
AN ADAPTIVE ARCHITECTURE FOR PRESENTING INTERACTIVE MEDIA 
ONTO DISTRIBUTED INTERFACES 

Jun Hu 
Dept. of Industrial Design 

Eindhoven University of Technology 
Den Dolech 2, 5600MB Eindhoven, The Netherlands 

Media Interaction Group 
Philips Research Laboratories 

Prof. Holstlaan 4, 5656AA Eindhoven, The Netherlands 

Loe Feijs 
Dept. of Industrial Design 

Eindhoven University of Technology 
Den Dolech 2, 5600MB Eindhoven, The Netherlands 

 

 

ABSTRACT  

This paper introduces an adaptive architecture for 
presenting interactive timed media onto distributed 
networked devices. The architecture is put into the test in 
a storytelling application for children. The interactive 
story is documented in StoryML, an XML-based 
language, and presented to multiple interface devices 
organized in an agent-based architecture. This allows the 
separation of the content from concrete physical devices, 
the definition of abstract media objects and the automatic 
adaptation of the same content to different environments 
of physical devices. Since both the content and the 
interaction are timed, issues of streaming and 
synchronization in this architecture are also addressed. 

KEY WORDS 

Distributed media, distributed interfaces, architectures 

1 INTRODUCTION 

For many years, the research and development of timed 
media technologies have increasingly focused on models 
for distributed multimedia applications [1,2]. The term 
"distributed multimedia" refers to the fact that the content 
sources of a timed media presentation to the final user are 
distributed over a network. This paper has a different 
focus which is about distributed presentation interfaces in 
the user's home. Rather than the distributed content that 
may be related to media coding and delivery, network 
protocols and quality of service, the work presented here 
focuses on interface architecture issues: how to structure 
the system and content to support such distributed 
interfaces for timed media applications?  

By using physical interface devices, a more natural 
environment in which real-life stimuli for all the human 
senses are used, will give people more feeling of 
engagement [3]. Multimedia content can be distributed to 
several interface devices. For example, screens show the 
major part of the audiovisual content, surround audio 
equipment presents the background music, ambient lights 

create harmonious atmosphere, and robotic toys show the 
expressions and actions as a character. 

The carrier for this work is an interactive storytelling 
application TOONS for children (age 8-12) in the NexTV 
project sponsored by the European Commission under the 
IST-programme. In the TOONS show, the interactive 
content is distributed into the children’s environment that 
involves several devices, i.e., a TV, a toy robot and a 
light. During the show, the children can interact with the 
content, using the robot and the light. Figure 1 shows the 
TOONS conceptual model. This model consists of 
storyline components and dialog components. The 
storyline components comprise the non-interactive parts 
in the video stream, whereas the dialog components 
comprise the interactive parts with which the user can 
make choices. A dialog consists of a feed-forward, a 
feedback part and a decision point. Different choices at 
the decision points will lead to different storylines.  

 

Figure 1. TOONS conceptual model 

1.1 Requirements 

According to the user requirements, the system 
architecture should support the following: 

1. Distributed Interfaces. Distributed interfaces mean that 
not only the content presentation, but also the user input 
and control are distributed over the networked devices. 
Different sets of input and output devices can form a 
different environment.  

2. Context Dependent Interaction. Here the term 
"context" means the environment configuration, the 

899378-379

debbie




application context, and the user preferences. The target 
system platform can vary from a simple TV set with a 
set-top box, to a complicated home network 
environment. The configuration is dynamic in both space 
and time dimensions. The user may activate or introduce 
new interface devices during the show. The application 
has to "know" what environment it is running on at every 
moment and has to adjust to the current environment. 
The way of interaction may also depend on the 
application context. For example, to illuminate a dark 
room in the virtual world created by the application, a 
user can simply switch on a real light instead of pressing 
buttons on a remote control. However, the user may still 
choose the remote control because she doesn't like to turn 
the light on, even though there is such a light available.  

3. Synchronized Media and Interaction. In an interactive 
media application not only the media, but also the 
interactions are timed and should be synchronized on 
Multiple devices according to their nature and the 
application semantics. A time dependent change-
propagation mechanism is to be developed to notify the 
user events and the content changes to all concerned 
system components, at the right moments in time. 

