudioMediaObject can deal with audio, and wav is an
immediate subtype of audio. A AudioMediaObject is produced instead. Let’s write
wavobject to denote this product. The wavobject is then sent to syncServiceFactory to get
a product of SyncServiceProxy. Let’s refer this product as wavproxy. The intermediate
SyncService product will be referred as wavservice, where

wavproxy.as = wavservice ∧ waveservice.sbl = wavobject.

Notice that the syncFactory has assigned the same ActiveEventDispatcher object for
both mp3object and wavobject, and the syncServiceFactory has also assigned the same
Scheduler object for both mp3proxy and wavproxy. That is,

mp3object.eventDispatcher = wavobject.eventDispatcher ∧
mp3proxy.s = wavproxy.s.

The mp3object has to get ready before the time t0:

mp3object.Ready ∧ [ τ ′ < t0 ] .

The wavobject should skip the first 2 seconds of the content. Let’s assume that 1
second takes 1000 time units in the system, then the synchronization positions of the
wavobject should be set by invoking:

wavobject.SetBegin(2000)
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As requested, the presentation of the wavobject should start when themp3object stops.
However it is not known in advance when themp3 stream is going to be ended, and it
is possible that the stream is not alive and the mp3object can be immediately stopped.
So the wav object also has to get ready before the time t0:

wavobject.Ready ∧ [ τ ′ < t0 ] .

Both the mp3object and the wavobject will then initiate their Timer objects, activate
their Prefetcher objects to Retrieve enough amount of data so that they are ready for
immediate and continuous presentation.

To detect the event of mp3object stopping, the actor has to implement an
eventHandler of the type EventHandler, where

eventHandler.interestedEvents = {e : StateSyncEvent | e.newState = stopped}
eventHandler.interestedSources = {mp3object}

and the operation eventHandler.HandleEvent should bemanaged by the actor to invoke
wavobject.Start. The eventHandler is registered to the event dispatcher:

mp3object.eventDispatcher.Subscribe(eventHandler)

Now the actor is ready to schedule the presentation by accepting a request through
the action proxies. For example:

mp3proxy.Start(t t0, p ∅) \ (tr!)

which will create a TimedAction object, denoted as ta, which wraps up an StartAction
object, denoted as sa, such that

ta.t = t0 ∧ ta.a = sa

and

sa.as = mp3servcie ∧ sa.eq = mp3proxy.eq ∧ sa.p = ∅.

In this example, the actor does not care about the output TentativeResult object tr!
and it is then hidden from the environment. The created TimedAction object ta is
subscribed to the Scheduler mp3proxy.s, and obviously now it can be asserted that

ta ∈ mp3proxy.s.tas.

The scheduler mp3proxy.s is an active object (see definition on page 271) and
it keeps checking its subscriber list tas while time goes on. When the scheduled
time ta.t = t0 has reached, the operation ta.Update(self ) is invoked. This will
result in the wrapped StartAction object sa to be enqueued in sa.eq (see definition on
page 270), that is, mp3proxy.eq, which is an active object of the type ExecutionQueue
(see definition on page 268). So far nothing has been enqueued except sa. The active
PROCESS immediately dequeues sa for execution, which in turn results in the operation
sa.Execute being invoked, that is, sa.as.Start(p) o

9 sa.tr.Complete. Since sa.as =
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mp3service, this will finally call the operationmp3object.Start throughmp3service.Start:
[ p? : Dictionary ] o

9 sbl.Start o
9 [ r! : Dictionary | r! = ∅ ] in which it is known that

mp3service.sbl = mp3object. The input, p? = sa.p = ∅, is ignored.
Remember the mp3object has already been ready for presentation. The operation

mp3object.Start will immediately activate the Timer object, which will then actively
push themp3object forward by mapping the time to data positions, retrieving the data
from the pool of the Prefetcher, and presenting it to the real world ( see the definition
of TimedMediaObject on page 296).

The mp3object is now started, presenting its beats and rhymes, until an eof is
received from the source, or for whatever reasons its Stop operation is invoked. The
mp3object’s state is then changed to stopped.

This state transition will issue a SyncStateEvent which newState is stopped and
which source is the mp3object. The event dispatcher, mp3obect.eventDispatcher, picks
this event up and distributes it to the interested event handlers (see specification on
page 282).

There was a eventHandler subscribed to this type of event. The operation
eventHandler.handleEvent is called by the dispatcher and hence the operation
wavobject.Start. Now, immediately after the mp3object is stopped, the wavobject starts
its presentation without any delay, because it has already been ready and waiting for
this starting trigger.



BACKGROUND MATERIALH
Specifications of the Channel Pattern

This background material presents the formal specification of the components of the
Channel pattern that is introduced in section 7.2 of chapter 7.

H.1 Channel

The class Channel provides administrative operations through two interfacing objects:

• TheConsumerAdmin interface allows consumers to be connected to the channel,
and the operation ForConsumers returns an object reference that supports the
ConsumerAdmin interface.

• The SupplierAdmin interface allows suppliers to be connected to the channel,
and the operation ForSuppliers returns an object reference that supports the
SupplierAdmin interface.

Channel
�(ForSuppliers,ForConsumers,Destroy, (Transfer))

supplierAdmin : ↓SupplierAdmin©C
consumerAdmin : ↓ConsumerAdmin©C

consumerAdmin.channel = supplierAdmin.channel = self

ForSuppliers =̂ [ supplierAdmin! : {supplierAdmin} ]

ForConsumers =̂ [ consumerAdmin! : {consumerAdmin} ]

The Destroy operation destroys the channel and both ConsumerAdmin and
SupplierAdmin objects:

Destroy =̂ supplierAdmin.Destroy ‖ consumerAdmin.Destroy

311
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The protected operation Transfer transmits the data from the supplierAdmin to
consumerAdmin. How this should be done depends on the QoS requirements and
data dispatching strategy. A minimum implementation can be described here: it
pushes the input data from the SupplierAdmin object directly to the ConsumerAdmin
object:

Transfer =̂ [ d? : O ] • consumerAdmin.PushFromChannel(d?)

All data to be transferred are objects of any type. If the data to be transferred is not
an object, it easy to wrap any non-object data up as an object (see specification on
page 266).

H.2 SupplierAdmin

The class SupplierAdmin creates the proxy consumers for suppliers and keeps track of
these connected proxy consumers. It defines the first step for connecting suppliers
to the channel (see the second step later defined in classes ProxyPushConsumer
on page 319 and ProxyPullConsumer on page 320); clients use it to obtain proxy
consumers:

SupplierAdmin
�(ObtainPushConsumer,ObtainPullConsumer,
DisconnectPushConsumer,DisconnectPullConsumer,
(Destroy,PushToChannel))

channel : ↓Channel
∆
pushConsumers : P ↓ProxyPushConsumer©C
pullConsumers : P ↓ProxyPullConsumer©C

The operation ObtainPushConsumer creates and outputs a ProxyPushConsumer
object. The ProxyPushConsumer object can then be used to connect a push-style
supplier. The operation DisconnectPushConsumer removes the ProxyPushConsumer
object from pushConsumers

ObtainPushConsumer
pushConsumer! : ↓ProxyPushConsumer

new(pushConsumer!,ProxyPushConsumer)
pushConsumer!.INIT
pushConsumer!.supplierAdmin = self
pushConsumers′ = pushConsumers ∪ {pushConsumer!}
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DisconnectPushConsumer
pushConsumer? : ↓ProxyPushConsumer

pushConsumers′ = pushConsumers \ {pushConsumer?}

The operation ObtainPullConsumer creates and outputs a ProxyPullConsumer
object. The ProxyPullConsumer object can then be used to connect a pull-style
supplier. The operation DisconnectPullConsumer removes the ProxyPullConsumer
object from pullConsumers:

ObtainPullConsumer
pullConsumer! : ↓ProxyPullConsumer

new(pullConsumer!,ProxyPullConsumer)
pullConsumer!.INIT
pullConsumer!.supplierAdmin = self
pullConsumers′ = pullConsumers ∪ {pullConsumer!}

DisconnectPullConsumer
pullConsumer? : ↓ProxyPullConsumer

pullConsumers′ = pullConsumers \ {pullConsumer?}

The protected operation Destroy is called by the Destroy operation from the
associated channel object to invoke the disconnect operation on all proxies that were
created via this SupplierAdmin object:

Destroy =̂ (∧pc : pushConsumers • pc.DisconnectPushConsumer) ‖
(∧pc : pullConsumers • pc.DisconnectPullConsumer)

The protected operation PushToChannel is for the connected proxies to push data
to the associated channel object:

PushToChannel =̂ [ d? : O ] • channel.Transfer(d?)

H.3 ConsumerAdmin

The class ConsumerAdmin creates the proxy suppliers for consumers and keeps track
of these connected proxy suppliers. It defines the first step for connecting consumers
to the channel (see the second step defined in classes ProxyPushSupplier on page 345
and ProxyPullSupplier on page 317); clients use it to obtain proxy suppliers:

ConsumerAdmin
�(ObtainPushSupplier,ObtainPullSupplier,
DisconnectPushSupplier,DisconnectPullSupplier,
Destroy, (PushFromChannel))
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channel : ↓Channel
∆
pushSuppliers : P ↓ProxyPushSupplier©C
pullSuppliers : P ↓ProxyPullSupplier©C

The operationObtainPushSupplier creates and outputs a ProxyPushSupplier object.
The ProxyPushSupplier object can then be used to connect a push-style consumer.
The operation DisconnectPushSupplier removes the ProxyPushSupplier object from
pushSuppliers:

ObtainPushSupplier
pushSupplier! : ↓ProxyPushSupplier

new(pushSupplier!,ProxyPushSupplier)
pushSupplier!.INIT
pushSupplier!.consumerAdmin = self
pushSuppliers′ = pushSuppliers ∪ {pushSupplier!}

DisconnectPushSupplier
pushSupplier? : ↓ProxyPushSupplier

pushSuppliers′ = pushSuppliers \ {pushSupplier?}

The operation ObtainPullSupplier creates and outputs a ProxyPullSupplier object.
The ProxyPullSupplier object can then be used to connect a pull-style consumer.
The operation DisconnectPullSupplier removes the ProxyPullSupplier object from
pullSuppliers:

ObtainPullSupplier
pullSupplier! : ↓ProxyPullSupplier

new(pullSupplier!,ProxyPullSupplier)
pullSupplier!.INIT
pullSupplier!.consumerAdmin = self
pullSuppliers′ = pullSuppliers ∪ {pullSupplier!}

DisconnectPullSupplier
pullSupplier? : ↓ProxyPullSupplier

pullSuppliers′ = pullSuppliers \ {pullSupplier?}

The protected operation Destroy is called by the Destroy operation from the
associated channel object to invoke the disconnect operation on all proxies that were
created via this SupplierAdmin object:
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Destroy =̂ (∧ps : pushSuppliers • ps.DisconnectPushSupplier) ‖
(∧ps : pullSuppliers • ps.DisconnectPullSupplier)

The protected operation PushToChannel is for the associated channel object to
push data to call connected proxy suppliers. Depending on the data delivery model,
the proxy suppliers define different interface operations to receive the data. For a
push-style proxy supplier, it will directly push the data to the connected consumer; for
a pull-style proxy supplier, it will first put the data in a queue and then wait for the
client to pull the data from the queue:

PushFromChannel =̂
[ d? : O ] • (∧ps : pushSuppliers • ps.PushToConsumer(d?)) ‖

(∧ps : pullSuppliers • ps.PushToSupplier(d?))

Note that the operator∧ conjoins the component operations, the push operations of
the proxy suppliers in this case, so that the input data is replicated and pushed to the
proxy suppliers.

H.4 PushSupplier

A push supplier supports PushSupplier interface:

PushSupplier
DisconnectPushSupplier =̂ [ ]

A concrete push supplier should implement the operation DisconnectPushSupplier
to terminate the communication. It should release resources used at the supplier
to support the communication. The PushSupplier object reference should then be
disposed. If a PushSupplier object is connected to a PushConsumer object, invoking
theDisconnectPushSupplier operation on the PushSupplier object should also cause the
implementation to call the DisconnectPushConsumer operation on the PushConsumer
object.

H.5 ProxyPushSupplier

The class ProxyPushSupplier is first of all a PushSupplier. It implements the abstract
operation from its super class. It also defines the second step for connecting push
consumers to a channel (see the first step in class ConsumerAdmin on page 313). It
has a state variable pushConsumer to keep track of the connected PushConsumer object.

ProxyPushSupplier
�(ConnectPushConsumer,DisconnectPushSupplier,

(PushToConsumer))
PushSupplier
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consumerAdmin : ↓ConsumerAdmin
∆
pushConsumer : ↓PushConsumer}

INIT
pushConsumer = null

The operation ConnectPushConsumer connects a PushConsumer object to the
ProxyPushSupplier, but only when it has not been connected to any other
PushConsumer object:

ConnectPushConsumer
pushConsumer? : ↓PushConsumer

pushConsumer = null ∧ pushConsumer′ = pushConsumer?

The operation DisconnectPushSupplier implements the corresponding abstract op-
eration from its super class. If it is connected to a PushConsumer object, the operation
disconnects the PushConsumer object and invokes theDisconnectPushConsumer on the
PushConsumer object. The pushConsumer attribute is then set to null, and the proxy
supplier also disconnects itself from consumerAdmin:

DisconnectPushSupplier =̂
(if pushConsumer 6= null
then pushConsumer.DisconnectPushConsumer) ‖
pushConsumer := null ‖
consumerAdmin.DisconnectPushSupplier(self )

The protected operation PushToConsumer is for the associated ConsumerAdmin
object to push data from channel to the connected PushConsumer object that has a
Push interface:

PushToConsumer =̂ [d? : O] • if pushConsumer 6= null
then pushConsumer.Push(d?)

H.6 PullSupplier

A pull-style supplier provides the operations defined in the class PullSupplier to
transmit data:

PullSupplier
Pull =̂ [ d! : O ]
TryPull =̂ [ d! : O; hasData! : B ]
DisconnectPullSupplier =̂ [ ]
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A consumer requests data from the supplier by invoking either the operation Pull
that blocks until the data is available, or the operation TryPull which does not block. If
the data is available, the operation TryPull should output the data d! and set hasData!
to true; if the date is not available, TryPull should set hasData! to false and the output
d! may carry an undefined value.

A concrete pull-supplier should also implement the operation
DisconnectPullSupplier to terminate the communication. It should release resources
used at the supplier to support the communication. The PullSupplier object reference
should then be disposed. If a PullSupplier object is connected to a PullConsumer
object, invoking the DisconnectPullSupplier operation on the PullSupplier object
should also cause the implementation to call the DisconnectPullConsumer operation
on the PullConsumer object.

H.7 ProxyPullSupplier

The class ProxyPullSupplier implements the abstract interfaces defined in
PullSupplier. In addition, it defines the second step for connecting pull consumers to a
channel (see the first step in class ConsumerAdmin on page 313). It has a state variable
pullConsumer to keep track of the connected PullConsumer object, and a pending queue
(specified as a sequence) that temporally caches the data pushed from the associated
ConsumerAdmin object.

ProxyPullSupplier
�(ConnectPullConsumer,DisconnectPullSupplier,
Pull,TryPull, (PushToSupplier))

PullSupplier

consumerAdmin : ↓ConsumerAdmin
∆
pending : seqO
pullConsumer : ↓PullConsumer}

INIT
pullConsumer = null

The operation ConnectPullConsumer connects a PullConsumer object to the
ProxyPullSupplier, but only when it has not been connected to any other PullConsumer
object:

ConnectPullConsumer
pullConsumer? : ↓PullConsumer

pullConsumer = null ∧ pullConsumer′ = pullConsumer?

The operation DisconnectPullSupplier implements the corresponding abstract op-
eration from its super class. If it is connected to a PullConsumer object, the operation
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disconnects the PullConsumer object and invokes the DisconnectPullConsumer on the
PullConsumer object. The pullConsumer attribute is then set to null, and the proxy
supplier also disconnect itself from consumerAdmin::

DisconnectPullSupplier =̂
(if pullConsumer 6= null
then pullConsumer.DisconnectPullConsumer) ‖
pullConsumer := null ‖
consumerAdmin.DisconnectPullSupplier(self )

The operation Pull implements the abstract operation Pull from its super class
according to the required semantics: it blocks the process and keeps trying the
operation TryPull until there is data available (hasData? is true):

Pull =̂ TryPull o
9 [ d? : O; hasData? : B ] •
if hasData? then [ d! : O | d! = d? ] elsePull

The operation TryPull implements the semantics required in its super class: It
checks whether the pending queue is empty. If so, sets hasData! to false and outputs
an arbitrary d! from the set O; otherwise, sets hasData! to true and outputs the data
from the queue according to the First In, First Out (FIFO) order:

TryPull
d! : O
hasData! : B

if#(pending) = 0 then¬ hasData!
else hasData! ∧ pending = 〈d!〉a pending′

The protected operation PushToSupplier is for the associated ConsumerAdmin
object to push data from channel to into the pending data queue:

PushToSupplier =̂ [ d? : O ] • pending := pending a 〈d?〉

H.8 PushConsumer

A push-style consumer provides the operations defined in the class PushConsumer:

PushConsumer
Push =̂ [ d? : O ]
DisconnectPushConsumer =̂ [ ]

A supplier communicates data to the consumer by invoking the operation
Push which takes the data d? as input. The operation DisconnectPushConsumer
terminates the communication. It should release resources used at the consumer
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to support the communication. The PushConsumer object reference should then be
disposed. If a PushConsumer object is connected to a PushSupplier object, invoking
the DisconnectPushConsumer operation on the PushConsumer object should also cause
the implementation to call the DisconnectPushSupplier operation on the PushSupplier
object.

