
IPML: Extending SMIL for Distributed
Multimedia Presentations

Jun Hu and Loe Feijs

Department of Industrial Design
Eindhoven University of Technology

5600MB Eindhoven, The Netherlands

Abstract. This paper addresses issues of distributing multimedia pre-
sentations in an ambient intelligent environment, exams the existing
technologies and proposes IPML, a markup language that extends SMIL
for distributed settings. It uses a powerful metaphor of play, with which
the timing and mapping issues in distributed presentations are easily
covered in a natural way.

Ambient Intelligence (AmI) is introduced by Philips Research as a new paradigm
in how people interact with technology. It envisions digital environments to be
sensitive, adaptive, and responsive to the presence of people, and AmI environ-
ments will change the way people use multimedia services [1]. The environments,
which include many devices, will play interactive multimedia to engage people
in a more immersive experience than just watching television shows. People will
interact not only with the environment itself, but also with the interactive mul-
timedia through the environment.

For many years, the research and development of multimedia technologies
have increasingly focused on models for distributed applications, but the focus
was mainly on the distribution of the media sources. Within the context of AmI,
not only are the media sources distributed, the presentation of and the interac-
tion with the media will also be distributed across interface devices. This paper
focuses on the design of the structure of multimedia content, believing that the
user experience of multimedia in a distributed environment can be enriched by
structuring both the media content at the production side and the playback sys-
tem architecture at the user side in a proper way. The structure should enable
both the media presentation and the user interaction to be distributed and syn-
chronized over the networked devices in the environment. The presentation and
interaction should be adaptive to the profiles and preferences of the users, and
the dynamic configurations of the environment. To structure the media content,
the following issues need to be addressed:
1. By what means will the authors compose the content for many different

environments? The authors have to be able to specify the following with
minimized knowledge of the environments: (a) Desired environment config-
urations; (b) Interactive content specification for this environment.

2. How can the system playback the interactive media with the cooperation of
the user(s) in a way that: (a) makes the best use of the physical environment

H. Zha et al. (Eds.): VSMM 2006, LNCS 4270, pp. 60–70, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

IPML: Extending SMIL for Distributed Multimedia Presentations 61

to match the desired environment on the fly. (b) enables context dependent
presentation and interaction. Here the term “context” means the environ-
ment configuration, the application context, the user preferences, and other
presentation circumstances. (c) synchronizes the media and interaction in
the environment according to the script.

This paper first exams existing open standards for synchronized media and
a scripting language called StoryML, then proposes IPML addressing aforemen-
tioned issues.

1 When Technologies Meet Requirements

SMIL and MPEG-4 are contemporary technologies in the area of synchronized
multimedia [2,3]. SMIL focuses on Internet applications and enables simple au-
thoring of interactive audiovisual presentations, whereas MPEG-4 is a superset
of technologies building on the proven success in digital television, interactive
graphics applications and also interactive multimedia for the Web. Both were
the most versatile open standards available at the moment of time.

But both were challenged by the requirement for distributed interactions. It
requires that the technology is first of all able to describe the distribution of the
interaction and the media objects over multiple devices. The BIFS in MPEG-4
emphasizes the composition of media objects on one rendering device. It doesn’t
take multiple devices into account, nor does it have a notation for it.

SMIL 2.0 introduces the MultiWindowLayout module, which contains elements
and attributes providing for creation and control of multiple top level windows
[4]. This is very promising and comes closer to the requirements of distributed
content interaction. Although these top level windows are supposed to be on
the same rendering device, they can to some extent, be recognized as software
interface components which have the same capability.

To enable multimedia presentations over multiple interface devices, StoryML
was proposed [5]. It models the interactive media presentation as an interactive
Story presented in a desired environment (called a Theater). The story consists
of several Storylines and a definition of possible user Interaction during the story.
User interaction can result in switching between storylines, or changes within a
storyline. Dialogues make up the interaction. A dialogue is a linear conversation
between the system and the user, which in turn consists of Feed-forward objects,
and the Feedback objects depending on the user’s Response. The environment
may have several Interactors. The interactors render the media objects. And
finally, the story is rendered in a Theater.