1.2 Related work 

The requirement for distributed interfaces challenges 
media documentation technologies. It needs the 
documentation technology to be able to describe the user 
interaction and the media presentation with multiple 
devices. The Binary Format for Scenes (BIFS) based 
MPEG-4 documentation [4] stresses the composition of 
media objects on one rendering device. It doesn't take the 
multiple interactors into account, nor does it have a 
notation for distributed interfaces. SMIL 2.0 [5] 
introduces the MultiWindowLayout module, which 
contains elements and attributes for creation and control 
of multiple top level windows. This is promising and 
comes closer to the requirement of distributed interfaces. 
Although these top level windows are supposed to be on 
the same rendering device, they can to some extent be 
recognized as an interfacing component of the same 
capability.  

As to the interface architectures for playing back systems, 
there exist many solutions for interactive media, although 
few of them take distributed interfaces into account. [6] 
introduces a typical user interface structure for digital TV 
applications, in which the graphical user interface (GUI) 
and the media content are clearly separated. A similar 
structure is found in Immersive Broadcasting [7]. An 
“immersive broadcast” application for sports events is 
presented in [8]. In this application, the consumer can 
compose his personal show from various streams of 
audiovisual and graphics data. Conceptually, video clips, 
text and graphics are overlaid on top of the TV program 
to provide a richer and more compelling experience for 

the viewer. However these structures provide no means 
for content presentation on multiple networked devices.  

Other than presenting the same media to different 
environments, many other projects focus more on 
dedicated environments and end user experiences. In the 
KidsRoom [9], images, music, narration, light and sound 
effects are used to transform a normal child’s bedroom 
into a fantasy land where children are guided through a 
reactive story. The LISTEN project [10] provides users 
with intuitive access to personalized and situated audio 
information spaces while they naturally explore the 
environments. In the DanceSpace, Networked Circus and 
TheaterSpace [11], a “media actors” software architecture 
is used in conjunction with real-time computer-vision 
based body tracking and gesture recognition techniques to 
choreograph digital media with human performers or 
museum visitors. 

In this paper we emphasize the issues of mapping the 
same media document onto different environments that 
have different configurations.   

2 STORYML 

To satisfy the requirements, the first question to be 
answered is how to describe such an interactive story that 
can be played on multiple devices. We developed Story 
Markup Language (StoryML), an XML based language 
for interactive stories that can describe how content can 
be served, received, and processed over the network and 
finally be played in different distributed environments.  

2.1 Environment and interactors 

Multiple interactive devices will show the story in an 
environment. We abstract these interactive units as 
Interactors. An Interactor is a self-contained entity which 
has an expertise of data processing and user interaction. It 
is able to abstract the user inputs as events and to 
communicate with other interactors. An Interactor can be 
present in an environment as a software entity, alive in a 
computer system or embodied in a hardware device.  

An Environment is then defined as a dynamic setup of 
multiple Interactors. The Environment assigns different 
tasks to each of the Interactors according to a story script, 
for example, rendering media objects, reporting the user 
responses during different periods of time. 

2.2 Media Objects 

Storylines, feed-forward and feedback components are all 
timed media objects. A timed media object is a timed data 
stream which can be rendered by any of the interactors in 
the environment, and can be perceived by a user via any 
channels of perception.  

900



As its definition implies, a media object can be rather 
abstract, for example, expressions, behaviors, and even 
emotions, can be a media object as long as it can be 
recognized and rendered by any Interactors. The 
abstraction of media objects provides possibilities for the 
content producer to describe a story at a high level 
without knowing the details of every environment. For 
instance, a content producer should be able to specify a 
robot to show a specific behavior without the need to 
know whether there is a robot present in the Environment, 
and if there is one present, how exactly the robot shows 
the behavior.  

 

Figure 2. StoryML object model 

The StoryML reflects directly many ideas from the 
object-oriented model (Figure 2). The major objective of 
doing so is to make the StoryML an easy authoring 
language for content producers. It provides a higher 
abstraction which is independent of media representation 
technologies. The detailed definition and an example 
script are in [12].  

3 STORYML PLAYER 

We have defined the StoryML as a solution for interactive 
story documentation, taking the distributed interfaces into 
account. Now the task is to design a proper software 
architecture for the StoryML player. We choose the PAC 
[13] based architecture. 