H.9 ProxyPushConsumer

The class ProxyPushConsumer implements the abstract interfaces defined in
PushConsumer. It also defines the second step for connecting push suppliers to a
channel (see the first step in class SupplierAdmin on page 312). It uses a state variable
pushSupplier to store the reference of the connected PushSupplier object.

ProxyPushConsumer
�(ConnectPushSupplier,DisconnectPushConsumer,Push)
PushConsumer

supplierAdmin : ↓SupplierAdmin
∆
pushSupplier : ↓PushSupplier}

INIT
pushSupplier = null

The operation ConnectPushSupplier connects a PushSupplier object to the
ProxyPushConsumer, but only when it has not been connected to any other
PushSupplier object:

ConnectPushSupplier
pushSupplier? : ↓PushSupplier

pushSupplier = null ∧ pushSupplier′ = pushSupplier?

The operation DisconnectPushConsumer follows the semantics of the corre-
sponding abstract operation from its super class. If it is connected to a
PushSupplier object, the operation disconnects the PushSupplier object and invokes
theDisconnectPushSupplier on the PushSupplier object. The operation also disconnects
this proxy consumer from the SupplierAdmin component:

DisconnectPushConsumer =̂
(if pushSupplier 6= null
then pushSupplier.DisconnectPushSupplier) ‖
pushSupplier := null ‖
supplierAdmin.DisconnectPushConsumer(self )
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The operation Push implements the abstract operation from its super class
to receive the data from the PushSupplier objects and push the data directly to
supplierAdmin which will in turn push the data into the channel:

Push =̂ [ d? : O ] • supplierAdmin.PushToChannel(d?)

H.10 PullConsumer

A pull-style consumer should implement the PullConsumer interface defined as
follows:

PullConsumer
DisconnectPullConsumer =̂ [ ]

Any concrete pull-consumer inheriting PullConsumer should implement the
operation DisconnectPullConsumer to terminate the communication and release
resources occupied at the consumer to support the communication. The
PullConsumer object reference should then be disposed. If a PullConsumer object
is connected to a PullSupplier object, invoking the DisconnectPullConsumer operation
on the PullConsumer object should also cause the implementation to call the
DisconnectPullSupplier operation on the PullSupplier object.

H.11 ProxyPullConsumer

The class ProxyPullConsumer implements the abstract operation from its super class
PullConsumer. It also defines the second step for connecting push suppliers to a
channel (see the first step in class SupplierAdmin on page 312). It has a state variable
pullSupplier to store the reference of the connected PullSupplier object.

ProxyPullConsumer
�(ConnectPullSupplier,DisconnectPullConsumer)
PullConsumer

supplierAdmin : ↓SupplierAdmin
∆
pullSupplier : ↓PullSupplier}

INIT
pullSupplier = null

It provides an interfacing operation ConnectPullSupplier for a PullSupplier object
to be connected to this proxy consumer:
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ConnectPullSupplier
pullSupplier? : ↓PullSupplier

pullSupplier = null ∧ pullSupplier′ = pullSupplier?

It implements the abstract operation DisconnectPullConsumer from its super class
according to the required semantics:

DisconnectPullConsumer =̂
(if pullSupplier 6= null
then pullSupplier.DisconnectPullSupplier) ‖
pullSupplier := null ‖
supplierAdmin.DisconnectPullConsumer(self )

The private operation PullFromSupplier tries to pull data from the connected
pullSupplier. If there is data available, it pulls the data and then pushes to the
associated supplierAdmin which will in turn push the data into the channel:

PullFromSupplier =̂ [ pullSupplier 6= null ] •
pullSupplier.tryPull o

9

[ hasData? : B | hasData? ] ∧
supplierAdmin.PushToChannel

A ProxyPullConsumer object is an active object. It has an active process that keeps
trying to pull data from the connected supplier on behalf of the channel. Providing
with an active ProxyPullConsumer to the suppliers, the channel appears to be active
and plays the role of an agent (if the channel pushes data to the passive consumer) or
a procure (if the consumer pulls the data from the channel).

IdleTick =̂ [¬ prePullFromSupplier ∧ τ ′ = τ + 1 ]
PROCESS =̂ µP • (PullFromSupplier [] IdleTick) o

9 P

H.12 An example of the push model

As an example, this section shows how a PushSupplier ps delivers data d : O to a
PushConsumer pc through a global channel c : Channel using a canonical push model
as shown in figure 7.4(a) on page 84. At the consumer pc side, pc implements the Push
interface. Let’s first get the ConsumerAdmin object from the Channel c by invoking the
operation c.ForConsumer. Let consumerAdmin denote the output from this operation.

The consumer pc then obtains a ProxyPushSupplier object from consumerAdmin:
consumerAdmin.ObtainPushSupplier. A ProxyPushSupplier is created and added to
the push supplier list by consumerAdmin. Let proxyPushSupplier denote the created
ProxyPushSupplier object. The consumer pc can be connected to the proxy:
proxyPushSupplier.ConnectPushConsumer(pc). The consumer pc is then ready awaiting
data being pushed through its Push operation by proxyPushSupplier.
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At the supplier side, the PushSupplier ps can be connected to the Channel c
in a similar manner: first invoke c.ForSupplier to get the SupplierAdmin object
(denoted as supplierAdmin), then obtain a ProxyPushConsumer object (denoted as
proxyPushConsumer) by invoking supplierAdmin.ObtainPushConsumer and connect ps
to the proxy consumer by calling proxyPushConsumer.ConnectPushSupplier(ps).

To push the data d though, ps may simply invoke the operation
proxyPushConsumer.Push(d). The object proxyPushConsumer then pushes the
data into the channel by the operation supplierAdmin.PushToChannel and the channel
Transfers the data to consumerAdmin

[ d? : O ] • consumerAdmin.PushFromChannel(d?).

The operation consumerAdmin.PushFromChannel then pushes the data to all
registered ProxyPushSupplier objects. Notice that the consumer pc is connected
to proxyPushSupplier and proxyPushSupplier is registered to consumerAdmin. The
operation PushToConsumer of proxyPushSupplier is then invoked and in turn, the
operation pc.Push is finally invoked to receive the data.



BACKGROUND MATERIALI
Specifications of the Real-time Channel
Pattern

This background material presents the formal specification of the components of the
Real-time Channel pattern that is introduced in section 7.3 of chapter 7.

I.1 QoSProperties

The typeQoSProperties is a list of name 7→ value pairs that defines the all possible QoS
properties, such as reliability and priority. Let’s model these name 7→ value pairs as a
Dictionary as it is specified on on page 265:

QoSProperties == Dictionary

Table I.1 on the following page lists a number of property names and their possible
values that are supported in the IPML system design. The meanings of these names
and values will be explained later as they are encountered, otherwise one may also
refer to the CORBA notification service specification(OMG, 2004b) as similar QoS
properties are also recommended in this specification.

The QoSProperties are designed as a set of name 7→ value pairs instead of
a structurally equivalent data type that includes the properties as strictly typed
attributes. While the later is straightforward, it is clear that whatever choices of
properties and their permitted values are, it is not possible to cover all use cases.
The former enables implementations to extend the properties and to facilitate simple
evolution of QoS properties. Implementations may add the properties understood by
a particular QoS management, for example in our case of Real-time Channel pattern,
by the Scheduler (see definition on page 327).

The QoS requirements can be set at different levels, from per data transmission
to every connected proxy, or to the channel. Note that setting certain QoS properties
to a particular level can be meaningless. For example, it makes no sense to set
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Table I.1: QoS properties

Property Type data Proxy Channel

reliability Reliability ::= BestEffort | Persistent X X

priority N X X X

deadline T X

timeout T X X X

queueSize N X

orderPolicy OrderPolicy ::= FIFO |Deadline X

discardPolicy DiscardPolicy ::= FIFO | LIFO X

deadline (absolute expiry time, e.g. 12:00pm, woensdag 30 augustus 2006 om 16.00
uur) for data transmission on the entire channel. Table I.1 also summarizes which
QoS properties can be set at each level. Also note that the channel and proxy QoS
properties set the default values for the data. If the data carries a certain QoS property,
it overrides the default value defined in the proxy or the channel.

I.2 Filter

The Real-time Channel pattern first adds a Filter object to the Channel class in the
Channel pattern. It allows consumers to subscribe for particular subset of data.
The channel then uses these subscriptions to filter the data from suppliers, only
forwarding them to interested consumers.

Integrating the filters in the channels relieves consumers from implementing
filtering semantics. It also reduces communication load by eliminating filtered data
to appear in the channels instead of eliminating them at consumers. Filtering might
also be implemented at the suppliers, however, this requires the suppliers to have
knowledge of the consumers, hence sacrifice the benefits of decoupling consumers
and suppliers, which is one of the primary motivations of the Channel pattern.

Filtering requires a well defined type naming system for the objects. It is required
that any data object sent through the channels must implement the TypedData
interface attributes to identify its source (the supplier), the type name and the QoS
requirements:

TypedData

sourceid : String
typename : String
qos : QoSProperties

The type names identify different types of the data objects and the type naming
system is shared by all the parties involved in the communication. The element
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sourceid indicates the global identity of the source supplier object. The get the global
identity of an object, let’s define a global function ©id:

©id : O� String

The consumers interests about the coming ↓TypedData is modeled as DataInterest

DataInterest

sources : String
types : String
qos : QoSProperties

where the attributes sources and types describe the interested data sources and
types using for example regular expressions, and qos describes the minimum qos
requirements. For sources and types an operator “matches” can be defined to
see whether a source or a type matches the interests described using the regular
expressions1

matches : String × String → B

while for QoSProperties the operator “⇒” is used to indicate one QoS requirement is
“stronger” than another:

⇒ : QoSProperties×QoSProperties

where qos1 ⇒ qos2 means that qos2 is always satisfied wherever qos1 is satisfied.
An operator is then defined to see wether an object of ↓TypedData is “in” the

interests described in an object of DataInterest:

in : ↓TypedData×DataInterest

∀ d : ↓TypedData; i : DataInterest •
d.sourceid matches i.sources ∧
d.typename matches i.types ∧
d.qos⇒ i.qos

A Filter object maintains a registry of pairs: RTProxyPushSupplier objects (on
behalf of the connected consumers), and their subscribed interests. The read-only
attribute subscribedProxies is the set of the proxies that are currently in the registry.
The registry is initialized as an empty set:

Filter
�((subscribedProxies,Subscribe,Unsubscribe,Filtrate))

1An alternative, slightly more abstract formalization would be to define types as a set, e.q. types : P O.
The present description is closer to the practical implementation.
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∆
registry : ↓RTProxyPushSupplier ↔ PDataInterest
subscribedProxies : P ↓RTProxyPushSupplier

subscribedProxies = dom(registry)

INIT
registry = ∅

The Filter object also provides operations to Subscribe and Unsubscribe the pairs, and
an operation RemoveProxy to remove all pairs that is related to a particular proxy:

Subscribe =̂
[ proxy? : ↓RTProxyPushSupplier;

interests?, interests : PDataInterest ] •
if proxy? 7→ interests ∈ registry
then registry := (registry⊕ {proxy? 7→ (interests ∪ interests?)})
else registry := (registry⊕ {proxy? 7→ interests?})

Unsubscribe =̂
[ proxy? : ↓RTProxyPushSupplier;

interests?, interests : P ↓TypedData ] •
if i? 7→ d ∈ registry
then registry := (registry⊕ {proxy? 7→ (interests \ interests?)})

RemoveProxy =̂ [ proxy? : ↓RTProxyPushSupplier ] •
registry := {proxy?} −C registry

Given a particular instance of ↓TypedData, the following operation finds all
RTProxyPushSupplier objects (hence connected consumers) in the registry that are
interested in this data:

Filtrate
d? : ↓TypedData
interestedProxies! : P ↓RTProxyPushSupplier

interestedProxies! =
dom(registryB
{interests : ran(registry) | (∃ i : interests • d? in i)})

When data arrives from the suppliers, the Filter object determine which supplier
proxies (on behalf of the consumers) should receive the data. It forwards the data to
theDispatcher object, which handles the details of dispatching each data to its supplier
proxies in accordance with the priority of the proxy/data tuple.
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I.3 Scheduler

Given an input of d? : ↓TypedData and a target proxy? : ↓RTProxyPushSupplier , the
Dispatcher collaborates with the runtime Scheduler to determine priority values:

Scheduler
�((channel,Schedule))

channel : ↓RTChannel

Schedule
proxy? : ↓RTProxyPushSupplier
d? : ↓TypedData
priority!, p : N}

order! : N}

t : T [ p and t are existential temporary variables]

Determine the QoS priority:

ifGet(d?.qos, “priority”) = p
then priority! = p
else ifGet(proxy?.qos, “priority”) = p

then priority! = p
else ifGet(channel.qos, “priority”) = p

then priority! = p
else priority! = null

Determine the dispatching order:

if Get(d?.qos, “orderPolicy”) = Deadline
then ifGet(d?.qos, “deadline”) = t

then order! = t
else ifGet(d?.qos, “timeout”) = t

then order! = τ + t
else ifGet(proxy?.qos, “timeout”) = t

then order! = τ + t
else ifGet(channel.qos, “timeout”) = t

then order! = τ + t
else order! = null

else ifGet(channel.qos, “orderPolicy”) = FIFO
then order! = τ
else order! = null

RTChannel extends the class Channel in the Channel Pattern with QoS properties and
other real-time extensions (see definition on page 334).

The reason for decoupling the Scheduler from the data dispatching task is to
allow scheduling policies to evolve independently of the dispatching mechanism.
The operation Schedule is an example implementation from the IPML system
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implementation. It uses dynamic scheduling policies such as Priority, Deadline and
FIFO(First-in First-out). The algorithm to determine the primary preemption priority
and the order in the same preemption priority depends on the implementation. By
separating the responsibilities of scheduling from dispatching, the Scheduler can be
replaced without affecting unrelated components in the channel.

The design of the class Scheduler here implements a supplier-consumer override
strategy to determine the primary preemption priority. If the supplier defines the
priority of a particular transaction in the pushed data, otherwise if the consumer
has set the priority through its connected supplier proxy, the priority settings of
the Channel is overridden. This particular strategy is specified here as an example
implementation because in the IPML system, top-down timing control commands
have the highest priority and this strategy is often applied. But not saying that this is
the only strategy to be applied in the system. In some cases, for instance if the data
consumer presents a user interface and a certain interested subset of data must be
immediately presented to the user, a consumer-channel override strategy may apply.

The dispatching order in the same preemption priority is determined according
to the channel’s OrderPolicy. Instead of trying to specify every possible order policy,
the operation Schedule here only shows an example algorithm. If the channel’s
OrderPolicy is Deadline, the algorithm checks the timeoutQoS requirements of the data
itself, the consumer (the supplier proxy), otherwise the channel. Again as an example,
a supplier-consumer override strategy is applied here. The value of the order! output
records the required finishing time. The data that requires the earliest finishing time
will be dispatched first. If the channel’s OrderPolicy is FIFO, the value of the order!
output records the arriving time of the data, and the data that arrives earliest will be
dispatched first.

When the preemption priority or the order is specified by no one, the result is set
to null – which means the priority or the order is undetermined by the Scheduler.

I.4 PriorityQueue

The RTChannel maintains a sequence of PriorityQueue objects, one for each possible
preemption priority (see definition on page 334). The PriorityQueue has an attribute
priority to associate itself to a preemption priority set by the RTChannel, and an
attribute maxsize to limit its maximum number of elements. If there is a QoS
requirement on the maximum queue size, themaxsize should be set accordingly. The
elements of the queue are the tuples of the targeted proxy, the data to be delivered,
and the dispatching order. In the following specification, the attributes isEmpty and
isFull reflect whether the queue is empty, or the number of the elements has reached
the maxsize:

PriorityQueue
�((channel, priority, isEmpty, isFull,Enqueue,Dequeue))
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channel : ↓RTChannel
priority,maxsize : N
isEmpty, isFull : B
∆
queue : seq(↓RTProxyPushSupplier × ↓TypedData× N)

queue = 〈 〉 ⇔ isEmpty
let s == Get(channel.qos, “queueSize”) • s 6= null⇒ size = s
#queue = maxsize⇔ isFull

The PriorityQueue acts as a normal queue when dequeuing the elements – the
tuple at the head of queue always get dequeued first. The result of the Dequeue
operation outputs the targeted proxy and the data. The dispatching order is only
needed when enqueuing the tuples so that the elements are kept in the queue in
the required dispatching order. When dequeuing, the order is no longer needed by
other components hence it is dropped from the output:

Dequeue
proxy! : ↓RTProxyPushSupplier
d! : ↓TypedData
n : N

queue = 〈(proxy!, d!, n)〉a queue′

When enqueuing an element, the operation Enqueue first checks whether there is
still space left in the queue. If the queue isFull, it invokes the operation Discard to
remove an element from the queue and give the space to the new element, so that the
actual enqueuing operation Enqueue0 can be invoked without exceeding the maxsize
limit:

Enqueue =̂ (if isFull thenDiscard) o
9 Enqueue0

The operation Discard drops an element from the queue according to the QoS
requirement of the channel. If the DiscardPolicy of the channel QoS requirement is
set to LIFO (Last-In First-Out), the element at the tail of the queue is dropped, otherwise
a FIFO (First-In First-Out) policy is followed – the element at the head of the queue is
dropped instead. The Discard drops elements silently – there is no output from this
operation:

Discard
proxy : ↓RTProxyPushSupplier
d : ↓TypedData
n : N
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ifGet(channel.qos, “DiscardPolicy”) = LIFO

then queue = queue′ a 〈(proxy, d, n)
else queue = 〈(proxy, d, n)〉a queue′

The PriorityQueue has a special queuing behavior comparing to a normal FIFO
queue. The elements are not always enqueued to the end of queue. Instead, the
elements are inserted into the queue according to the dispatching order parameter so
that the Scheduler can use this parameter to control the actual dispatching order. A
lower number to the order parameter gives closer position to the head of queue.