One problem of the StoryML is that it uses a mixed set of terms. “Story” and
“storylines” are from narratives, “media objects” are from computer science,
whereas itneractors are from human computer interaction. Scripting an inter-
active story requires various types of background knowledge to some extent. It
is questionable whether StoryML has succeeded in both keeping the scripting
language at a high level and let the script authors only focus on the interactive

62 J. Hu and L. Feijs

content. “Movies did not flourish until the engineers lost control to artists – or
more precisely, to the communications craftsmen.” [6]

StoryML uses storytelling as a metaphor for weaving the interactive media
objects together to present the content as an “interactive story”. This metaphor
made it difficult to apply StoryML to other applications when there are no
explicit storylines or narratives. Moreover, StoryML can only deal with linear
structure and use only a storyline switching mechanism for interaction.

Instead of StoryML, it is necessary to design a script language that has a
more generic metaphor, that supports both linear and nonlinear structures and
that can deal with complex synchronization and interaction scenarios.

2 Play

Instead of storytelling, Interactive Play Markup Language (IPML) uses a more
powerful metaphor of play. A play is a common literary form, refering both to the
written works of dramatists and to the complete theatrical performance of such.
Plays are generally performed in a theater by actors. To better communicate a
unified interpretation of the text in question, productions are usually overseen by
a director, who often puts his or her own unique interpretation on the production,
by providing the actors and other stage people with a script. A script is a written
set of directions that tell each actor what to say (lines) or do (actions) and when
to say or do it (timing). If a play is to be performed by the actors without a
director and a script from the director, the results would be unpredictable, if
not chaotic.

2.1 Timing in a Play

Timing in a play is very important whether it be when an actor delivers a specific
line, or when a certain character enters or exits a scene. It is important for the
playwright to take all of these into consideration. The following is an example
from Alice in Wonderland [7, p.14]:
· · ·

ALICE Please! Mind what you’re doing!
DUCHESS (tossing ALICE the baby). Here . . . you may nurse it if you like. I’ve got

to get ready to play croquet with the Queen in the garden. (She turns at the
door.) Bring in the soup. The house will be going any minute! (As the DUCHESS
speaks, the house starts moving. The COOK snatches up her pot and dashes into
the house.)

COOK (to the FROG). Tidy up, and catch us! (The FROG leaps about, picking up
the vegetables, plate, etc.)

ALICE (as the FROG works). She said “in the garden.” Will you please tell me –
FROG There’s no sort of use asking me. I’m not in the mood to talk about gardens.
ALICE I must ask some one. What sort of people live around here?
· · ·
A few roles are involved in this part of the play. Their lines and actions are

presented by the playwright in a sequential manner, and these lines and actions

IPML: Extending SMIL for Distributed Multimedia Presentations 63

are by default to be played in sequence. However, these sequential lines and
actions are often not necessarily to happen immediately one after another. For
example, it is not clear in the written play how much of time the duchess should
take to perform the action “tossing Alice the baby” after Alice says “Mind what
your’re doing” and before the duchess says “Here . . . you may nurse it if you
like”. The director must supervise the timing of these lines and actions for the
actors to ensure the performance is right in rhythm and pace. Furthermore,
things may happen in parallel – For example, the house starts moving as the
duchess speaks, and Alice talks as the frog works. Parallel behaviors are often
described without precise timing for performing. It is up to the directors to
decide the exact timing based on their interpretation of the play. For example,
the director may interpret “As the DUCHESS speaks, the house starts moving”
as “at the moment of the duchess start saying ‘The house will be going in any
minute’, the house starts moving”.

2.2 Mapping: Assigning Roles to Actors

Actors play the roles that are described in the script. One of the important
task of the director is to define the cast – assign the roles to actors. This is
often done by studying the type of a role and the type of an actor, and finding
a good match between them. This is also exactly the problem for distributed
presentations: determining which device or component to present certain type of
media objects. It can be very hard for a computer to carry out this task, unless
these types are indicated in some way otherwise.

In some traditional art of play, these types are even formalized so that a play
can be easily performed with a different cast. For example, The character roles in
Beijing Opera are divided into four main types according to the sex, age, social

status, and profession of the character: male roles (Shēng , fig. 1(a)); female
roles (Dàn , fig. 1(b)); the roles with painted faces (J̀ıng , fig. 1(c)) who
are usually warriors, heroes, statesmen, or even demons; and clown (Chǒu ,
fig. 1(d)), a comic character that can be recognized at first sight for his special
make-up (a patch of white paint on his nose). These types are then divided into
more delicate subtypes, for example Dàn is divided into the following subtypes:
Qı̄ng Yı̄() is a woman with a strict moral code; Huā Dàn () is a vivacious
young woman; Wǔ Dàn () is a woman with martial skills and Lǎo Dàn ()
is an elderly woman. In a script of Beijing Opera, roles are defined according
to these types. An actor of Beijing Opera is often only specialized in very few
subtypes. Given the types of the roles and the types of the actors, the task of
assigning roles to actors becomes an easy matching game.