3.1 PAC or MVC? 

Many interface architectures have been developed along 
the lines of the object-oriented and the event processing 
paradigms. Model-View-Controller (MVC) and 
Presentation-Abstraction-Control (PAC) are the most 
popular and often used ones [14].  

The MVC model is an agent-based architecture. It divides 
an agent into three components: model, view and 
controller, which respectively denotes processing, output 

and input. The model component encapsulates core data 
and functionality. View components display information 
to the user. A View obtains the data from the Model. 
There can be multiple Views of the Model. Each View 
has an associated Controller component. Controllers 
receive input, usually as events that encode hardware 
signals from a keyboard, a mouse or a remote control.  

In a PAC based architecture, a set of PAC agents forms a 
hierarchy by the communication scheme [13] (Figure 3). 
An agent has a presentation component for its perceivable 
input and output behavior, an abstraction for its function 
core, and a control to express dependencies. The control 
of an agent is in charge of the communication with other 
agents and of expressing dependencies between the 
abstract and the presentation components of the agent. In 
PAC, the abstraction and presentation components of the 
agents are not authorized to communicate directly with 
one another or with their counterparts of other agents. 
Dependencies of any sort are conveyed by the controls of 
the agents.  

 

Figure 3.Hierarchy of PAC agents [13] 

We consider The PAC based architecture to be more 
suitable for the StoryML player than MVC, because of the 
following reasons: 

1. StoryML involves independent devices as physical 
interactors. It should have the capacity to adapt to the 
changing configuration. PAC can satisfy the need by 
separating self-reliant subtasks of a system into 
cooperating but loosely-coupled agents. Individual PAC 
agents provide their own human-computer interaction. 
This allows to develop a dedicated data model and user 
interface for each semantic concept or task within the 
system. PAC agents can be distributed easily to 
different threads, processes or machines.  

2. The PAC based architecture emphasizes the 
communication and cooperation between agents with a 
mediating control component. It is crucial to have such 
a mechanism for a distributed application like the 
StoryML player. In the PAC architecture, all agents 
communicate with one another via their control 
components with a predefined communication interface. 
So, existing agents can dynamically register new PAC 
agents to the system to ensure communication and 
cooperation. 

3. The input and output channels of the individual 
interactors in StoryML are often coupled. In an MVC 

901



architecture, controller and view are separate but closely 
related components, whereas the PAC architecture takes 
this intimate relationship between these two components 
into account and considers the user accessible part of 
the system as one presentation component. 

4. The StoryML player has to facilitate content based 
interaction, which means that the user can interact with 
interactive media objects in the content. A media object 
and the attached possible interaction are often 
documented together as an entity, which is to be 
rendered by one of the interactors. At a conceptual 
level, this request can be easily assigned to the 
presentation component of the interactor. Separating the 
attached operation from the media object will increase 
the complexity. 

3.2 Extending PAC for timed media 
The overhead in the communication between PAC agents 
may impact the efficiency of the system. For example, 
transferring data from a top-level agent to a bottom-level 
agent involves all the intermediate-level agents along the 
path. If agents are distributed, data transfer also requires 
inter-process communication, together with marshaling, 
un-marshaling, fragmentation and reassembling of data 
[14]. 

To overcome this potential pitfall, the StoryML player 
extends the abstraction component. For timed media, each 
abstraction component is also considered as a media 
processor, which takes a MediaSource as input, performs 
some processing on the media data, and then outputs the 
processed media data. It can send the output data to a 
presentation component or to its MediaSink (Figure 4). 

 

Figure 4. PAC for timed media 

Regarding the PAC hierarchy as a network, an agent with 
a MediaSink attached to its abstraction component can be 
viewed as a streaming media server and those agents 
which require a MediaSource can be viewed as streaming 
media clients. A direct pipeline can be built between a 
MediaSink and a MediaSource. The media can be 
streamed through the pipeline with real-time streaming 
protocols. Pipelines can be built and cut off only by the 
control components. Thus, the control hierarchy remains 
intact. 