Enqueue0
proxy? : ↓RTProxyPushSupplier
d?, d : ↓TypedData
order? : N
t : T

d.source = d?.source ∧ d.type = d?.type ∧ d.data = d?.data
Set the absolute deadline if possible:

ifGet(d?.qos, “deadline”) = t
then d.qos = d?.qos
else ifGet(d?.qos, “timeout”) = t

then d.qos = d?.qos
else ifGet(proxy?.qos, “timeout”) = t

then d.qos = Put(d?.qos, “deadline”, τ + t)
else ifGet(channel.qos, “timeout”) = t

then d.qos = Put(d?.qos, “deadline”, τ + t)
else d.qos = d?.qos

Insert into the queue according to order?:

if order? = null
then if isEmpty then queue′ = 〈(proxy?, d, 0)〉

else∃ (p, d, n) : {last(queue)} •
queue′ = queuea 〈(proxy?, d, n)〉

else queue′ =
queue � {(p, d, n) : ran(queue) | n 6 order?}a
〈(proxy?, d, order?)〉a
queue � {(p, d, n) : ran(queue) | n > order?}

When a tuple element is inserted into the queue, the operation Enqueue0 also tries to
update the relative “timeout” requirement to an absolute deadline if the data does not
require a deadline explicitly. Again the supplier-consumer override strategy is applied.
The relative “timeout” requirements of the data, the proxy and the channel are checked
in turn and the first “timeout” found is converted to an absolute deadline property for
the data, according to the current system time. When dispatching, the Dispatcher will
decide what to do if a data has missed its deadline. The filtering operator � filters a



I.5 Dispatcher 331

sequence swith a set v so that s�v contains just those elements of swhich are members
of v, in the same order as in s.

I.5 Dispatcher

The Dispatcher is responsible for dispatching the queued data to targeted supplier
proxies. The proxies will then forward the data to the connected consumers.
Depending on the placement of the data in the priority queues (A queue of ordered
priority queues maintained by the Channel, see definition on page 334), theDispatcher
may preempt a running thread to dispatch the data to the paired proxy, according to
the priority of the queue. Inside the same queue, the Dispatcher always dispatches the
data from the head so that the scheduled dispatching order is ensured.

Preemption according to the priority is an importantmechanism of theDispatcher.
Most of the real-time scheduling policies require preemption. For example if a
process P2 of priority of 2 is running when another process P1 with priority of 1
becomes runnable, P1 should be preempted so that P2 is suspended and P1 can
run immediately, when P1 and P2 share certain hardware or software resources, for
example a single Central Processing Unit (CPU) in a system. P2 can continue when
processes of priority of 1 completes, unless it is preempted to a priority of 0.

One of the design decisions here is to separate the functionality of data dispatch-
ing from the priority queues. This allows the implementation of the Dispatcher to
change independently of other channel components, so that different dispatching
mechanisms can be implemented. The Dispatcher may implement for example the
following three preemption strategies:

Single thread dispatching Without the support for multi-thread dispatching, a signal
thread can be used used to dispatch data based on priority. In this model, all
priority queues are actually concatenated into one queue with higher priority
queues in the front. However, once a dispatching process starts, the consumer
can run to completion regardless of the arrival of higher priority data. The
dispatching process has to wait until the consumer finishes. As a result, the
channel becomes a synchronous data delivery mechanism for suppliers.

Single thread dispatching with deferred preemption This also a single-thread im-
plementation where on thread is responsible for dispatching all queued
data. However it requires the consumers cooperatively preempt their data
receiving processes according to their own priority preferences, and the priority
preference of the data supplier is ignored. The benefit of this “deferred
preemption” is its ability of reducing the context switching, synchronization
and data movement incurred by preemptive multi-threading implementations.
However, preemption is deferred to the extent that the consumers need to check
to see whether they need to preempt their receiving processing. In a distributed
setting, “deferred preemption” can only be effective among consumers that
reside in the same local system, but not across the systems.

Preemptive multi-thread dispatching Multi-threading is supported by an increasing
number of the operating systems. The Dispatcher dispatches the data from the
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head of a priority queue by preempt a thread with a preemption priority that is
corresponding to the priority of the queue, and then leaves the preemption task
to the underlying multi-thread operating system. The advantage of this model
is that the Dispatcher can take the advantage of the operating system support
for preemption by associating appropriate operating system priorities to each
thread. When a thread at the higher priority becomes ready to run, the operating
system will preempt any lower priority running thread and allow the higher
priority thread to run. The disadvantage is that multi-threading incurs context
switching overhead. Furthermore, the implementation must synchronize the
access to the resources that can be shared by multiple threads.

The following specification is an implementation of preemptive multi-thread
dispatching. The Dispatcher is an active component and it has a process that keeps
polling the priority queues in a high-priority first order:

Dispatcher
�((channel))

channel : P ↓RTChannel

Poll =̂ [ pqq? : seqPriorityQueue ] •
if pqq? 6= 〈 〉
then [ pq : PriorityQueue | pq = head(pqq) ] •

if pq.isEmpty thenPool(tail(pqq?))
else pq.Dequeue ∧

[ dt : DispatchingThread|
new(dt,DispatchingThread) ∧
dt.channel = channel ∧
dt.preemption = pq.priority ] o

9

dt.Dispatch

PROCESS =̂ µD • Poll(channel.queues) o
9 D

The operation Poll recursively polls the channel priority queues until the first
non-empty queue is located. The data at the head of this queue is dispatched by
creating and preempting a DispatchingThread. The preemption priority of the thread
set according to the priority of the queue. The operation Poll does not traverse all
the priority queues in one loop. Instead, it will start over again from the beginning
of the queue after a top priority and top ordered data is found and dispatched to
interested proxies. This ensures if a data with highest priority and order is inserted
into the queues during this process, the data will be dispatched first in the next round
immediately.

Object-Z does not have a formal mechanism to specify the preemption priority
of an active process or thread. The following specification of the DispatchingThread
defines an attribute preemption. Let’s assume that the underlying platform would take
this attribute as the preemptive parameter and preempt the process accordingly. The
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DispatchingThread is an active process. After initialization, it waits for other process
to call its Dispatch operation to set the data to be dispatched d and the targeted proxy:

DispatchingThread
�((preemption, channel,Dispatch))

channel : ↓RTChannel
preemption : N
∆
proxy : ↓RTProxyPushSupplier}
d : ↓TypedData}

INIT
proxy = null ∧ d = null

Dispatch
proxy? : ↓RTProxyPushSupplier
d? : ↓TypedData
t : T

ifGet(d?.qos, “deadline”) = t ∧ τ > t ∧
Get(channel.qos, “reliability”) 6= BestEffort

then true [ Deadline missed, does nothing]
else proxy′ = proxy? ∧ d′ = d? ∧ started′

IdleTick =̂ [ τ ′ = τ + 1 ]
PROCESS =̂ µDT • if proxy = null ∨ d = null

then(IdleTick o
9 DT) else proxy.Push(d)

The operation Dispatch first checks the QoS reliability requirement. If it is
required to deliver the data on the best effort basis and unfortunately the deadline
is missed, the operation Dispatch simply does nothing, otherwise it sets the attributes
proxy and d for delivery.

The active PROCESS operation recursively calls IdleTick until both attributes proxy
and d are set, than invokes the proxy’s Push operation to dispatch the data d. After
it is done, the active process terminates. Whether and how a terminated thread is
treated depend on the underlying platform. In C and C++ based implementations,
it is the programmer’s responsibility to recycle the resources occupied by these dead
threads. In Java virtual machines, it will be collected by the garbage collector and
swept out from the memory. In the implementation, the Thread class from the
standard java.lang library is extended to realize DispatchingThread, hence let’s leave
the resource recycling task to the garbage collector.
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I.6 RTChannel

The RTChannel extends the Channel component from the Channel pattern with the
operation Transfer rewritten to meet the QoS requirements, and the ConsumerAdmin
object is required to be a RTConsumerAdmin object to manage real-time push proxies:

RTChannel
�(· · · )
Channel[Transferc/Transfer]

The following declares two constants: LowestPriority – the lowest priority, and
DefaultPriority if the Scheduler can not calculate a valid priority that is within the range
of 0 . . LowestPriority. Without loss of generality, in this specification the valid priorities
are modeled as a continuous subset of natural numbers, starting from 0 as the highest
priority to the LowestPriority:

LowestPriority : N
DefaultPriority : 0 . . LowestPrority

LowestPriority > 0

Every RTChannel has its own qos requirements, and these requirements could be
overridden in a specific transaction if the suppliers or the consumers have a different
requirement and if a “supplier-consumer override” strategy is applied. To manage
the transactions to meet the qos requirements, Filter, Sheduler and Dispatcher objects
are used, together with a list of priority queues, one for each valid priority. Since the
priorities are modeled as natural numbers, it is convenient to manage these queues
in an indexed list, that is, a sequence of PriorityQueue objects:

qos : QoSProperties
filter : ↓Filter©C
scheduler : ↓Scheduler©C
dispatcher : ↓Dispatcher©C
priorityQueues : seqPriorityQueue©C
consumerAdmin : ↓RTConsumerAdmin©C

scheduler.channel = dispatcher.channel = self
#(priorityQueues) = LowestPriority+1
∀ n 7→ q : priorityQueues • q.priority = n− 1 ∧ q.channel = self

The operation Transfer accepts objects of any type as input. If it is not an object
of the type TypedData, the data will be sent though the facilities inherited from the
Channel pattern, otherwise through the real-time QoS controlling facilities. The
Filter finds all subscribed proxies that are interested in this input. For each proxy,
the operation then invokes the operation ScheduleEnqueue to calculate the priority and
the dispatching order, and enqueue the data and the proxy for dispatching. For other
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push suppliers that are connected to consumerAdmin but not subscribed to the filter
at all, this operation invokes ScheduleEnquene as if these suppliers have subscribed to
all possible data input:

Transfer =̂ [ d? : O ] •
if d? 6∈ ↓TypedData thenTransferc
else (filter.Filtrate(d?) •∧p : interestedProxies! •

ScheduleEnqueue(proxy p, d d?)
) \ (interestedProxies!) ‖
(∧p : consumerAdmin.pushSuppliers \ filter.subscribedProxies •

ScheduleEnqueue(proxy p, d d?)

The next two internal operations are specified separately but they are actually parts
of the operation Transfer, otherwise the operation Transfer would be hard to read. The
operation ScheduleEnqueue first invoke the Schedule operation from the Scheduler to
calculate the preemption priority and the dispatching order within the same priority
for a pair of proxy and data, then “regulates” the priority in case the priority could not
be defined by the Scheduler, or in case the calculated priority is not valid. The data,
together with its targeted proxy are then enqueued into the priority queue, awaiting
for the Dispatcher to do the rest.

ScheduleEnqueue =̂
[ proxy? : ↓RTProxyPushSupplier; d? : ↓TypedData ] •

scheduler.Schedule(proxy proxy?, d d?) o
9

RegulatePriority o
9

([ priority? : N; order? : N}; queue : priorityQueues|
queue.priority = priority? ] •
queue.Enqueue(proxy proxy?, d d?, order  order?)

The operation RegulatePriority checks whether the input proirity? is valid and
returns a valid priority!. If the input is null, it is replaced with the DefaultPriority. If it is
out of the range of 0..LowestPriority, the operation returns the closest valid priority:

RegulatePriority
priority? : N}

priority! : N

if priority? = null then priority! = DefaultPriority
else if priority? > LowestPriority

then priority! = LowestPriority
else if priority? < 0 then priority! = 0

else priority! = priority?

Note that the RTChannel does not directly push data through the ConsumerAdmin
to the supplier proxies as it does in the Channel pattern (see specification on page 311.
Instead it enqueues the data for the active Dispatcher to dispatch it later.
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I.7 RTConsumerAdmin

The extensions of RTConsumerAdmin to ConsumerAdmin are straightforward. The
channel is changed to the type of RTChannel so that its Filter is accessible for
RTConsumberAdmin, and further for the connected proxies and consumers to
subscribe or unsubscribe their interests:

RTConsumerAdmin
�(· · · , (pushSuppliers,SubscribeToFilter)
ConsumerAdmin[ObtainPushSupplierca/ObtainPushSupplier]

channel : ↓RTChannel

The operation ObtainPushSupplier from ConsumerAdmin is overridden to create
and output RTProxyPushSupplier objects instead of ProxyPushSupplier objects:

ObtainPushSupplier
pushSupplier! : ↓RTProxyPushSupplier

new(pushSupplier!,RTProxyPushSupplier)
pushSupplier!.INIT
pushSupplier!.consumerAdmin = self
pushSuppliers′ = pushSuppliers ∪ {pushSupplier!}

The next three operations delegates the interest subscription and unsubscription
from the proxies to the channel’s filter object:

SubscribeToFilter =̂ channel.filter.Subscribe
UnsubscribeFromFilter =̂ channel.filter.Unsubscribe
RemoveProxyFromFilter =̂ channel.filter.Remove

I.8 RTProxyPushSupplier

The RTProxyPushSupplier extends the ProxyPushSupplier from the Channel pattern
with interfaces for the consumers to subscribe and unsubscribe their interested
subset of data. It also overrides the DisconnectPushSupplier operation so that the
proxy and all the related subscription to the Filter are removed while the consumer
disconnects itself from the proxy:

RTProxyPushSupplier
�(· · · , (SubscribeInterests)
ProxyPushSupplier

[DisconnectPushSupplierpps/DisconnectPushSupplier];
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consumerAdmin : ↓RTConsumerAdmin

SubscribeInterests =̂ [interests? : P ↓DataInterest] •
consumberAdmin.SubscribeToFilter(

proxy self , interests interests?)
UnsubscribeInterests =̂ [interests? : P ↓DataInterests] •

consumberAdmin.UnsubscribeFromFilter(
proxy self , interests interests?)

DisconnectPushSupplier =̂
DisconnectPushSupplierpps ‖
consumberAdmin.RemoveProxyFromFilter(self )

I.9 Other components

The other components of the push model of the Channel pattern, such as
PushSupplier, PushConsumer, ProxyPushConsumer and SupplierAdmin are inherited by
this pattern without any change. Similar extensions can also be easily done to the pull
model of the Channel pattern to include timing and QoS control and data filtering.
However as it has been argued at the beginning of the section, the push model is
more suitable for real-time scheduling and synchronization tasks and hence it is used
more often in our distributed multimedia system. The possible real-time extension to
the pull model is omitted from this specification.





BACKGROUND MATERIALJ
Specifications of the Streaming Channel
Pattern

This background material presents the formal specification of the components of the
Streaming Channel pattern that is introduced in section 7.4 of chapter 7.

J.1 Stream

The incorporation of multimedia capability into an communication pattern requires
a special type to carry the continuous data streams. Since multimedia streaming is
supported by many existing protocols with QoS support, it is not necessary for us to
model the technical details of streaming. Instead, these streams are modeled as of the
class Stream. It wraps up the common attributes and functions of an active streaming
flow:

Stream
�(type, qos, dataSink, dataSource)

type : M
qos : QoSProperties
dataSink : DataSink©C
dataSource : DataSource©C

RateConstrain =̂ [ d? : Data ] • let rate == Get(qos, “rate”) •
if rate 6= null then [ size(d?)÷ (τ ′ − τ) > rate ]

Transfer =̂ [ d? : Data ] • RateConstrain ∧
(dataSink.Fetch o

9 dataSink.Push)

339
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IdleTick =̂ [¬ pre(Transfer) ∧ τ ′ = τ + 1 ]
PROCESS =̂ µS • IdleTick [] Transfer o

9 S

Every Stream has its media type (for example, aMIME type). Although the attribute
format is not used in the specification here, it is included for other components
to check the stream type. The Stream also has qos properties that provide the
transportation that satisfies these QoS requirements, for example, the transportation
rate. Unlike the Real-time Channel pattern with its dynamic support QoS control
in every data delivery transaction, this pattern fixes the QoS requirement to each
stream to decrease the data marshalling and unmarshalling overhead and stabilize
the transportation. If there is a different QoS requirement on the communication, the
communicating components must be disconnected from the stream and reconnected
to a stream that satisfies the new requirement.

J.2 DataSink, DataSource and DataSourceReceiver

A Stream has two sides. At one side there is a DataSink object for data suppliers to
push data into the sink, and at the other there is a DataSource for the consumers to
fetch the data. In between, the active Stream object has a process that keeps getting
data from the DataSink and putting it into the DataSource. Related QoS requirements
must be satisfied in this process. As an example, the transportation must keep up
with the rate:

size(d?)÷ (τ ′ − τ) > rate

where the global function size returns the size of the data being transferred, and τ ′−τ
is the time that the operation Transfer may take.

DataSink and DataSource are a subclass of DataCache:

DataCache

capacity : N
∆
cache : seqD

#cache 6 capacity

Fetch =̂ [ d! : D | cache = 〈d!〉a cache′ ]
Push =̂ [ d? : D ] if#cache = capacity thenFetch \ (d!) o

9

cache := cachea 〈d?〉

The class DataCache is modeled as a queue that has a limited capacity to store
data. Putting data into a full DataCache will cause dequeuing an element to give the
space for the new element. The class DataSink simply hides the Fetch operation from
other objects except the Stream:
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DataSink
�(Push, (Fetch))
DataCache

Note that if the Stream does not fetch the data fast enough, the DataSink will be full
and the data at the head of queue will be dropped to give space for the coming data.
This requires the Stream must meet certain QoS requirements not to be slower than
the data is pushed into the sink, otherwise data will be dropped even before it is
transferred.

The classDataSource hides the inherited operations Fetch and Push from the other
objects except the Stream. For other objects to get the data, DataSource applies an
Observer pattern:

DataSource
�(Subscribe,Unsubscribe, (Fetch,Push))
DataCache

receivers : ↓DataSourceReceiver

Subscribe =̂ [ r? : ↓DataSourceReceiver ] • receivers := receivers ∪ r?
Unsubscribe =̂ [ r? : ↓DataSourceReceiver ] • receivers := receivers \ r?