2.3 Interactive Play

Plays can be interactive in many ways. The actors may decide their form of
speech, gestures and movements according to the responses from the audience.
Again with the example of Beijing opera, plays in early days, which sometimes

64 J. Hu and L. Feijs

(a) Sheng(male) (b) Dan(female) (c) Jing (face
painted)

(d) Chou(clown)

Fig. 1. Role types in Beijing opera

can still be been seen today, may be performed in the street (fig. 2) or in a
tea house, where the actors and the audience are mixed – the actors and the
audience share the stage. The movements of the actors must be adapted to the
locations of the audience, and the close distance between the audience and the
actors stimulates the interaction. An example of such interaction is that the
characters often strike a pose on the stage, and the audience is supposed to
cheer with enthusiasm. The time span of such a pose depends on the reactions of
the audience. Although this is often not written in the script, such an interactive
behavior is by default incorporated in every play of Beijing opera.

Fig. 2. 19th century drawing of
Beijing opera

Other interactive plays allow the audience to
modify the course of actions in the performance
of the play, and even allow the audience to par-
ticipate in the performance as actors. Thus in
these plays the audience has an active role. How-
ever, this does not mean that the reader of a
novel, the member of audience in the theater are
passive: they are quite active, but this activity
remains internal.

The written text of the play is much less than
the event of the play. It contains only the dia-
log (the words that the characters actually say),
and some stage directions (the actions performed
by the characters). The play as written by the
playwright is merely a scenario which guides the
director and actors. The phenomenon of theater
is experienced in real-time. It is alive and ephemeral – unlike reading a play,
experiencing a play in action is of the moment – here today, and gone tomorrow.

To clarify the discussions, the word performance is used to refer to the artifact
the audience and the participants experience during the course of performing a
script by preferred actors, monitored and instructed by a director. The script is
the underlying content representation perceived by the authors as a composite

IPML: Extending SMIL for Distributed Multimedia Presentations 65

unit, defining the temporal aspects of the performance, and containing the actions
which are depicted by the content elements or the references to these elements.
Traditional multimedia systems use a different set of terms which are comparable
to the terms above; they are in many cases similar, but should not be confused.

Next the basic structure of the SMIL scripting language [8] is presented. Using
the structure of SMIL and taking the extra requirements into account we then
propose Interactive Play Markup Language.

3 SMIL

Synchronized Multimedia Integration Language (SMIL) is an XML-based lan-
guage for writing interactive multimedia presentations [8]. It has easy to use
timing modules for synchronizing many different media types in a presentation.
SMIL 2.0 has a set of markup modules.

Not attempting to list all the elements in these modules, we show an object-
oriented view1 of some basic elements in Fig. 3(a): Par, and Seq from the timing
and synchronization module, Layout, RootLayout, TopLayout and Region from the
layout module, Area from the linking module, MediaObject from the media object
module, Meta from the metainformation modules and Head, Body from the struc-
ture module. Details about the corresponding language elements can be found
in SMIL 2.0 specification [8].

The Region element provides the basics for screen placement of visual media
objects. The specific region element that refers to the whole presentation is the
RootLayout. Common attributes, methods and relations for these two elements
are placed in the superclass named the Layout.

SMIL 2.0 introduced a MultiWindowLayout module over SMIL 1.0, with which
the top level presentation region can also be declared with the TopLayout element
in a manner similar to the SMIL 1.0 root-layout window, except that multiple
instances of the TopLayout element may occur within a single Layout element.

Each presentation can have Head and Body elements. In the Head element one
can describe common data for the presentation as whole, such as Meta data and
Layout. All Region elements are connected to the Head.