PushToReceivers = Get o
9 ∧r : receivers • r.PushFromStream

IdleTick = IdleTick =̂ [¬ pre(PushToReceivers) ∧ τ ′ = τ + 1 ]
PROCESS = µDS • IdleTick [] PushToReceivers o

9 DS

A DataSource object has an active process to fetch the data from its cache and push
it to subscribed DataSourceReceiver objects. Again this process does not guarantee
that every piece of the data will be pushed to the receivers. If the DataSource pushing
process failed to keep up with the speed at which the data is filled into the cache, the
data might be dropped out of the cache although it has already arrived in the cache
for some time.

DataSourceReceivers may be added to or removed from the registry receivers with
the operations Subscribe and Unsubscribe. A stream receiver should implement the
DataSourceReceiver interface to receive the data forwarded from the Stream:

DataSourceReceiver
PushFromStream =̂ [ d? : D ]

J.3 StreamingChannel

The StreamingChannl extends the class Channel from the Channel pattern with a
StreamAdmin component. The SupplierAdmin and the ConsumerAdmin components
are overridden with extended types that has a attribute variable to associate with the
StreamAdmin component:
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StreamingChannel
�(· · · )
Channel

supplierAdmin : ↓StreamSupplierAdmin©C
consumerAdmin : ↓StreamConsumerAdmin©C
streamAdmin : ↓StreamAdmin©C

supplierAdmin.streamAdmin =
consumerAdmin.streamAdmin = streamAdmin

Note that the StreamingChannel also inherits the operations ForSuppliers
and ForConsumers as interfaces for the suppliers and consumers to reach the
SupplierAdmin and the ConsumerAdmin components.

J.4 StreamAdmin

The StreamAdmin provides the operation CreateStream creates Stream objects and
manage them in a table of streams. The streams table is a partial bijective function
that can be used to retrieve the reference to a stream with a given id?. Each Stream
is created with a unique id and with its media type and QoS requirements specified.
The StreamAdmin also provides the operation DestroyStream to destroy a stream and
remove it from the streams table:

StreamAdmin
�((CreateStream,DestroyStream, streams))

∆
streams : String 7�→ ↓Stream

CreateStream
id? : String
type? : M
qos? : QoSProperties
stream : ↓Stream

id? 6∈ dom(streams)
new(stream,Stream)
stream.type = type? ∧ (stream.qos⇒ qos?)
streams′ = streams ∪ {id? 7→ stream}

DestroyStream
id? : String
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id? ∈ dom(streams) ∧ delete(streams(id?))
streams′ = {id?} −C streams

J.5 StreamSupplierAdmin

The StreamSupplierAdmin extends the SupplierAdmin from the Channel pattern, with
the operations for the suppliers to create a Stream, obtain and connect to a proxy
consumer that is connected to a particular Stream. The operations for obtain and
connect to push and pull proxy consumers are inherited and kept intact. The
StreamSupplierAdmin has a reference to the StreamAdmin component of the channel,
and a registry streamConsumers that keeps track of the proxy stream consumers:

StreamSupplierAdmin
�(· · · ,CreateStream,ObtainStreamConsumer,
DisconnectStreamConsumer)

SupplierAdmin[Destroysa/Destroy]

streamAdmin : ↓StreamAdmin
streamConsumers : P ↓ProxyStreamConsumer©C

The operation CreateStream promotes the same operation from the component
streamAdmin. This operation is the only public interface of the channel for creating
streams, which means only the stream suppliers may create a stream:

CreateStream =̂ streamAdmin.CreateStream

The operation ObtainStreamConsumer creates a proxy consumer that is connected
to a stream, and adds it to the registry. The stream is required to have the same id as
the input parameter id?, so for this operation to succeed, the target stream must have
already been created:

ObtainStreamConsumer
id? : String
streamConsumer! : ↓ProxyStreamConsumer

id? ∈ dom(streamAdmin.streams)
new(streamConsumer!,ProxyStreamConsumer)
streamConsumer!.INIT
streamConsumer!.stream = streamAdmin.streams(id?)
streamConsumers′ = streamConsumers ∪ {streamConsumer!}

Proxy consumers can be disconnected and removed from the registry by the
operation DisconnectStreamConsumer:
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DisconnectStreamConsumer
streamConsumer? : ↓ProxyStreamConsumer

streamConsumers′ = streamConsumers \ {streamConsumer?}

The operation Destroy from the super class is renamed to Destroy0 and included
in the overriding operation. The overriding operation disconnects all connected push
and pull proxy consumers, and proxy stream consumers as well:

Destroy =̂ Destroysa ‖
(∧sc : streamConsumers • sc.DisconnectStreamConsumer)

J.6 StreamConsumerAdmin

The extension of StreamConsumerAdmin toConsumerAdmin is similar to the extension
of StreamSupplierAdmin to SupplierAdmin: the StreamConsumerAdmin also has a refer-
ence to the StreamAdmin component of the channel, and a registry supplierConsumers
that keeps track of the proxy stream suppliers:

StreamConsumerAdmin
�(· · · ,ObtainStreamSupplier)
ConsumerAdmin[Destroyca/Destroy]

streamAdmin : StreamAdmin
streamSuppliers : P ↓ProxyStreamSupplier©C

The operation ObtainStreamSupplier is a two step process. It first invokes
ObtainSreamSupplier0 to create a proxy supplier that is connected to a stream. The
stream is required to have the same id as the input parameter id?. The created proxy
supplier is also added to the registry for the management. Then the created proxy
supplier, as a DataSourceReceiver, is subscribed to the dataSource of the stream for the
incoming data:

ObtainStreamSupplier =̂ [ id? : String ] •
(ObtainStreamSupplier0 ‖!
streamAdmin.streams(id?).dataSource.Subscribe)

ObtainStreamSupplier0
id? : String
streamSupplier! : ↓ProxyStreamSupplier

id? ∈ dom(streamAdmin.streams)
new(streamSupplier!,ProxyStreamSupplier)
streamSupplier!.INIT
streamSupplier!.stream = streamAdmin.streams(id?)
streamSuppliers′ = streamSuppliers ∪ {streamSupplier!}



J.7 StreamSupplier 345

The operationDisconnectStreamConsumer disconnects a proxy stream supplier and
removes it from the registry. The proxy supplier is also also unsubscribed from the
connected stream dataSource:

DisconnectStreamSupplier =̂
[ streamSupplier? : ↓ProxyStreamSupplier ] •
([ streamSuppliers′ = streamSuppliers \ {streamSupplier?} ] ‖
streamSupplier?.stream.dataSource.Unsubscribe(streamSupplier?))

The operation Destroy from the super class is renamed to Destroyca and included
in the overriding operation. The overriding operation disconnects all connected push
and pull proxy suppliers, and proxy stream suppliers as well:

Destroy =̂ Destroyca ‖
(∧ss : streamSuppliers • ss.DisconnectStreamSupplier)

J.7 StreamSupplier

A stream supplier supports StreamSupplier interface:

StreamSupplier
DisconnectStreamSupplier =̂ [ ]

A concrete stream supplier should implement the operation
DisconnectStreamSupplier to terminate the communication. It should release
resources used at the supplier to support the communication. The StreamSupplier
object reference should then be disposed. If a StreamSupplier object is connected
to a StreamConsumer object, invoking the DisconnectStreamSupplier operation
on the StreamSupplier object should also cause the implementation to call the
DisconnectStreamConsumer operation on the StreamConsumer object.

J.8 ProxyStreamSupplier

The ProxyStreamSupplier implements both the StreamSupplier and the
DataSourceReceiver interfaces. It also has a reference to its connected stream
and a state variable streamConsumer to store the reference of the connected
StreamConsumer object:

ProxyStreamSupplier
�(stream,ConnectStreamConsumer,DisconnectStreamSupplier,

(PushFromStream))
StreamSupplier,DataSourceReceiver
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stream : ↓Stream
∆
streamConsumer : ↓StreamConsumer}

INIT
streamConsumer = null

The operation ConnectStreamConsumer connects a streamConsumer object to
the ProxyStreamSupplier, but only when it has not been connected to any other
streamConsumer object:

ConnectStreamConsumer
streamConsumer? : ↓StreamConsumer

streamConsumer = null ∧ streamConsumer′ = streamConsumer?

The operation DisconnectStreamSupplier implements the corresponding abstract
operation from its super class. If it is connected to a StreamConsumer
object, the operation disconnects the StreamConsumer object and invokes the
DisconnectPullConsumer on the StreamConsumer object. The streamConsumer attribute
is then set to null, and the proxy supplier also disconnect itself from consumerAdmin:

DisconnectStreamSupplier =̂
(if streamConsumer 6= null
then pushConsumer.DisconnectStreamConsumer) ‖
[ streamConsumer′ = null ] ‖
consumerAdmin.DisconnectStreamSupplier(self )

The operation PushFromStream implements the DataSourceReceiver interface
operation to receive the data from the stream and pushes it to connected
streamConsumer:

PushFromStream =̂ [d? : D] • if streamConsumer 6= null
then streamConsumer.Push(d?)

J.9 StreamConsumer

A stream consumer provides the operations defined in the class PushConsumer:

StreamConsumer
Push =̂ [ d? : D ]
DisconnectStreamConsumer =̂ [ ]
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A supplier communicates data to the consumer by invoking the operation Push
which takes the data d? as input. The operationDisconnectStreamConsumer terminates
the communication. It should release resources used at the consumer to support
the communication. The StreamConsumer object reference should then be disposed.
If a StreamConsumer object is connected to a StreamSupplier object, invoking the
DisconnectStreamConsumer operation on the StreamConsumer object should also
cause the implementation to call the DisconnectStreamConsumer operation on the
StreamSupplier object.

J.10 ProxyStreamConsumer

The class ProxyStreamConsumer implements the abstract interfaces defined in
StreamConsumer. It also defines the operations for connecting push suppliers to
a channel. It also has a reference to its connected stream and a state variable
streamSupplier to store the reference of the connected StreamSupplier object:

ProxyStreamConsumer
�(stream,ConnectStreamSupplier,DisconnectStreamConsumer,Push)
StreamConsumer

stream : ↓Stream
∆
streamSupplier : ↓StreamSupplier}

INIT
streamSupplier = null

The operation ConnectStreamSupplier connects a StreamSupplier object to the
ProxyStreamConsumer, but only when it has not been connected to any other
StreamSupplier object:

ConnectStreamSupplier
streamSupplier? : ↓StreamSupplier

streamSupplier = null ∧ streamSupplier′ = streamSupplier?

The operation ConnectStreamSupplier implements the semantics of the cor-
responding abstract operation from its super class. If it is connected to a
StreamSupplier object, the operation disconnects the StreamSupplier object and
invokes the DisconnectStreamSupplier on the StreamSupplier object. The operation
also disconnects this proxy consumer from the SupplierAdmin component:

DisconnectStreamConsumer =̂
(if streamSupplier 6= null
then streamSupplier.DisconnectStreamSupplier) ‖
[ streamSupplier′ = null ] ‖
supplierAdmin.DisconnectStreamConsumer(self )
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The operation Push implements the abstract operation from its super class to
receive the data from the StreamSupplier objects and push the data directly into the
connected stream:

Push =̂ [ d? : D ] • stream.dataSink.Push(d?)



BACKGROUND MATERIALK
Specifications of the Distributed MVC
Pattern

This background material presents the formal specification of the components of the
Distributed MVC pattern that is introduced in section 8.2 of chapter 8.

K.1 Model

TheModel component encapsulates the appropriate data and serves a set of operations
on the data. It processes the data according to the input event that controllers
send on behalf of the users, and notify the depending components (views and
controllers) about the update if there is any. It also serves its data or certain
portions of the data according to the query requests when the depending components
need to refresh its presentation. The relation between depending components and
the model are often implemented using the Observer pattern (Bachmann et al.,
2000). The Observer pattern uses direct invocation of the operations of the model
component to send the input and query and direct invocation of the operations of
the depending components to notify the changes and send back the query results.
However direct invocations are not possible in a distributed environment. Although
it can be implemented using RMI or RPC mechanisms as if the invocations are
local calls, it is then prone to synchronous communication: the calling process is
blocked while the call is processed by the remote serving component. To enable
asynchronous communication between the model and the depending components,
here the communication is modeled using the push-style of the Channel pattern from
the previous chapter. In principle, other styles of the Channel pattern can also be used,
but as it is argued in section 7.3.3 on page 89, the push style is more appropriate in
real-time missions for scheduling and synchronization tasks, hence let’s again focus
on this model and present the solution based on the push model as an example.

Instead of providing the operations for the depending components to make direct
invocations, the Model component below only exposes its input and output ports
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that can be connected to the channels and further to the input and output ports
of the depending components, leaving the definitions of input events, state change
notifications, queries and query results open:

Model[Input,Notification,Query,QueryResult]
�(inouts)

inouts : MPushConsumerImpl©C 7→ PushSupplierImpl©C [ I/O ports]

∀ in 7→ out : inouts • in.m = self

An “M” is added in front of PushConsumer and an “Impl” is attached after to indicate
an implementation of PushConsumer that has a reference m to the Model. The
specification ofMPushConsumerImpl will appear soon on the facing page.

The input and output ports inouts (PushConsumer and PushSupplier components)
are organized in pairs to provide bidirectional communication between the Model
component and the depending components, and to relate the output channel to the
input channel if necessary. The input ports not only implement the PushConsumer
interface, but also have a reference to the containing Model component so that they
can invoke appropriate operations of theModel component when data is received. The
output ports simply provide a Push operation to delegate the output from the Model
component to connected channels.

The Model component has an operation to handle the input events received from
its input ports. It is modeled as a two step process: the operation ProcessInput
processes the input and if necessary, and creates state change notification; if the
depending components indeed need to be notified, the operationHandleInput pushes
the notifications to the outport ports:

ProcessInput
i? : ↓Input
n! : ↓Notification}

Process the input event;
Create state change notification.

HandleInput =̂ ProcessInput ‖
([ n? : ↓Notification} ] •
if n? 6= null then∧in 7→ out : inouts • out.Push(n?))

The operation ProcessInput here is only a skeleton with only the input and output in-
terfaces specified. The concrete logic of this operation is intended to be implemented
or overridden by the applications. The same two step technique is used in other
specifications here: the application logic is dealt with as an abstract operation and
concentrate only on event and data handling. Immediately there is another example:
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ProcessQuery
q? : ↓Query
r! : ↓QueryResult

<Process the query q? and generate the query result r!>

session(r!) = session(q?)

HandleQuery =̂ [ from? : MPushConsumerImpl; q? : ↓Query ] •
(ProcessQuery(q?) ‖
[ r? : ↓QueryResult ] • inouts(from?).Push(r?))

The Model processes the incoming queries and generates the query results with
the operation ProcessQuery (the first step, an abstract operation without completely
specifying the concrete logic), and deliver the query results to the output port that is
paired with the input port where the query comes from (the second step, with concrete
semantics).

Since the communication between the querying component and the Model is
asynchronous, it is often necessary for the querying component to know which query
the result is related to. In most of the distributed systems, this is managed with
sessions. The query result is marked with the same session identification as the query
so that a dialog can be established between the involved parties. Without loosing its
generality, these session identifications are modeled as strings. Let’s assume that
there is a global function session that may get the session identifications from Query
objects and QueryResult objects:

session : ↓Query ∪ ↓QueryResult→ String

With the function session defined, the operation ProcessQuery must identify the query
result r! with the same session with the input query q?, such that session(r!) =
session(q?).

The input and outport ports of the Model implement the classes PushConsumer
and PushSupplier from the Channel pattern:

MPushConsumerImpl[Input,Query]
PushConsumer[Pushpc/Push]

m : ↓Model

Push =̂ [ d? : O ] •
if d? ∈ ↓Input thenm.HandleInput(d?)
else if d? ∈ ↓Query thenm.HandleQuery(from self , q d?)

The input ports (MPushConsumerImpl objects) are push consumers. Each port
implements the Push interface of PushConsumer to receive the data pushed from
the connected channel. Depending on the type of the incoming data, it invokes the
operationHandleInput of the related Model component to hand over the input events,
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or the operation HandleQuery of the Model to identify the port itself and forward the
received query q?.

The output ports are push suppliers, modeled as the type PushSupplierImpl. A
PushSupplierImpl object is to be connected to a proxy push consumer from the
channel. The output behavior of the Model is modeled as an operation of invoking
the Push operation of the output port and this Push operation directly promotes the
Push operation of the connected proxy consumer:

PushSupplierImpl
PushSupplier

proxy : ↓ProxyPushConsumer

Push =̂ proxy.Push

K.2 ModelDependent

The view and the controller are ModelDependent components. They observe the state
changes of a model. If the Real-time Channel pattern is used, they may also subscribe
their interests of data so that only interested state changes of the model will be
delivered to them. Otherwise, the notified ModelDependent may still check whether
the update is interested upon receiving. The notification may have direct influence
on the interface, or if necessary, a query will be sent back to model to retrieve the
updated state. When the query result is received, The ModelDependent prepares the
data for platform dependent presentation, for example, by adding local color schemes
and layout arrangements to a graphical presentation. It then presents the prepared
data to the environment.

Every ModelDependent has an input port and an output port connected through
channels to theModel component:

ModelDependent[Notification,Query,QueryResult]
�(in, out)

in : MDPushConsumerImpl©C [ receiving data from model]
out : PushSupplierImpl©C [ sending data to model]

in.md = self

Every ModelDependent component, either a View component or a Control compo-
nent, has a function to present the data or render its input controllers to the “real
physical world”. It is modeled as an operation as follows (see also section F.8 on
page 288):

Present =̂ [ d? : D}; r : R; pr : D → R | d? 6= null⇒ r = pr(d?) ]
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It may directly render the data to the “real physical world”, or send the data to the
rendering engine in the underlying platform. Let’s leave it to the implementation.