The Mediaobject is the basic building block of a presentation. It can have its
own intrinsic duration, for example if it is a video clip or an audio fragment.
The media element needs not refer to a complete video file, but may be a part
of it. The Content, Container, and Synchronization elements are classes introduced
solely for a more detail explanation of the semantics of the Par, Seq, Switch and
Mediaobject, and their mutual relations.

Par and Seq are synchronization elements for grouping more than one Content.
If the synchronization container is Par, it means that direct subelements can
be presented simultaneously. If synchronization container is Seq, it means that
direct subelements can be presented only in sequence, one at a time. The Body
element is also a Seq container.
1 This UML model only provides an overview of the selected elements and it is not

intended to replace, nor to be equivalent to, the DTD specification from W3C.

66 J. Hu and L. Feijs

The connection between Content and Container viewed as an aggregation has
a different meaning for the Synchronization element and for the Switch element. If
the Container element is Switch, that means that only one subelement from a set
of alternative elements should be chosen at the presentation time depending on
the settings of the player.

With the Area element, a spatial portion of a visual object can be selected to
trigger the appearance of the link’s destination. The Area element also provides
for linking from non-spatial portions of the media object’s display. It allows
breaking up an object into temporal subparts, using attributes begin and end.

SMIL Head

Content

Container

0..1
Meta

0..1

Body

0..1 Layout

RootLayout

Region

0..1

0..*

0..* TopLayout

0..*

MediaObject

0..*

Switch

Synchronization

Par

Seq

0..1

Area
0..*

(a) SMIL in UML

IPML Head

Content

Container

0..1
Meta

0..1

Body

0..1 Layout

RootLayout

Region

0..1

0..*

0..* TopLayout

0..*

MediaObject

0..*

Switch

Synchronization

Par

Seq

0..1

Actor

Action

0..1

0..*

0..1

Area
0..*

Event
0..*

0..1

(b) IPML in UML

Fig. 3. SMIL and IPML

4 IPML

SMIL seems to have the ingredients for mapping and timing:
– Its timing and synchronization module provides versatile means to describe

the time dependencies, which can be directly used in the IPML design with-
out any change.

– The SMIL linking module enables non-linear structures by linking to another
part in the same script or to another script. Although the Area element can
only be attached to visual objects, this can be easily solved by lifting this
concept up to a level that covers all the elements that need to have a linking
mechanism.

– The SMIL layout module seems to be very close to the need of distribution
and mapping. The concept of separating mapping and timing issues into two
different parts, i.e. Head and Body, makes SMIL very flexible for different
layouts – if a presentation need to be presented to a different layout setting,
only the layout part need to be adapted and the timing relations remain
intact, no matter whether this change happens before the presentation in
authoring time, or during the presentation in run time.

IPML: Extending SMIL for Distributed Multimedia Presentations 67

It is not yet forgotten in section 1, SMIL was considered not directly applicable
out of the shelf for the distributed and interactive storytelling: it does not support
a notion of multiple devices. However later we also found that we went one step
too far – the StoryML does incorporate the concept of multiple actors, but its
linear timing model and narrative structure limited its applicability.

What needs to be done is to pick up SMIL again as the basis for the design,
extending it with the metaphor of theater play, bringing in the lessons we learnt
from StoryML. Fig. 3(b) shows the final IPML extension (marked gray) to SMIL.
The Document Type Definition (DTD) of IPML can be found in [9].

Note that in fig. 3(b), if all gray extensions are removed, the remaining struc-
ture is exactly the same as the SMIL structure as illustrated in fig. 3(b). This in
an intentional design decision: IPML is designed as an extension of SMIL without
overriding any original SMIL components and features, so that the compatibility
is maximized. Any SMIL script should be able to be presented by a IPML player
without any change. An IPML script can also be presented by a SMIL player,
although the extended elements will be silently ignored. The compatibility is
important, because it can reduce the cost of designing and implementing a new
IPML player – the industry may pick up the IPML design and build an IPML
player on top of a existing SMIL player so that most of the technologies and
implementations in the SMIL player can be reused.