The operation ProcessNotification processes the received notification. If it has
direct impact on the interface, the operation produces the data d! for presentation.
If more data is needed for updating the interface, a query q! is generated for sending
back to the Model component. If the notification n? is not in the interests at all, both
the outputs d! and q! will be set to null. The operation HandleNotification takes the
output of ProcessNotification, updates the interface by invoking the operation Present
if the prepared d is not null, and pushes the query to the output port if necessary:

ProcessNotification
n? : ↓Notification
d! : D}

q! : ↓Query}

If the notification has direct influence on the user interface, output d!
for presentation;
If it requires more information from the model to update the user
interface, create the query q!.

HandleNotification =̂ ProcessNotification ‖
(Present ‖
[ q? : ↓Query} ] • if q? 6= null then out.Push(q?))

The returned query result is processed by the operation ProcessQueryResult, then
presented to the interface by the operation HandleQueryResult:

ProcessQueryResult
r? : ↓QueryResult
d! : D}

Process the received query result, and prepare the data d! for
presentation

HandleQueryResult =̂ ProcessQueryResult ‖ Present

The input port of the ModelDependent component is of the type
MDPushConsumerImpl. It implements the Push interface of PushConsumer to
receive the data from a channel. Depending on the type of the received data, it
invokes the corresponding operation of the related ModelDependent component to
handle the notification or the query result:

MDPushConsumerImpl[Notification,QueryResult]
PushConsumer[Pushpc/Push]

md : ↓ModelDependent
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Push =̂ [ d? : O ] •
if d? ∈ ↓Notification thenmd.HandleNotification(d?)
else if d? ∈ ↓QueryResult thenmd.HandleQueryResult(d?)

K.3 View

The View extends ModelDependent with an additional operation to handle the input
event directly sent from the controller, which allows alternation of the view without
updating the model (e.g. zooming in and out a graphical presentation, increasing or
decreasing the volume of an audio presentation):

View[Input,Notification,Query,QueryResult]
�(· · · , (HandleInput))
ModelDependent

ProcessInput
i? : ↓Input
d! : D}

Process the input event;
Prepare data for presentation.

HandleInput =̂ ProcessInput ‖ Present

K.4 Controller

The Controller also inherits the observing, querying and rendering behavior of
ModelDependent, because in many cases, the controller needs to render its interface
of its own, according to the state of the associated model, for example a menu or a
group of buttons which items may be enabled or disabled depending on the state of
the model:

Controller[Input,Notification,Query,QueryResult]
�(· · · , (v))
ModelDependent

It adds a state variable v to refer to the associated v component:

v : ↓View [ the coupled view component]

It processes the raw input and transforms it to input events. The input events can
be an event iv! for the view to update its presentation directly, and/or an input im! for
the model to update its state. The raw input may also have direct influence on how
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the control component is rendered on the user interface, the data is then prepared for
rendering:

ProcessInputData
d? : D
im!, iv! : ↓Input}
d! : D}

Process the raw input;
Create the input event im! for the model;
Create the input event iv! for the view component;
If the input has direct influence on the interface, prepare the data d! for
presentation.

HandleInputData =̂ ProcessInputData ‖
([ im?, iv? : ↓Input}; d? : D} ] •
((if im? 6= null then out.Push(im?)) ‖
(if iv? 6= null then v.HandleInput(iv?)) ‖
Present(d?)))

The operation HandleInputData is an interfacing operation for the source of the
input to submit the raw input. The source can be a sensor in the environment, the
event mechanism of the underlying platform, or the Controller itself that has an active
process to pull the input directly from the “real physical world”:

ActiveController[Input,Notification,Query,QueryResult]
�(· · · )
Controller

PullInput =̂ [ r : R; pull : R→ D}; d! : D|
let d == pull(r) • d 6= null ∧ d! = d ]

IdleTick =̂ [¬ pre(GetInputData) ∧ τ ′ = τ + 1 ]
PROCESS =̂ µAC • (IdleTick []

(PullInput ‖ HandleInputData)) o
9 AC

The operation PullInput is the reversed operation of Present: the controller has a
function to pull the data from the “real physical world”. The active process keeps
pulling the data and once the data is available, invokes the operationHandleInputData
by itself.





BACKGROUND MATERIALL
Specifications of the Distributed PAC
Pattern

This background material presents the formal specification of the components of the
Distributed PAC pattern that is introduced in section 8.3 of chapter 8.

L.1 Abstraction

To get an insight how the PAC agents work together, let’s first have a look at their
Abstraction components. With no direct connection with the Presentation component,
the Abstraction component has a local reference to the Control component and
provides two interfacing operations HandleInput and HandleQuery for the Control
component to send the Input events and Query messages:

Abstraction[Input,Notification,Query,QueryResult]
�(c,HandleInput,HandleQuery)

c : ↓Control

Once an Input event is received, the Abstraction component processes the input
event and decides what to do with it. It may result in internal state changes that are
in the interests of other components. Notifications are then created and sent to the
associated Control by invoking itsHandleNotification operation:

ProcessInput
i? : ↓Input
n! : ↓Notification}
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Process the input event;
Create state change notification if there is any.

HandleInput =̂ ProcessInput ‖
[ n? : ↓Notification} ] •

if n? 6= null then c.HandleNotification(n?)

Note that the notification is sent by invoking the corresponding operation of
the Control component instead of directly returning the notification as an output
of the operation HandleInput. There are two reasons behind this design decision.
Firstly, the Abstraction component can be active and the internal state may change
without being triggered by the input events. The Control component must provide
an interfacing operation for the Abstraction to notify the change, otherwise the
Control must constantly pull the change and this can be processing intensive.
Hence the Control should take a passive role. Secondly, the Abstraction is not the
only component sending the change notifications. The upper-level agents might
also push notifications down to the Control component, it must have an interface
HandleNotification to receive the notification from the channel. It is better to have the
same mechanism for handling the notifications that may come from different places.

Upon receiving a Query for its data, the Abstraction component creates the
output and associates the query result with the query by assigning the same session
identification to the result:

ProcessQuery
q? : ↓Query
r! : ↓QueryResult

<Process the query q? and generate the query result r!>

session(r!) = session(q?)

HandleQuery =̂ ProcessQuery ‖ c.HandleQueryResult

The result is returned by a reversed invocation c.HandleQueryResult instead of
returning the results to the Control component, as it was done with the notifications.

Comparing to the Model component in MVC, the responsibility of the Abstraction
component in PAC is similar. It updates its internal state according to the input
events and notifies other components with the updates if necessary. It also responds
to data queries with the data concerned. The difference is that the Abstraction
component does not connect to the user interface directly – there is no more
than one component it needs communicate with, that is, the control. Another
difference is that the Abstraction and the Control components are locally coupled and
the communication in between is done through synchronous operation invocation.
No channel is needed and the Abstraction does not need to maintain the channel
connections as the Model does. Communications with the Presenation component,
and with other PAC agents, are mediated and managed by the dedicated Control
component. The Abstraction of PAC is purely focused on the core functions and data



L.2 Presentation 359

repository, whereas the Model component also has to take care of communication if
multipleModels are needed in a distributed environment.

L.2 Presentation

As it is found in many implementations of the MVC pattern, separating the input
and the output at the user interface is not only difficult, but also confusing. The PAC
pattern actually combines the View and the Controller from MVC as one integrated
Presentation component. It not only takes the raw input from the environment or the
underlying platform with operationHandleInputData as the MVC Controller does, but
also updates the internal state to the user interface with operationsHandleNotification
andHandleQueryResult as the MVC View does:

Presentation[Input,Notification,Query,QueryResult]
�(HandleInputData,HandleNotification,HandleQueryResult)

c : ↓Control

The difference between the Presentation and the MVC view-controller pair is that the
Presentation component here does not talk to the data and logic core directly, but a
Control component c in between, so that the Presentation component focuses only on
the user interface, and leaves the issues of synchronous or asynchronous communi-
cation with local or remote components to locally a coupled Control component.

As a user interface component, the Presentation component has a function to
Present data to the “real physical world”:

Present =̂ [ d? : D}; r : R; pr : D → R | d? 6= null⇒ r = pr(d?) ]

The Presentation component processes the received notification, update the user
interfaces if it has direct impact on the interface and create queries if more data is
needed for refreshing the interface, as the user interface components do in MVC.
However without connection with any channel, the notification is received directly
from invocations made by the Control c and the query is sent directly to c by invoking
the operation c.HandleQuery:

ProcessNotification
n? : ↓Notification
d! : D}

q! : ↓Query}

If the notification has direct influence on the user interface, output d!
for presentation;

If it requires more information from the abstract component to update
the user interface, create the query q!.
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HandleNotification =̂ ProcessNotification ‖
(Present ‖ [ q? : ↓Query} ] •

if q? 6= null
then c.HandleQuery(from self , q q?))

The operation HandleQueryResult does exactly the same as it does in MVC user
interface components – updating the user interface with the query result, but the
query result is received from the Control instead of an asynchronous channel:

ProcessQueryResult
r? : ↓QueryResult
d! : D}

Process the received query result, and prepare the data d! for
presentation

HandleQueryResult =̂ ProcessQueryResult ‖ Present

As said, the Presentation component also gets the user input from the environment
or the underlying platform as theMVCController does. Again the input is sent directly
to the mediating Control, instead of a channel:

ProcessInputData
d? : D
i! : ↓Input}
d! : D}

Process the raw input;
Create the input event i!;
If the raw input has direct influence on the user interface, prepare the
data for presentation.

HandleInputData =̂ ProcessInputData ‖
([ i? : ↓Input}; d? : D} ] •
((if i? 6= null then c.HandleInput(i?)) ‖ Present(d?)))

A Presentation component can also be implemented with an active process to pull
input by itself from the “real physical world” R with the operation PullInput, instead
of passively waiting for other components to push the raw input in:

ActivePresentation[Input,Notification,Query,QueryResult]
�(· · · )
Presentation

PullInput =̂ [ r : R; pull : R→ D}; d! : D|
let d == pull(r) • d 6= null ∧ d! = d ]

IdleTick =̂ [¬ pre(PullInput) ∧ τ ′ = τ + 1 ]
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PROCESS =̂ µAP • (IdleTick []
(GetInputData ‖ HandleInputData)) o

9 AP

L.3 Control

The Control component sits between the Presentation component and the Abstraction
component. It forwards the Input events and Query messages from Presentation to
Abstraction, and forwards the change Notifications and QueryResults from Abstraction
to Presentation. “Forward” might be a wrong word here, because during this process
the Control also has to decide whether the received event or data, or part of it, should
be forwarded to its locally coupled components, or to other connected PAC agents in
the hierarchy, or both. The event or data might also be transformed depending on the
destination. The Control is not just a broker to simply hand over whatever it receives,
but also a forger to reshape the events and the data for the destination, and a manager
to make decisions on the directions of the data flow (figure L.1).
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Figure L.1: Data flow in a PAC agent

The Control component has direct references to its associated Abstraction a and
Presentation p, a pair of input and output ports (inup, outup) for connecting with the
upper-level component, a collection of input and output port pairs for connecting
with lower-level components. Input and output ports (inouts) are modeled as push
consumers and suppliers as they are in the distributed MVC pattern:

Control[Input,Notification,Query,QueryResult]
�(inup, outup, inoutsdown
HandleInput,HandleQuery,HandleNotification,HandleQueryResult)

a : ↓Abstraction
p : ↓Presentation
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inup : CPushConsumerImpl©C [ From the up-layer component]
outup : PushSupplierImpl©C [ To the up-layer component]
inoutsdown : CPushConsumerImpl©C 7→ PushSupplierImpl©C

[ I/O ports for down-layer components]
∆
sessions : Dictionary

inup.c = self
∀ in 7→ out : inoutsdown • in.c = self

The Control also maintains a dynamic registry of query sessions, modeled as a
Dictionary that keeps session identifications as keys and querying components as
values. Since the query results may come back later from an asynchronous source,
it is necessary to keep such a registry in order to return the query results back to the
component that queried with the same session identification.

The Control component processes the input event received from both the
Presentation component and the lower-level PAC agents. It decides whether to reform
and forward it to the Abstraction component, or to the upper-level agent, or both:

ProcessInput
i? : ↓Input
ia!, iup! : ↓Input}
Generate the input event ia! for the abstract component;
Generate the input event iup! for upper-level component.

HandleInput =̂ ProcessInput ‖
([ ia?, iup : ↓Input} ] •
(if ia? 6= null then a.HandleInput(ia?)) ‖
(if iup? 6= null then outup.Push(iup?)))

The Control component also has operations to process the change notifications
from both the associated Abstraction component and the upper-level PAC agent. It
has to make decisions whether the notification should be transformed, and whether
the notification should be sent to Presentation and/or to the lower-level PAC agents:

ProcessNotification
n? : ↓Notification
np!, ndown! : ↓Notification}

Generate the notification np! for the presentation component;
Generate the message ndown! for down-layer components.

HandleNotification =̂ ProcessNotification ‖
([ np?, ndown? : ↓Notification} ] •
(if np? 6= null then p.HandleNotification(np?)) ‖
(if ndown? 6= null

then∧in 7→ out : inoutsdown • out.Push(ndown?)))
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The Control component may receive queries from both the Presentation compo-
nent and the lower-level PAC agents. It has to decide whether a received query should
be sent to the associated Abstraction component or to the up level, or both. Since the
query result might be returned asynchronously, the querying component is registered
in the registry with the session identification as the key:

ProcessQuery
from? : O
q? : ↓Query
qa!, qup! : ↓Query}

<Generate the query qa! for the abstraction component>
<Generate the query qup! for the up-layer component>

qa! 6= null⇒ sessions′ = Put(sessions, session(qa!) 7→ from?)
qup! 6= null⇒ sessions′ = Put(sessions, session(qup!) 7→ from?)

HandleQuery =̂ ProcessQuery ‖
([ qa?, qup? : ↓Query} ] •
(if qa? 6= null then a.HandleQuery(qa?)) ‖
(if qup? 6= null then outup.Push(qup?)))

Upon receiving a query result from the Abstraction or the upper-level PAC agent,
the operation HandleQueryResult first looks up the registry to find the component
that queried with the same session identification, then forwards the result to this
component: if it was the Presentation that queried, its HandleQueryResult operation is
invoked to pass over the result; or if the query was from a input port connected to a
lower-level PAC agent, the result is then pushed into the paired output port to send
the result over. At the same time, the completed session is removed from the registry:

HandleQueryResult =̂ [ r? : ↓QueryResult ] •
let s == session(r?) • let from == Get(sessions, s) •

if from 6= null
then (sessions := sessions \ {s 7→ from} ‖

if from = p then p.HandleQueryResult(r?)
else if from ∈ dom(inouts) then inoutsdown(from).Push(r?))

The output ports are push suppliers of the type PushSupplierImpl as they are in
the distributed MVC pattern (see definition on page 352). The input ports are push
consumers of the type CPushConsumerImpl:

CPushConsumerImpl[Input,Notification,Query,QueryResult]
PushConsumer[Pushpc/Push]

c : ↓Control
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Push =̂ [ d? : O ] •
if d? ∈ ↓Input
then c.HandleInput(d?)
else if d? ∈ ↓Notification

then c.HandleNotification(d?)
else if d? ∈ ↓Query then c.HandleQuery(from self , q d?)

else if d? ∈ ↓QueryResult then c.HandleQueryResult(d?)

It implements the Push operation of PushConsumer to receive data from the connected
channel. Depending on the type of the received data, it invokes corresponding
operations of the associated Control component.

L.4 PAC agent

Modeling a PAC agent is straightforward. A PAC agent is a composition of an
Abstraction component, a Control component and a Presentation interface with all
attributes and operations hidden, but only with the input and output ports from the
Control component exposed for channel connections (figure L.2):

PAC
�(inup, outup, inoutsdown)

p : ↓Presentation©C
a : ↓Abstraction©C
c : ↓Control©C
inup : CPushConsumerImpl
outup : PushSupplierImpl
inoutsdown : CPushConsumerImpl 7→ PushSupplierImpl

p.c = a.c = c ∧ c.a = a ∧ c.p = p
inup = c.inup ∧ outup = c.outup ∧ inoutsdown = c.inoutsdown

Control

PAC

PA

...

inouts

Figure L.2: Inside a PAC agent

PAC agents are loosely coupled with others. A dynamic hierarchical structure
can be built up by connecting the exposed input and output ports through channels
without any access to local state and operations.
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Specifications of the Actor

This background material presents the formal specification of the components of the
Actor that is introduced in section 8.5 of chapter 8. An actor is basically a PAC agent
that reacts on the user input events and scheduling commands, and takes actions to
present media objects.

M.1 Refinement of MediaObject

Actors manage content elements, and the content elements are active media objects
that prefetch and present the content data by themselves (see section F.8 on
page 288). The content data is directly presented to the physical world R without
separating the function from the interface. When PAC is applied for distributed
applications, the presentation of the media object needs to be redirected to the
presentation component of the actor, or, in a distributed setting, to be delegated
by another actor. The delegation may happen when a real actor is connected to a
virtual actor, the content of the media objects managed by the virtual actor should
immediately redirected to the real actor. It may also happen if an actor (for example a
satellite receiver) is used to decode the media, but needs another actor (for example a
TV) to present the media.

Let’s model the redirection or delegation of the presentation of a media object
using the Streaming Channel pattern specified in previous background metrial. The
classMediaObject is refined as follows:

MediaObject

src : S
p : ↓StreamSupplierImpl©C

stype(src) = presentation.proxy.stream.type

365
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Retrieve =̂ [ c? : C; d! : D} ]

Present = [ d? : D} ] • if d? 6= null then p.Push(d?)

Every MediaObject has an output port p of the type StreamSupplierImpl that
implements the Push interface of a StreamSupplier:

StreamSupplierImpl
StreamSupplier

proxy : ↓ProxyStreamConsumer

Push =̂ proxy.Push

Instead of presenting the data directly into the physical world R, the operation
Present pushes the data into a streaming channel through its output port p. The port
p has a reference of a ProxyStreamConsumer object that is connected to the channel.
Redirection or delegation of the presentation of the media object can then be done by
connecting the presenting components, i.e. the Presentation component of the same
agent or a delegating agent, to the same streaming channel using a StreamConsumer
input port. Data received from the input port can then be presented to R through the
Present operation of the Presentation component.

M.2 ActorPresentation

Based on the concepts of redirection and delegation of media object presentation, the
Presentation component of an Actor should then include a set of input ports of the type
StreamConsumerImpl:

ActorPresentation[Input,Notification,Query,QueryResult]
Presentation

ins : PStreamConsumerImpl©C

∀ in : ins • in.ap = self

The type StreamConsumerImpl implements the Push interface of a
StreamConsumer to passively receive the data from the streaming channel. Once
the data is received, it is then presented by invoking the Present operation of the
associated ActorPresentation:

StreamConsumerImpl
StreamConsumer
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ap : ↓ActorPresentation

Push =̂ [ d? : D ] • ap.Present(d?)

Note that this is a minimalist description of the presentation behavior with regard
to presentation redirection and delegation. In most of the cases of real implemen-
tation, the Presentation component might have different presentation behaviors for
different types of data or the data received from different input ports. For example,
MP3 streams would be presented to R through the audio card and MPEG-4 streams
would be through the graphics card using appropriate API invocation. Let’s leave
these details to the implementation.

M.3 ActorAbstraction

Although the concept of actions goes beyond just presenting media objects, here
let’s give an example specification of the Abstraction of component, where the core
functions of an actor are to create and maintain media objects, and to schedule
immediate or future actions on these media objects. These functions have already
been covered in chapter 6 by various patterns. The Abstraction component is no more
than a compositional realization of these patterns:

ActorAbstraction[Input,Notification,Query,QueryResult,Command]
Abstraction

syncFactory : SyncFactoryImpl©C
mediaObjects : Dictionary
syncServiceFactory : SyncServiceFactoryImpl©C
proxies : Dictionary

HandleCommand =̂ [ c? : ↓Command ]

An actor owns a syncFactory of the type SyncFactoryImpl that creates media objects
for the given media types. Created objects are kept in a Dictionary of mediaObjects,
which maps the name or the identification of created objects to the references of these
objects. The actor also has a syncServiceFactory of the type syncServiceFactoryImpl, that
wraps the created objects in SyncService objects and provides SyncServiceProxy objects
so that synchronization services can be scheduled. Created proxies are kept in another
Dictionary, with the same names or identifications mapped to the references of these
created proxies.

An extra operation interface HandleCommand for the ActorAbstraction is also
defined to receive scheduling commands from upper-level agents. Other operations
of ActorAbstration that inherited from Abstraction need to be implemented to react on
input events and scheduling commands, which is omitted from this specification. For
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a possible implementation, the example given in section G.8 on page 307 shows how
these factories and their products can be used to create and maintain media objects,
and to schedule and conduct the actions on these media objects.

M.4 ActorControl

PAC agents are mostly input event driven. From figure L.1 on page 361, one can see
that the input events from the Presentation component update the internal state of
the Abstraction component of the agent itself, and the Abstraction component of the
upper-level agent. The user input may result in state changes thus trigger change
notifications, these notifications are then sent through the Control horizontally to
the Presentation component of the agent itself, or downwards to the Presentation
component of lower-lever agents. This paradigm of input driven behavior is because
the PAC pattern is originally designed as a structure for user interface toolkits and
widgets.

An Actor is not only an interface component that is mainly controlled by the users,
but also amedia object presenter that must follow the scheduling and synchronization
commands from upper-level agents. These commands can be a result of user
interaction, but importantly, also a result of time that is triggered by an internal
process of the scheduling agent.

Although these commands can be sent to lower level agents as change no-
tifications, these notifications will first be sent to the presentation components
according to the PAC pattern. The “notify-then-retrieve” scheme of updating the user
interface does not fit the needs of scheduling and synchronization – for the sake
of efficiency, these commands should reach the Abstraction component first instead
of the Presentation component, which is a different scheme from the state change
notifications.

To deal with these commands, the Control is refined as follows:

ActorControl[Input,Notification,Query,QueryResult,Command]
Control

inup : APushConsumerImpl©C

ProcessCommand
c?, ca!, cdown! : ↓Command}

Decide whether to forward the command to Abstraction,
or to forward to lower-lever agents,
or both.

HandleCommand =̂ ProcessCommand ‖
([ ca?, cdown? : ↓Command} ] •
(if ca? 6= null then c.HandleCommand(c?)) ‖
(if cdown? 6= null
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then∧in 7→ out : inoutsdown • out.Push(cdown?)))

Two operations are added to the Control component to handle the scheduling
commands. The ActorControl has to decide whether the received command needs
to be sent to the associated Abstraction, or to be forwarded to lower-level agents. It is
also possible that the command, for example a “stop all” command, needs to be sent
to both the Abstration and the lower-level agents.

The input port of the ActorControl that connects the upper-level agent needs to be
extended to direct the received commands to the operationHandleCommand:

APushConsumerImpl
[Input,Notification,Query,QueryResult,Command]

CPushConsumerImpl[Pushpc/Push]
Push =̂ Pushpc ‖

[ d? : O ] • if d? ∈ ↓Command then c.handleCommand(d?)





BACKGROUND MATERIALN
Firing rules of ASE

The firing rules of the ASE are summarized as follows:

1. Upon receiving a token, the token is locked and the place remains in the active
state for the specified duration if the duration is determinable, or stays active
until deactivated by the engine. During this period, the token is locked.

2. To enable a transition,

• If a transition does not contain any priority place in its input places, the
transition is immediately enabled when each if input places contains an
unlocked token;

• If a transition has at least one priority place in its input places, when the
token in any one of the priority places becomes unlocked, the transition is
immediately enabled.

3. When a transition is enabled,

• If a transition does not contain any priority place in its input places, the
transition removes a token from its input places.

• If a transition has at least one priority place in its input places, a set of
reverse tracking rules is followed to remove tokens from the input places.

4. If an enabled transition is under the control of a runtime transition controller,
the controller decides whether to fire the related transition instead or to fire
both, and whether to update the structure between the controlled transition
pairs.

5. The engine fires the enabled transition. Upon firing, the transition adds a token
to each of its output places.

When a priority place enables a transition tr, there may exist some places that are
before tr (perhaps even several steps before tr) and have tokens. These tokens become
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obsolete and need to be removed to restore the correct state of the model. One way
to clear the obsolete tokens is to start from the initial place until tr is reached. This
requires the paths between the initial place and the transition tr to be located first to
avoid clearing the tokens in the places that are not in the paths. Yang and Huang
(1996) propose a way to reversely track the paths to clear these obsolete tokens in
their RTSM extension to OCPN, where reverse tracking in this case is thought to be
more efficient since it avoids unnecessary traversal. The same approach is adopted
in ASE. To remove tokens from the input places of tr in case of being enabled by a
priority place p, the following reverse track rules should be used:

1. Reverse tracking stops at the starting transition of the priority place p, or at the
initial place.

2. Along a path of the reverse tracking, if a place contains a token, either locked or
unlocked, the token is removed and the reverse tracking is stopped in this path.

3. Along a path of the reverse tracking, if a transition is encountered, and this
transition has output places that have not been reverse tracked, this transition
is fired to activate these output places (not including the output places that have
been tracked).

Figure N.1 shows an example of reverse tracking1. In figure N.1(a), a token in the
priority place p1 is unlocked and the transition tr2 is enabled. Following the reverse
tracking rules, the unlocked token in p1 and the locked token in p2 are removed. In
the path of reverse tracking from p3 to p2, the transition tr3 has an output place p4

that has not been tracked, hence a token will be added to the place p4. Moreover, the
transition tr2 is fired and a token is added to the place p5. The resulting state of the
model is shown in figure N.1(b).

tr1 tr2

p1

p3

p4

p2

p5
tr3

(a) tr2 is enabled by p1

tr1 tr2

p1

p3

p4

p2

p5
tr3

(b) tr2 is fired

locked token unlocked tokenreverse tracking

Figure N.1: Reverse tracking upon a transition enabled by a priority place

1Please note that this reverse tracking has nothing to do with backtracking, cf. Prolog. It rather is
a clean-up procedure to remove any pending tokens that are still underway towards a transition that got
enabled because of a priority place. The strategy of not visiting places twice is well-known from other graph
traversal problems such as garbage collection. The technique is to mark the places upon first visit.



BACKGROUND MATERIALO
Converting IPML to ASE

This background material presents the translation schemes that convert the temporal
constructs in IPML to ASE representations. The design principle adopted here is
compositional translation. The conversion will first be focused on the basic temporal
containers seq and par, and the basic temporal attributes begin, end, dur and endsync.
The transition controllers are then used to convert other complex temporal attributes
such as max, restart, repeatCount, repeatDur etc. Here also earns the fruits of the very
early design decision that IPML is XML based: the development of the parser and the
checker for IPML was a laborious but straightforward design subroutine. Therefore
let’s assume that the syntax of the IPML script has been checked and there is no
semantic conflict in the script, in order to concentrate on the necessary conversions
only.

During the description, it is necessary to refer to the concept of syncbase. In IPML
timing, elements are timed relative to other elements. The syncbase for an element
A is the other element B to which element A is relative. More precisely, it is the begin
time or end time of the other element (Ayars et al., 2005). In ASE, the syncbase
becomes a transition in the graph.

O.1 Action element

A simple action element in IPML that does not have any other temporal constraints
can be directly converted to an ASE place that hosts the action. However when later
converting the container elements, transitions as the beginning and ending points
are needed to synchronize the containing elements. To keep the consistency of the
elementary ASE constructs in the converting procedure, all converted ASE constructs
are required to begin and end with transitions. The resulting ASE representation of a
simple action element a is shown in figure O.1 on the next page.

373



374 Converting IPML to ASE

trb tre

a

<action id="a" />

Figure O.1: Converting action to ASE

O.2 Timing containers

O.2.1 seq

A seq container defines a sequence of elements in which the elements are performed
one after the other. The end time of a child element is taken by the next child element
as the syncbase. The first child takes the begin time of its parent seq as the syncbase.

The child elements of the seq container can be action elements, or other
synchronization containers (i.e., seq and par), so the conversion is a recursive
procedure. The seq container can be converted into an ASE structure as shown
in figure O.2, where the dashed circles with vertical bars at both sides are used to
indicate the child elements that begin and end with transitions. Note that zero-
duration connecting places are inserted between the children to keep the consistency,
since an arc in ASE can only be used to link a transition and a place.

trb

c1 ...c2 cn

tre

child element
<seq>

<... id="c1" ... />
<... id="c2" ... />
...
<... id="cn" ... />

</seq>

Figure O.2: Converting seq to ASE

O.2.2 par

A par container, short for “parallel”, defines a simple time grouping in which multiple
elements can perform at the same time. All child elements take the begin time of their
parent par as the syncbase.

Therefore, all child elements of a par container are put in parallel between two
transitions as illustrated in figure O.3 on the facing page. There are three types of
translations depending on the endsync attribute of the par container:

• If the endsync is “last”, which is the default value, the par container is to end
with the last end of all the child elements. The corresponding ASE is shown in
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figure O.3(a). The effect is that the transition tre is not enabled until all the child
elements finish.

• If the endsync attribute is set to “first”, the par is required to end with the
earliest end of all the child elements. To convert to ASE, every child element
is linked to the end transition with a priority connecting place as illustrated
in figure O.3(b). The effect is that the child which ends first will immediately
transit to the connected priority connecting place and in turn the transition tre
will be enabled.

• If the value of endsync is an id attribute of one of the child elements, the par
container is required to end with the specified element. In figure O.3(c), the
connecting place between the specified element e2 and the transition tre is set
to a priority connecting place to implement the intended semantics.

trb

c1

...

c2

cn

tre

(a) endsync=“last”

trb

c1

...

c2

cn

tre

(b) endsync=“first”

trb

c1

...

c2

cn

tre

(c) endsync=“c2”

child element
<par endsync="...">

<... id="c1" ... />
<... id="c2" ... />
...
<... id="cn" ... />

</par>

Figure O.3: Converting par to ASE

O.3 Timing attributes

O.3.1 dur

The attribute dur can be added to the container elements and the action elements to
specify the explicit duration. Converting a dur to an ASE construct is straightforward:
the value of the dur attribute, which is an interval time value, forms a priority timer
place between the begin and end transitions of the element. Figure O.4 on the next
page illustrates the effect of the attribute.

O.3.2 begin

The attribute begin specifies the time for the explicit begin of an action element or a
container element. Two types of the begin values can be classified: offset values and
event values. A time offset, for example “5s”, is to postpone the performance of the
element by 5 seconds from its syncbase. Hence, a priority timer place representing



376 Converting IPML to ASE

dur
trb tre

dur="dur"

Figure O.4: Converting dur to ASE

the postponed duration can be added in front of the element as shown in figure O.5(a).
For an event value, if the time can be determined during the converting process, it is
converted to a time offset, otherwise it is considered to be nondeterministic.

Nondeterministic events include user interaction events such as “v1.activateEvent”,
and synchronization events such as“v1.endEvent” if the end time of the element v1
can not be resolved when converting. Such nondeterministic events are converted to
priority nondeterministic places as illustrated in figure O.5(b).

Event values can be combined with a time offset, for example “v1.activateEvent+5s”
represents the time of 5 seconds after v1 is activated. The resulting ASE is a sequential
composition of a nondeterministic place and a priority timer place (see figure O.5(c)).

The begin attribute may contain a list of values, separated with a “;”, for example
begin=“5s; v1.activateEvent; v1.beginEvent + 5s”. The converted places directly prior to
the element are all priority places, which means ending of any of these places will
start the element (see figure O.5(d)). As in this figure, the clouds will be used for
including different sets of attribute values in other diagrams.

t
trb tre

(a) begin=“t”

e

?

trb tre

(b) begin=“e”

e
trb tre

?

t

(c) begin=“e + t”

trb tre

?

?

?

?

...
...

...

begin 

events

begin 

offsets

begin

(d) begin=“t1; t2; . . . ; e1; e2; . . . ; e + t; . . .”

Figure O.5: Converting begin to ASE

O.3.3 end

The end attribute allows the author to constrain the active duration by specifying an
end value using offset values or event values as in the begin attribute. In figure O.6(a),
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a priority timer place with the duration t is added to ensure the element will be ended
after the time t, starting from the implicit syncbase of the element, no matter whether
the element has been activated or not.

When the end attribute includes an event as the base, the event for ending can
have an effect on the element only when the element is activated. Hence the events
and the “event+offset” combinations are converted to structures that share the same
input and output transitions with the element itself. Nondeterministic event values
such as “v1.activateEvent” are added as priority nondeterministic places as shown in
figure O.6(b); event values with an offset such as “v1.beginEvent + 5s” are added as
a sequential composition of a nondeterminacy place and a priority timer place as
illustrated in figure O.6(c).

The end attribute may also contain a list of values, as in the begin. Figure O.6(d)
illustrates an end value list converted to an ASE model.

tretrb
t

begin

(a) end=“t”

tre

?

trb
e

begin

(b) end=“e”

tretrb
e

?

t

begin

(c) end=“e + t”

tre

?

trb

?

...

?

?

...

...

begin end 

events

end 

offsets

end

(d) end=“t1; t2; . . . ; e1; e2; . . . ; e + t; . . .”

(see figure O.5 for begin )

Figure O.6: Converting end to ASE

O.3.4 restart

IPML allows an element with begin specified to include event values to be restarted
multiple times. This behavior is controlled by the restart attribute. A “restart”
transition controller tcrestart is used when the value of the restart attribute of an element
is “always” or “whenNotActive” as shown in figure O.7(b) on the next page. First
one should notice that in figure O.7(b), when a transition controller is to be added
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to a structure, a connecting place and a transition are inserted at both sides of the
structure in a way that does not change the temporal semantics. The controller is
then attached to the inserted transitions to avoid possible interference from other
transition controllers – the new added controller will always be exclusively connected
to the inserted transitions. Since the restart behavior is controlled only by the event
values in the begin attribute, the begin attribute list is split into two parts: begin event
values and begin offset values. They are treated differently when constructing the
“restart” model. For different “restart” values, the resulting ASE model is different:
always The element can be restarted at any time. The transition controller is added

around the list of the begin events as illustrated in figure O.7(a) such that when
any of the begin events is triggered, the transition tce is enabled. The transition
controller tcrestart fires both tce and the linked tcb, so that not only the element
is started by tce immediately, but also at the same time, the places that hold
the begin events are enabled by tcb again. No matter whether the element is
active or inactive, the begin events may “always” be triggered again and hence
the element “restarts”, until the entire structure is deactivated from the outside.

whenNotActive The element can only be restarted when it is no longer active.
Attempts to restart the element during its active duration is ignored. The
achieve this, the ASEmodel in figure O.7(b) adds the transition controller tcrestart
to cover both the begin events and the element in a way that the begin events
and the element can not be enabled at the same time. When the active element
becomes inactive, the transition tce is enabled. The transition controller tcrestart
fires both tce and tcb. Firing of tce does not change the inactive state, but firing
of tcb enables the begin event places. Until the entire structure is deactivated,
the events may again occur hence “restart” the element.

tretrb

tcrestart

begin events

begin offsets

tcetcb

(a) restart=“always”

tretrb

tcrestart

begin events

begin offsets

tcetcb

(b) end=“whenNotActive”

(see figure O.5 for begin events and begin offsets )

Figure O.7: Converting restart to ASE

O.3.5 repeatCount and repeatDur

Repeating an element causes the simple duration to be activated several times in
sequence. This will effectively copy or loop the contents of the action (or an entire
structure in the case of a timing container). The author can specify either how many
times to repeat, using repeatCount, or how long to repeat, using repeatDur (Ayars et al.,
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2005). Each repeat iteration is one instance of the active duration of the element.
The repeatCount attribute specifies the number of iterations, which can have a positive
numeric value or a value of “indefinite”. When repeatCount is set to be “indefinite”, the
element is defined to repeat indefinitely, but subject to the constraints of the parent
timing container. The repeatDur specifies the total duration for repeat.