4.1 Actor

The Head part of an IPML script may contain multiple Actor elements which de-
scribe the preferred cast of actors. Each Actor has a type attribute which defines
the requirements of what this actor should be able to perform. The type attribute
has a value of URI, which points to the definition of the actor type. Such a defi-
nition can be specified using for example RDF [10] and its extension OWL. RDF
is a language for representing information about resources in the World Wide
Web. It is particularly intended for representing metadata about Web resources.
However, by generalizing the concept of a “Web resource”, RDF can also be
used to represent information about things that can be identified on the Web,
even when they cannot be directly retrieved on the Web. OWL adds more vo-
cabulary for describing properties and classes: among others, relations between
classes (e.g. disjointness), cardinality (e.g. “exactly one”), equality, richer typ-
ing of properties, characteristics of properties (e.g. symmetry), and enumerated
classes. The “thing” we need to describe is the type of the actor.

During the performance time, the real actors present to the theater to form
a real cast. Each actor then needs to report to the director about what he can
perform, i.e. his actor “type”. The “type” of a real actor is defined by the actor
manufacturers (well, if an actor can be manufactured). The real actor’s type
can again be described using an RDF or OWL specification. The director then
needs to find out which real actor fits the preferred type best. The mapping
game becomes a task of reasoning about these two RDF or OWL described
“types”. First of all the user’s preferences should be considered, even if the
user prefers a “naughty boy” to perform a “gentleman”. Otherwise, a reasoning

68 J. Hu and L. Feijs

process should be conducted by the director, to see whether there is exactly an
actor has a type that “equals to” the “gentleman”, or to find an “English man”
that indeed always “is a” “gentleman”, or at least to find a “polite man” that
“can be” a “gentleman” and that matches “better than” a “naughty boy”, etc.
This reasoning process can be supported by a variety of Semantic Web [11] tools,
such as Closed World Machine (CWM) [12] and Jena[13] just for example.

4.2 Action

The Action element is similar to the MediaObject element in SMIL. However,
Action can be applied to any type of content element which is not explicitly
defined using different media objects such as Img, Video and Animation in SMIL.
The Action element has an attribute src giving the URI of the content element
and its type either implicitly defined by the file name extension in the URI if
there is one, or explicitly defined in another attribute type. The type attribute
defines the type of a content element as the type attribute of Actor defines the
actor type, using a URI referring to a definition.

Action may have an attribute actor to specify the preferred actor to perform it.
If it is not specified, the type of the content element may also influence the actor
mapping process: the director needs to decide which actor is the best candidate
to perform this “type” of action. Again, the user preference should be taken
into account first, otherwise a reasoning process should be conducted to find the
“gentleman” who can nicely “open the door for the ladies”.

In addition, the Action element may have an observe attribute which specifies
the interested events. This attribute is designed for an actor to observe the
events that are of interest during the the course of performing a specific action.
For example, when an actor is performing an action to present a 3D object, it
may be interested in the controlling events for rotating the object. This actor
can then “observe” these events and react on it. Note that these observed events
have no influence on the timing behavior: it will neither start nor stop presenting
this 3D object, unless they are included in timing attributes, i.e, begin and end.
Events that are not listed will not be passed by the director to the actor during
this action, therefore the event propagation overhead can be reduced.

However, some actors may be interested in the events that are not related
to certain actions. To accommodate this and not to change the original SMIL
structure, we require these Actors to perform an action of the type null, specified
using a special URI scheme “null:”, which allows events to be “observed” during
an action of “doing nothing”.

4.3 Event

The third extension of IPML to SMIL is event based linking using the Event
element. Event elements in an Action element are similar to Area elements in a
visual MediaObject element in SMIL, with the exceptions that it does not require
the parent Action element to have a visual content to present, and that the events
are not limited to the activation events (clicking on an image, for example) on

IPML: Extending SMIL for Distributed Multimedia Presentations 69

visual objects. An Event has an attribute enable to include all interested events
during an action, including all possible timing events and user interaction events.
Once one of the specified event happens, the linking target, specified using the
attribute href is triggered. Similar to the Area element, the Event element may
also have begin, end and dur attributes to activate the Event only during a spec-
ified interval. Event based linking makes IPML very flexible and powerful in
constructing non-linear narratives, especially for the situations where the user
interaction decides the narrative directions during the performance.