As illustrated in figure O.8, if the element has a repeatCount, a “repeat” transition
controller tcrepeat is added in parallel with the place of the element. If at the same time
the element has a repeatDur attribute (say, with a value of rdur), a priority timer place
with a duration of rdur is added in parallel as well. If the repeatDur is specified but
the repeatCount attribute is not, a “repeat” transition controller is added anyway as if
the repeatCount attribute is defined as “indefinite”. When the transition tcb is enabled,
tcrepeat initiates a repeat counter with the value of repeatCount and records the current
time instant of tcb firing.

The priority connecting place cp is inserted after the place of the element to
indirectly assign priority to the element place without knowing and changing its
internal structure. Either the priority timer place of the repeatDur or the inserted
priority connecting place is unlocked, the transition tce is enabled.

Once tce is enabled, the transition controller tcrepeat counts down the repeat counter
by one step – but counting down does not have an effect on the value of “indefinite”.
The controller checks whether the counter is zero or the repeatDur is due. If yes, the
controller removes the added repeatDur timer place and fires tce. Otherwise, it updates
the duration of the repeatDur with remaining repeat duration, and fires the transition
tcb and records the time of tcb firing for later calculating the remaining repeatDur.

trb tre

rdur

tcrepeat

tcb tce

cp

repeatCount="n" repeatDur="rdur"

Figure O.8: Converting repeatCount and repeatDur to ASE

O.4 event based linking

Event based linking makes IPML very flexible in constructing non-linear narratives,
especially for the situations where the user interaction decides the narrative directions
during the performance. Multiple event linking elements can be added, so that a
different set of events would link to different destinations.

A event linking element has an enable attribute that lists the interested event
values. Note that the enable may also include a time offset value to trigger the link
on the time offset to its syncbase. Multiple time offsets can be included but only the
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earliest one will take effect. Nevertheless, event linking elements are in most of the
cases used for the links to be triggered by user interaction events.

Figure O.9 shows an event linking element in IPML converted to an ASE
model. The enable values are converted into priority timer places and priority
nondeterministic places in parallel to the element place. A transition is also inserted,
on the one hand to trigger a priority connecting place to unlock the element place and
fire the transition tre, on the other hand to transit to the linking target.

trb
tre

linking target

?

?

?

?

...
...

...

<action id=" ... " href=" ... " actor=" ... ">
<event enable="t1, t2, . . . , e1, e2, . . . , e + t, . . ." href="linking target">

</action>

Figure O.9: Converting event based linking to ASE

Although it is not shown in figure O.9, an event linking element may also have
begin, end and dur attributes to enable the linking only during a specified interval.
These attributes can be converted to ASE structures similar to the ones for action
elements and containers.

O.5 ASE simplification

As mentioned earlier, some connecting places are inserted in the ASE model during
the converting process to keep the consistency. Once the conversion is completed,
the resulted ASE model can be simplified by removing some unnecessary connecting
places. Three rules can be applied during this simplification process:

1. If the only output of a transition is an action element place and the only output is
of the transition is a normal connecting place, the case can be naturally replaced
with the action element place, because the connecting place does not contribute
to anything.

2. If the only output of the transition in the previous rule is a priority connecting
place, it means that the firing of the following transition of the action element
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v1

a1

r1

v2

r2

v3

a2

r3

?

5s

v1.activateEvent

Figure O.10: An example conversion from IPML to ASE

place will immediately cause the firing of the following transition of the priory
connecting place. The case can be replaced by changing the action element
place to a priority one and remove the connecting place.

3. If there is only one connecting place between two transitions, the connecting
place can be removed and the two transitions can be combined into one.

Note that these rules can apply only when the related transitions are not under control
of any transition controller.





BACKGROUND MATERIALP
Correctness of the mapping in
section 10.1.4 of chapter 10

Here let’s try to answer the following question: How to express the formal correctness
of the implementation in section 10.1.4 of chapter 10?

Broy proposes three ideas of refinement: property refinement, glass box refine-
ment, and interaction refinement. The glass box refinement is a classical concept of
refinement typically used to decompose a system with a specified black box behavior
into a distributed system architecture in the design phase, which seems appropriate
in our case. The general form of a glass box refinement is

F1 ⊕ F2 ⊕ · · · ⊕ Fn ⊆ F

In Broy’s theory (Broy, 1999), there is also another form for state machines, which is
not needed here). The relation ⊆ on component behaviors is defined by the rule that

F̂ ⊆ F stands for the proposition ∀ x : I • F̂.x ⊆ F.x, where

F : I → P(O), F̂ : I → P(O).

Also recall the definition of ⊕ for F1 ⊕ F2

(F1 ⊕ F2).x = {y � O : y � I = x � I
∧ y � O1 = F1(x � I1) ∧ y � O2 = F2(x � I2)}

Let RATE′ be given by

rate(x.cable, 100, 100K)
rate(x.happy puppy, 10, 100)
rate(x.the sign, 2, 5K)
rate(x.button, 1, 1)
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Note that this is essentially the same as S1, ...,S4 are saying about their z ports.

Consider an arbitrary x satisfying RATE′ where x ∈ I′ where I′ is {cable, ...}. x is
a channel valuation x : I′ → (M∗)∞ such that

∀ i : I′ • x.i ∈ (type(i)∗)∞

whereM =
⋃
s∈S

s = PAL ∪MPG ∪DBH ∪ IBH ∪ R

Since I′ has only four elements, let’s write this out by assuming

x : cable 7→ xu (xu ∈ (PAL∗)∞)
x : happy puppy 7→ xd (xd ∈ (DBH∗)∞)
x : the sign 7→ xc (xc ∈ (MPG∗)∞)
x : button 7→ xb (xb ∈ (R∗)∞)

Now this x satisfies RATE′, that is, xu has 100 frames per second, each frame
being 100K bits, etc. (And similarly, xd: 10, 100 respectively, xc: 2, 5K respectively
and xb: 1, 1 respectively.)

Let y ∈ SYSTEM′.x where y ∈ O′ where O′ is {screen, screen′, moving, updown}
which can be written out by assuming

y : updown 7→ yi (yi ∈ (IBH∗)∞)
y : screen 7→ ys (ys ∈ (R∗)∞)
y : screen′ 7→ ys′ (ys′ ∈ (R∗)∞)
y : moving 7→ ym (ym ∈ (R∗)∞)

The correctness requirement is

RATE′ ∧ SYSTEM′ ⊆ SYSTEM

because SYSTEM′ only specifies maximal rates where as SYSTEM has already fixed
the rates.

The obvious proof strategy is to take an arbitrary x satisfying RATE′ and consider
a y ∈ SYSTEM′.x, i.e.

y ∈ (STB′ ⊕ hi res&PIP′ ⊕ · · · ) \ {w1,w2, ...}).x

and then check that y ∈ SYSTEM.x, which essentially boils down to checking
maxdelay constraints and checking the essential transformations of the form pr′′ for
each of the specification paths, e.g. when going from cable to screen, or when going
from the sign to screen′.

As an example let’s check that ys satisfies all constraints of SYSTEM.x. Since
SYSTEM falls apart in 4 unconnected parts, it is enough to check that ys = y.screen
satisfies the the constraints of (S1 ◦ C1 ◦ P1)\{z,w}:

screenupc_cable_801
S1 C1 P1
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∃ z : (PAL∗)∞ • ∃w : (PAL∗)∞ •
z = x.cable ∧ rate(z, 100, 100K)
∧ maxdelay(z,w, 2) ∧ y.screen = pr′′(w)

which is equivalent to:

rate(x.cable, 100, 100K) ∧ maxdelay(pr′′(x.cable), y.screen, 2)

(since pr′′ works frame-wise.)
What is known about ys comes from RATE′ ∧ SYSTEM′, where RATE′ means

rate(cable, 100, 100K). For SYSTEM′, its meaning is more complicated. First, note
that

SYSTEM′ : I → P(O)

also, SYSTEM′ = (STB′ ⊕ hi res&PIP′ ⊕ · · · ), where

STB′ = STB[cable/channel,w1/v, ...]
� control : channel2v x2exec \ {control, x, y}

hi res&PIP′ = hi res&PIP[w1/x]
� control : x2screen \ {control, u,PIP}

Note that for ys it suffices to focus on STB′ and hi res&PIP and forget about all
other channels than w1 where ⊕ can be replaced by ◦, i.e.

SYSTEM′ = hi res&PIP′ ◦ STB′

Let’s summarize the assertions from SYSTEM′ by performing the renamings and
keeping only the relevant clauses in view of the chosen control command. STB′ says:

maxrate(x.cable, 100M)
∧ delay(x.cable,w1©CPAL, ∆STB︸ ︷︷ ︸ )

1
;

hi res&PIP′ says

maxrate(w1, 100M)
∧ delay(pr′′(w1©CPAL), y.screen, ∆hi res&PIP︸ ︷︷ ︸ )

1
;

rate(x.cable, 100, 100K) decides that for all t

#(x.cable.t) = 100

and for each i, the i-th frame has

#bits(x.cable.t.i) = 100K,

therefore
100∑
i=1

#bits(x.cable.t.i) = 10M



386 Correctness of the mapping

so the maxrate requirement of STB′ saying

#(cable.t)∑
i=1

#bits(cable.t.i) < 100M

is not contradicted.
Next let’s check the delays. Let’s combine the two one-step delay assertions, first

by noting that pr′′ works frame-wise:{
delay(pr′′(x.cable), pr′′(w1©CPAL), 1)
delay(pr′′(w1©CPAL), screen, 1)

and secondly by adding the delays:

delay(pr′′(x.cable, y.screen, 2)

which satisfies the clause from SYSTEM that

maxdelay(pr′′(x.cable), y.screen, 2)

as required. The other SYSTEM constraints can be checked in a similar manner.
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A

Abstract Windowing Toolkit (AWT) Java’s platform-independent windowing, graph-
ics, and user-interface widget toolkit. The AWT is part of the JFC - the
standard API for providing a graphical user interface (GUI) for a Java
program.

Action Synchronization Engine (ASE) A runtime synchronization Engine that takes
the timing and synchronization relations defined in an IPML script
as input, and creates an object-oriented representation based on an
extended version of OCPN.

Ambient Intelligence (AmI) The concept of ambient intelligence or AmI is a
vision where humans are surrounded by computing and networking
technology unobtrusively embedded in their surroundings. It refers to
digital environments that are sensitive, adaptive, and responsive to the
presence of people. In such a environment, ambient intelligence will
improve the quality of life of people by creating the desired atmosphere
and functionality via intelligent, personalized inter-connected systems
and services.

Application Programming Interface (API) a set of routines, protocols, and tools
prescribed by a computer operating system or by an application
program by which a programmer writing an application program can
make requests of the operating system or another application.

Architecture Based Design (ABD) A method for designing the high-level software
architecture for complex systems with detailed requirements unknown
in advance. The ABD method fulfills functional, quality, and business
requirements at a level of abstraction that allows for the necessary
variation when producing specific products. Its application relies on

387
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an understanding of the architectural mechanisms used to achieve this
fulfillment.

Artificial Intelligence (AI) Ability of a machine to perform tasks thought to require
human intelligence. Typical applications include game playing,
language translation, expert systems, and robotics.

Audio Video Interleave (AVI) A multimedia container format introduced by Mi-
crosoft,containing both audio and video data in a standard container
that allows simultaneous playback.

B

Binary Format for Scenes (BIFS) A binary format for two- or three-dimensional
audiovisual content. It is based on VRML and is part of the MPEG-4
standard.

C

Central Processing Unit (CPU) the component in a digital computer that interprets
and executes instructions and data contained in software.

Common Intermediate Language (CIL) The lowest-level human-readable program-
ming language in the Microsoft .NET (.NET) Framework. Languages
which target the .NET framework compile to CIL, which is assembled
into bytecode and executed by a virtual machine.

Common Object Request Broker Architecture (CORBA) a standard for software com-
ponentry created and controlled by the Object Management Group
(OMG). It defines APIs, communication protocol, and object/service
information models to enable heterogeneous applications written in
various languages running on various platforms to interoperate.

Communicating Sequential Processes (CSP) A formal language for describing
patterns of interaction in concurrent systems. It is a member of
the family of mathematical theories of concurrency known as process
algebras, or process calculi.

Component Object Model (COM) A Microsoft platform as a software component
technology. It is used to enable interprocess communication and
dynamic object creation in any programming language that supports
the technology.

Computer Supported Cooperative Work (CSCW) CSCW addresses how collaborative
activities and their coordination can be supported bymeans of computer
systems. CSCW is also often referred as computer-based systems that
support groups of people engaged in a common task (or goal) and that
provide an interface to a shared environment.
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D

Digital Theater Systems (DTS) A multi-channel surround sound format used for
both commercial and consumer grade applications (with slight technical
differences between home and commercial variants). It is primarily
used for in-movie sound both on film and on DVD. The company which
created it, Digital Theater Systems, is also often referred to simply as
DTS.

Distributed Component Object Model (DCOM) A Microsoft proprietary technology
for software components distributed across several networked comput-
ers to communicate with each other. It extends Microsoft’s Component
Object Model (COM), and provides the communication substrate under
Microsoft’s COM+ application server infrastructure.

Distributed Computing Environment (DCE) A software system developed in the early
1990s by a, consortium that included HP, IBM, DEC, and others.
The DCE supplies a framework and toolkit for developing client/server
applications. The framework includes a remote procedure call (RPC)
mechanism known as DCE/RPC, a naming (directory) service, an
authentication service, and a distributed file system (DFS) known as
DCE/DFS.

Distributed Computing Environment/Remote Procedure Calls (DCE/RPC) see
Distributed Computing Environment (DCE).

Document Object Model (DOM) A platform- and language-neutral interface that
allows programs and scripts to dynamically access and update the
content, structure and style of documents. The document can be further
processed and the results of that processing can be incorporated back
into the presented document.

Document Type Definition (DTD) A declaration in an SGML or XML document that
specifies constraints on the structure of the document, describes each
allowable element within the document, the possible attributes and
(optionally) the allowed attribute values for each element.

F

First In, First Out (FIFO) A queue or a system in which the first item stored is the first
item retrieved.

G

General Inter-ORB Protocol (GIOP) In distributed computing, GIOP is the abstract
protocol by which the Object Request Broker (ORB) components
communicate. Standards associated with the protocol are maintained
by the Object Management Group (OMG).
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GET An action HTTP defines to be performed on the identified resource. It
requests a representation of the specified resource. See also POST.

Graphical User Interface (GUI) A method of interacting with a computer through a
metaphor of direct manipulation of graphical images and widgets in
addition to text.

H

Home Audio Video Interoperability (HAVi) A Consumer Electronics (CE) industry
standard that ensures interoperability between digital A/V devices from
different vendors and brands that are connected using IEEE 1394
(FireWire).

Home Network Broker (HNB) A software agent in VESA that helps one device to
discover other devices, organizes device names into a hierarchical
namespace, organizes interfaces of devices into one searchable interface
repository or a distributed interface repository, and offers device
interfaces from the interface repository to an interface requester.

hypermedia Hypermedia is a term used as a logical extension of the term hypertext,
in which audio, video, plain text, and non-linear hyperlinks intertwine
to create a generally non-linear medium of information.

HyperText Markup Language (HTML) A markup language designed for the creation
of web pages with hypertext and other information to be displayed in a
web browser. HTML is used to structure information – denoting certain
text as headings, paragraphs, lists and so on. It can be used to describe,
to some degree, the appearance and semantics of a document.

HyperText Transfer Protocol (HTTP) A request/response protocol between clients
and servers on the Web. An HTTP client, such as a web browser,
typically initiates a request by establishing a TCP connection to a
particular port on a remote host. An HTTP server listening on that
port waits for the client to send a request string. Upon receiving the
request, the server sends back a response string and the body of the
message which can be the requested file, an error message, or some
other information.

I

ICE-CREAM stands for “Interactive Consumption of Entertainment in Consumer
Responsive, Engaging & Active Media”, a project funded by Information
Society Technologies programme of the European Community to
investigate the potential of new technologies, e.g., MPEG-4 and
Internet, for designing new concepts for interactive and enhanced
broadcast, to create programmes and environments in which users can
interact with the content of the programmes and compose personal
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programmes to create, with simple tools, personal flavor and emotion,
i.e. to create their personal immersive experience (ICE-CREAM, 2003).
The project started in January 2002 and finished in December 2003.

IEEE 1394 (FireWire) A personal computer and digital video serial bus interface
standard offering high-speed communications and isochronous real-
time data services. FireWire can be considered a successor technology
to the obsolescent SCSI Parallel Interface. Up to 63 devices can be daisy-
chained to one FireWire port.

Interactive Play Markup Language (IPML) A markup language designed for render-
ing interactive plays with multiple connected presentation devices in a
distributed environment, based on SMIL.

Interactive Story Markup Language (StoryML) An XML based scripting language
for specifying interactive stories based on the concept of parallel
storylines, where interaction causes switching among these sotrylines.
It depicts the requiremnents of presenting environment by listing the
types of actors that are needed, instead of directly naming these actors.
A StoryML script must be presented in an evironment driven by a
StoryML playback sytem, and the word StoryML also often refers to such
a system.