5 Conclude with Alice in Wonderland
To show what a IPML would look like in practice, we again use the example
from Alice in Wonderland in section 2.1. Since we can’t embed multimedia
content elements in this printed paper and we only have printed lines and action
instructions, we introduce two exotic URI schemes: “say:” for the lines and “do:”
for the action instructions, just for the fun of it:
<ipml>
<head>

<actor id=”ALICE” type=”http ://alice@wonderland. eu/ l ove l yg i r l” />
<actor id=”DUCHESS” type=”http ://alice@wonderland. eu/seriouswoman” />
<actor id=”COOK” type=”http ://alice@wonderland. eu/cook” />
<actor id=”FROG” type=”http ://alice@wonderland. eu/frog” />
<actor id=”HOUSE” type=”http ://alice@wonderland. eu/woodenhouse” />

</head>
<body>

<action actor=”ALICE” src=”say :Please ! Mind what you ’ re doing !” />
<par>

<action actor=”DUCHESS” src=”do: tossing Alice the baby”
id=”DuchessTossingBaby”/>

<action actor=”DUCHESS”
src=”say :Here . . . you may nurse i t i f you l ike , I ’ ve got to get

ready to play croquet with the Queen in the garden .” />
<action actor=”ALICE” src=”do: receiving the baby”

begin=”DuchessTossingBaby. babytossed”/>
</par>
<action actor=”DUCHESS” src=”do: turns at the door” />
<action actor=”DUCHESS” src=”say :Bring in the soup.” />
<par>

<action actor=”HOUSE” src=”do:moving” />
<seq>

<par>
<action actor=”DUCHESS” src=”say :The house wi l l be going any minute !” />
<action actor=”COOK” src=”do: snatches up her pot and dashes into the

house” />
</par>
<action actor=”COOK” src=”do: turns to the FROG” />
<action actor=”COOK” src=”say :Tidy up, and catch us !”
<par>

<action actor=”FROG” src=”do: leaps about” />
<action actor=”FROG” src=”do: picking up the vegetables , plates , etc .” />
<action actor=”ALICE” src=”say :She said ’ in the garden ’ , wi l l you please

t e l l me −” />
</par>
<action actor=”FROG” src=”say :There ’ s no sort of reason asking me, I ’m not

in the mood to talk about gardens .” />
<action actor=”ALICE” src=”say : I must ask some one. What sort of people l i v e

around here?” />
</seq>

</par>
</body>
</ipml>

70 J. Hu and L. Feijs

References

1. Aarts, E.: Ambient intelligence: a multimedia perspective. IEEE Multimedia 11(1)
(2004) 12–19

2. Battista, S., Casalino, F., Lande, C.: MPEG-4: A multimedia standard for the
third millennium, part 1. IEEE MultiMedia 6(4) (1999) 74–83

3. Battista, S., Casalino, F., Lande, C.: MPEG-4: A multimedia standard for the
third millennium, part 2. IEEE MultiMedia 7(1) (2000) 76–84

4. Rutledge, L.: SMIL 2.0: XML for web multimedia. IEEE Internet Computing 5(5)
(2001) 78–84

5. Hu, J.: StoryML: Enabling distributed interfaces for interactive media. In: The
Twelfth International World Wide Web Conference, Budapest, Hungary, WWW
(2003)

6. Heckel, P. In: The Elements of Friendly Software Design. Sybex (1991) 4
7. Carroll, L., Chorpenning, C.B.: Alice in Wonderland. Dramatic Publishing Co.,

Woodstock (1958)
8. Ayars, J., Bulterman, D., Cohen, A., Day, K., Hodge, E., Hoschka, P., Hyche, E.,

Jourdan, M., Kim, M., Kubota, K., Lanphier, R., Layäıda, N., Michel, T., Newman,
D., van Ossenbruggen, J., Rutledge, L., Saccocio, B., Schmitz, P., ten Kate, W.,
Michel, T.: Synchronized multimedia integration language (SMIL 2.0) - [second
edition]. W3C recommendation (2005)

9. Hu, J.: Design of a Distributed Architecture for Enriching Media Experience in
Home Theaters. Technische Universiteit Eindhoven (2006)

10. McBride, B.: Rdf primer. W3C recommendation (2004)
11. Berners-Lee, T., Fischetti, M.: Weaving the Web: The Original Design and Ulti-

mate Destiny of the World Wide Web by Its Inventor. Harper San Francisco (1999)
Foreword By-Michael L. Dertouzos.

12. Berners-Lee, T., Hawke, S., Connolly, D.: Semantic web tutorial using n3. Turorial
(2004)

13. McBride, B.: Jena: Implementing the rdf model and syntax specification. In:
Semantic Web Workshop, WWW2001. (2001)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