Internet Inter-ORB Protocol (IIOP) Implementation of GIOP for TCP/IP. It is a
concrete realization of the abstract GIOP definitions.

Internet Protocol (IP) A data-oriented protocol used by source and destination hosts
for communicating data across a packet-switched network. Devices
identify themselves using a unique IP address.

Inversion of Control (IoC) Also called Dependency Injection. A popular Object-
oriented programming principle which inverts the way an object gets
its dependencies. An object has dependencies: other objects it needs in
order to function. Either it creates the object it needs internally or it is
given to it by another object. IOC inverts this pattern. It checks what an
object needs in order to function, and “injects" those dependencies into
the object.

ITC-SOPI The Television Commission Sense Of Presence Inventory (ITC-SOPI),
from the UK Independent Television Commission.

J

Java Foundation Classes (JFC) A graphical framework for building portable Java-
based graphical user interfaces (GUIs). JFC consists of the Abstract
Windowing Toolkit (AWT), Swing and Java2D. Together, they provide
a consistent user interface for Java programs, regardless whether the
underlying user interface system is Windows, Mac OS X or Linux.
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Java Media Framework (JMF) An application programming interface (API) from
Sun Microsystems, Inc., for incorporating time-based media into Java
applications and applets.

Java Virtual Machine (JVM) A virtual machine serves as interpreter between Java
bytecode and a specific operating system that allows Java applications
to run on any platform without changing the code.

JINI an open software architecture that enables Java Dynamic Networking
for building distributed systems that are highly adaptive to change.
Jini technology can be used to deliver adaptive technology systems that
are scalable, evolvable, and flexible, as typically required in dynamic
runtime environments.

L

Language Of Temporal Ordering Specification (LOTOS) A formal specification lan-
guage based on temporal ordering used for protocol specification in ISO
OSI standards. It was published as ISO 8807 in 1990 and describes the
order in which events occur.

Linux Infrared Remote Control (LIRC) LIRC is a package that allows to decode and
send infra-red signals of many (but not all) commonly used remote
controls, developed by an open source project for adding IR remote
control(TV-remote) support to Linux computers.

Logical Data Unit (LDU) In multimedia systems, time-dependent objects usually
consist of a sequence of information units, often referred as Logical Data
Units (LDU’s), such as audio samples or video frames.

M

Microsoft COM+ (COM+) An extension to Component Object Model (COM)
introduced by Microsoft in Windows 2000. The advantage of COM+
was that it could be run in “component farms”, managed with the built-
in Microsoft Transaction Server.

Microsoft Foundation Classes (MFC) A Microsoft library that wraps portions of the
Windows API in C++ classes, forming an application framework.
Classes are defined for many of the handle-managed Windows objects
and also for predefined windows and common controls.

Microsoft Media Services (MMS) MMS is Microsoft’s proprietary network stream-
ing protocol. MMS protocol can be used on top of TCP or UDP transport
protocols over any network medium.

Microsoft .NET (.NET) A framework created by Microsoft as a software development
platform similar to Java technology. At the core is the use of a
virtual machine that runs a bytecode called Common Intermediate
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Language (CIL). Programs are compiled to produce CIL and then CIL is
distributed to users to run on a virtual machine.

Model-View-Controller (MVC) A model, therefore is an object representing data or
even activity, e.g. a database table or even some plant-floor production-
machine process. A view is some form of visualization of the state of
the model. A controller offers facilities to change the state of the model.

MP3 A popular digital audio encoding and lossy compression format
invented in 1987 by the Fraunhofer Institute for Integrated Circuits”
in Germany. The name is derived from “MPEG-1 Audio Layer 3”, more
formally known as “MPEG-1 Part 3 Layer 3” or “ISO/IEC 11172-3 Layer
3”.

MPEG-2 A group of audio and video coding standards agreed upon by MPEG
(Moving Pictures Experts Group), and published as the ISO/IEC 13818
international standard. MPEG-2 is typically used to encode audio and
video for broadcast signals, including direct broadcast satellite and
Cable TV. MPEG-2, with some modifications, is also the coding format
used by standard commercial DVD movies.

MPEG-4 An ISO/IEC standard developed by MPEG (Moving Picture Experts
Group), provides the standardized technological elements enabling
the integration of the production, distribution and content access
paradigms of digital television, interactive graphics applications and
interactive multimedia.

multimedia A term used to describe multiple means of media which are used
to convey information (text, audio, graphics, animation, video, and
interactivity). As the information is presented in various formats,
multimedia enhances user experience and helps grasping information
better and faster.

Multimedia Home Platform (DVB-MHP) An open middleware system standard de-
signed by the DVB project for interactive digital television. The
MHP enables the reception and execution of interactive, Java-based
applications on a TV-set. Applications can be delivered over the
broadcast channel, together with audio and video streams. These
applications can be for example information services, games, interactive
voting, e-mail, sms or shopping. For all interactive applications an
additional return channel is needed.

Multimedia Messaging System (MMS) A system of transmitting not only text
messages, but also various kinds of multimedia contents (e.g. images,
audio and/or video clips) over wireless networks using the Wireless
Application Protocol (WAP) protocol.

Multipurpose Internet Mail Extensions (MIME) MIME is an Internet Standard for
the format of e-mail. MIME defines a collection of e-mail headers
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for specifying additional attributes of a message including the content
type which indicates the type and subtype of the message content, for
example, Content-type: text/plain. The combination of type and subtype
is generally called a MIME type, although in modern applications,
Internet media type is the favored term, indicating its applicability
outside of MIME messages.

N

Network File System (NFS) A protocol originally developed by Sun Microsystems as
a distributed file system which allows a computer to access files over a
network as easily as if they were on its local disks.

Network Information System (NIS) A network naming and administration system
for smaller networks, developed by Sun Microsystems. It is a RPC-
based client/server system that allows a group of machines within an
NIS domain to share a common set of configuration files. This permits
a system administrator to set up NIS client systems with only minimal
configuration data and add, remove or modify configuration data from
a single location.

Network Time Protocol (NTP) A network protocol that schedules the computer’s
internal clock with the atomic clocks or radio clocks on the Internet.

NexTV stands for “Newmedia consumption in EXtended interactive TeleVision
environment”, a project funded by Information Society Technologies
programme of the European Community to investigate how the new
interactive technologies such as MPEG-4, XML and DVB-MHP can
influence the traditional television broadcasting (NexTV, 2001). NexTV
commenced in January 2000 and finished in December 2001.

O

Object Composition Petri Net (OCPN) A formal specification and modeling tech-
nique for multimedia composition with respect to inter-media timing.
The model is based on the logic of temporal intervals, and Timed Petri
Nets.

Object Request Broker (ORB) In distributed computing, an object request broker
(ORB) is a piece of middleware software that allows programmers to
make program calls from one computer to another, via a network.
ORBs handle the transformation of in-process data structures to the byte
sequence which is transmitted over the network and also the reverse
transformation. In the object oriented languages, the ORB is an object,
having methods to connect the objects being served. After such object
is connected to the ORB, the methods of that object become accessible
for remote invocations.
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Open Network Computing (ONC) An industry standard developed by the Sun
Corporation, which defines the use of Remote Procedure Calls (RPC)
among connected systems.

Open Services Gateway Initiative (OSGi) A non-profit corporation that created an
open specification for delivery of a gateway for services like energy
measurement and control, safety and security, health care monitoring,
device control and maintenance and e-commerce.

P

POST An action HTTP defines to be performed on the identified resource. It
submits user data (e.g. from a HTML form) to the identified resource.
The data is included in the body of the request. See also GET.

Presentation-Abstraction-Control (PAC) The Presentation-Abstraction-Control ar-
chitectural pattern (PAC) defines a structure for interactive software
systems in the form of a hierarchy of cooperating agents. Every agent
is responsible for a specific aspect of the applications functionality and
consists of three components: presentation, abstraction, and control.
This subdivision separates the human-computer interaction aspects of
the agent from its functional core and its communication with other
agents.

Presentation Environment for Multimedia Objects (PREMO) An ISO standard to
provide a standardised development environment for multimedia
applications (ISO/IEC JTC 1/SC 24). It concentrates mainly on
presentation techniques. PREMO is designed to work with existing and
emerging standards.

Q

Quality of Service (QoS) On the Internet and in other networks, QoS, is the idea
that transmission rates, error rates, and other characteristics can be
measured, improved, and, to some extent, guaranteed in advance.
QoS is of particular concern for the continuous transmission of high-
bandwidth video and multimedia information. Transmitting this kind
of content dependably is difficult in public networks using ordinary
“best effort” protocols.

R

Real Time Streaming Protocol (RTSP) Developed by the IETF and published in 1998
as RFC 2326, RTSP is a protocol for use in streaming media systems
which allows a client to remotely control a streaming media server,
issuing VCR-like commands such as “play” and “pause”, and allowing
time-based access to files on a server.
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Real-time Transport Control Protocol (RTCP) Defined in RFC 3550, RTCP provides
out-of-band control information for an RTP flow. It partners RTP in
the delivery and packaging of multimedia data, but does not transport
any data itself. It is used periodically to transmit control packets to
participants in a streaming multimedia session. The primary function
of RTCP is to provide feedback on the quality of service being provided
by RTP.

Real-time Transport Protocol (RTP) RTP defines a standardized packet format for
delivering audio and video over the Internet. It was developed by the
Audio-Video Transport Working Group of the IETF and first published
in 1996 as RFC 1889.

Remote Method Invocation (RMI) A Java application programming interface for
performing remote procedural calls.

Remote Procedure Call (RPC) A protocol that allows a computer program running
on one host to, cause code to be executed on another host without
the programmer needing to explicitly code for this. When the code in
question is written using object-oriented principles, RPC is sometimes
referred to as remote invocation or remote method invocation.

Resource Description Framework (RDF) a family of specifications for a metadata
model that is often implemented as an application of XML. The
RDF family of specifications is maintained by the World Wide Web
Consortium (W3C). The RDF metadata model is based upon the idea of
making statements about resources in the form of a subject-predicate-
object expression, called a triple in RDF terminology. The subject is
the resource, the “thing” being described. The predicate is a trait or
aspect about that resource, and often expresses a relationship between
the subject and the object. The object is the object of the relationship or
value of that trait.

S

Simple Object Access Protocol (SOAP) SOAP is a protocol, defining XML-based
information, which can be used for exchanging structured and typed
information between peers in a decentralized, distributed environment
over a computer network, normally using HTTP.

Simple Service Discovery Protocol (SSDP) a discovery service allows a Windows
computer to discover universal plug and play devices on a network.

Standard Generalized Markup Language (SGML) Ametalanguage in which one can
define markup languages for documents, provides a variety of markup
syntaxes that can be used for many applications. SGML is very
flexible and powerful, but its complexity has prevented its widespread
application for small-scale general-purpose use. HTML and XML are
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both derived from SGML.While HTML is an application of SGML, XML
is a profile – a specific subset of SGML, designed to be simpler to parse
and process than full SGML.

Synchronized Multimedia Integration Language (SMIL) A recommendation from
W3C (The World Wide Web Consortium). It enables simple authoring
of interactive audiovisual presentations. SMIL is typically used for “rich
media”/multimedia presentations which integrate streaming audio and
video with images, text or any other media type.

T

Tangible User Interface (TUI) A user interface in which a person interacts with
digital information through the physical environment. Tangible
interfaces give physical form to digital information, employing physical
artifacts both as representations and controls for computational media.

Text-to-Speech (TTS) Artificial production of human speech based on text. A system
used for producing human speeck is often called a speech synthesizer,
and can be implemented in software or hardware. Speech synthesis
systems are often called text-to-speech (TTS) systems in reference to
their ability to convert text into speech.

Timed Communication Object-Z (TCOZ) An integration of Object-Z and Timed CSP.
The approach taken in TCOZ is to identify operation schemas (both
syntactically and semantically) with (terminating) CSP processes that
perform only state update events; to identify active classes with non-
terminating CSP processes; and to allow arbitrary (channel-based)
communications interfaces between objects.

Transmission Control Protocol (TCP) One of the core protocols of the Internet
protocols. TCP is the intermediate layer between the Internet Protocol
(IP) below it, and an application above it. Using TCP, applications
on networked hosts can create connections to one another, over which
they can exchange data. The protocol guarantees reliable and in-order
delivery of sender to receiver data. TCP does the task of the transport
layer in the OSI model of computer networks.

U

Unified Modeling Language (UML) An open method used to specify, visualize,
construct and document, the artifacts of an object-oriented software-
intensive system under development. The UML represents a
compilation of best engineering practices which have proven to be
successful in modeling large, complex systems, especially at the
architectural level.
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Uniform Resource Identifier (URI) An Internet protocol element consisting of a
short string of characters that conform to a certain syntax. The string
comprises a name or address that can be used to refer to a resource. It
is a fundamental component of the World Wide Web.

Uniform Resource Locator (URL) A standardized address for some resource (such as
a document or image) on the Internet (or elsewhere). First created by
Tim Berners-Lee for use on the World Wide Web, the currently used
forms are detailed by Internet standard RFC 3986.

Universal Plug and Play (UPnP) A set of computer network protocols to allow
devices to connect seamlessly and to simplify the implementation of
networks in the home and corporate environments. UPnP achieves this
by defining and publishing UPnP device control protocols built upon
open, Internet-based communication standards.

User Datagram Protocol (UDP) A protocol with no connection required between
sender and receiver that allows sending of data packets (known as
datagrams) on the Internet (thought unreliable because it cannot ensure
the packets will arrive undamaged or in the correct order).

User Interface Markup Language (UIML) An XML language for defining user inter-
faces on computers. The standard can be found at http://uiml.org.

V

Video Electronic Standards Association (VESA) A group of manufacturers which
develops standards for graphics cards; manager of the standard for
display cards which enables work in Super VGA mode.

W

Web Ontology Language (OWL) A markup language for publishing and sharing
data using ontologies on the Internet. OWL is a vocabulary extension
of RDF and is derived from the DAML+OIL Web Ontology Language.
Together with RDF and other components, these tools make up the
semantic web project.

X

eXtensible HyperText Markup Language (XHTML) A markup language that has the
same expressive possibilities as HTML, but a stricter syntax. Whereas
HTML is an application of SGML, a very flexible markup language,
XHTML is an application of XML, a more restrictive subset of SGML,.

Extensible Markup Language (XML) A simple, flexible text format derived from
SGML, (ISO 8879). Originally designed to meet the challenges of
large-scale electronic publishing, XML is also playing an increasingly

http://uiml.org
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important role in the exchange of a wide variety of data on the Web and
elsewhere.
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C, synchronization coordinates, 278
D, data, 289
S, source of data, 289
T, basic time type, 269
}, Free type with the constant null, 274
�, sequence filtering, 330
⊕, relational overriding, 267
B, is a, 303
R, real number, 133, 136, 290
R, “things in the real world”, 145, 289
τ , absolute current time, 269
Object-Z

!, output decoration, 62
′, change decoration, 62
?, input decoration, 62
•, scope enrichment, 269
©C, object containment, 273

∆, ∆-list, 62
©id, global object indenty, 325
INIT, initial state, 62
PROCESS, active process, 270
:=, operation to assign a value to a

state variable, 63

∧, operation conjunction, 62

[], angelic choice, 270
‖, parallel operation composition,

287

‖!, parallel operation composition,

output exposed, 304
o
9 , sequential operator, 63
\, hiding, 269
O, object wrapper for primary val-

ues, 266
O, object universe, 266
V , original value of the wrapped ob-

ject, 266
↓, polymorphic notation, 62
self , self identity, 62
 , sequential composition that out-

puts and inputs values, 63
�, visibility list, 269
delete, object destruction, 273
if . . . then . . . else . . .,

conditional composition, 283
new, object creation, 273

in, in the interests described by, 325
matches, string matching, 325
x masculinity/femininity, 190

ABD, 6
Abstract Factory, 74
Abstraction, 357
AbstractSyncFactory, 304
AbstractSyncServiceFactory, 306
Action, 267
action, 39, 42, 48, 373
Action Service Factory, 73
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AbstractSyncFactory, 304
AbstractSyncServiceFactory, 306
ReadyAction, 302
StartAction, 302
SyncFactoryImpl, 305
SyncService, 301
SyncServiceFactoryImpl, 307
SyncServiceProxy, 302

Action Synchronization Engine, 136
action time, 120
ActionService, 265
ActionServiceProxy, 272
Active Object, 68
ActiveController, 355
ActiveEventDispatcher, 299
ActivePresentation, 360
ActiveSynchronizable, 288
ActiveSyncMediaObject, 290
Actor

ActorPresentation, 366
MediaObject, 365
StreamConsumerImpl, 366, 367
StreamSupplierImpl, 366

actor, 30, 39, 42, 46, 113
ActorPresentation, 366
adapted time, 120
agreeableness, 190
ambient intelligence, 1
anonymous operation, 62
architectural construct, 59
architecture, 6
Architecture-based design, 6
ASE, 136
Attention, 173

begin, 375
BIFS, 26

Challenge, 173
Channel, 80

Channel, 311
ConsumerAdmin, 313
ProxyPullConsumer, 320
ProxyPullSupplier, 317
ProxyPushConsumer, 319
ProxyPushSupplier, 315

PullConsumer, 320
PullSupplier, 316
PushConsumer, 318
PushSupplier, 315
SupplierAdmin, 312

Channel, 311
Command, 267
ConsumerAdmin, 313
content element, 42, 43

time-dependent element, 118
time-independent element, 118

content element time, 119
context dependent interaction, 18
Control, 173
Control, 361
Controller, 354
cooperative interaction, 23
coordinate, 277
CPushConsumerImpl, 363
culture dimensions, 190

individualism/collectivism, 190
long/short-term orientation, 190
masculinity/femininity, 190
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