3.3 Architecture of the StoryML Player 

Figure 5 shows the hierarchical structure of the StoryML 
player. The content portal sets up the connection to 
content servers and provides the system with timed 
content. The content pre-fetcher overcomes the start 
latency by pre-fetching a certain amount of data and 
ensures that the media objects are prepared to start at 
specified moments.  

 

Figure 5. PAC based architecture of the StoryML player 

An XML parser first parses the StoryML document into 
Document Object Model (DOM) objects and then the 
StoryML parser translates the DOM objects into internal 
representations. The StoryML player also maintains a 
timeline controller, which plays an important role in 
synchronization. 

The bottom level agents indicate different physical 
interface devices. These physical devices are often 
equipped with embedded processors, memory, and 
possibly with some input and output accessories. An 
arbitrary number of physical agents can be added to the 
architecture at this level. 

For each physical agent, there is an intermediate virtual 
interactor connected as its software counterpart. Provided 
with this layer of virtual interactor, the system can 
achieve the following: 

1. Decoupling of media processing from the physical 
interface devices and enabling process distribution. It is 
possible to assign media processing tasks of a physical 
agent, such as decoding a stream or composing a scene, 
to another more capable device in the network, by 
moving the virtual interactor to that device. The result of 
the processing is then transferred back to the physical 
presentation component of the physical agent for direct 
rendering. The media processing, therefore, can also be 
distributed to the network. 

2. Easy switching of the user interaction from the 
physical device to its virtual counterpart or vice versa. 
The virtual interactors observe and verify the availability 
of interface devices. If the environment can not satisfy 
the story with the preferred interface devices, the system 
can always provide alternatives. If a physical device is 

902



not available in the environment or the user prefers 
interacting with the virtual interactors, then the virtual 
interactor functions as the substitute and presents its 
interface on a screen. The user may then use standard 
input devices such as a keyboard or a mouse for 
interaction.  

3. Satisfying the requirements for the variety of the 
interface devices. These virtual interactors can be viewed 
as software drivers for physical interactors, which hide 
the differences between diverse yet homogeneous 
devices, and provide the higher level agents with the 
same interface.  

4. The interactor manager coordinates the virtual 
interactors by creating software interactors and 
transferring user-events between software interactors and 
keeps them synchronized.  

3.4 Media and Interaction Synchronization 
One of the key characteristics of the StoryML system is 
about media and interaction synchronization issues. In 
this section we classify and describe the synchronization 
issues of the system using the synchronization reference 
model, presented in [15]. 

3.4.1 Specification layer 
In StoryML, media objects and interaction dialogs refer to 
an implicit timeline by specifying their starting and 
stopping time. The metaphor behind it can be easily 
understood by comparing to the conceptual model of the 
interactive story. Synchronizing objects with a timeline 
allows a good abstraction from the internal structure of 
single-medium objects and composite multimedia objects. 
Define the beginning of a video presentation to an 
audiovisual interactor in a story needs no knowledge of 
the related video frames. The timeline approach is 
therefore intuitive and easy to use in authoring situations. 

3.4.2 Object layer 
An important part of the StoryML system is dedicated to 
provide object layer services. An XML parser analyzes 
the input StoryML documents to build a structural object 
representation of the synchronization specification. The 
object structure mirrors the StoryML document structure 
to a schedule for the presentation, managed by a timeline 
controller. The StoryML system implements a global 
timeline controller (Figure 5) to synchronize the media 
objects and the interaction that are distributed to several 
interactors.  

The presentation of a document is managed at the object 
layer through close communication with stream layer 
entities. Scheduling constraints are mapped to the stream 
layer method invocations, which control the playback and 
synchronization of media streams. 

In StoryML, dialogs define possible user interactions. The 
timeline controller registers these dialogs. At a predefined 
moment, the timeline controller initializes a dialog with 

starting several media objects on target interactors, as 
feed-forward information.  

The dialog then requests the interactors to listen to the 
user events. StoryML doesn't associate any user input to a 
specific media object, but an interactor instead. If the user 
reacts, the interactor will abstract the user response as an 
event and this event will trigger feedback media objects. 
If the user event results in a later change, then the time 
controller registers the change for later triggering. Thus, 
the user interaction is synchronized with the media 
presentation. 

3.4.3 Stream layer 
The StoryML player attaches a MediaClock to each media 
object to keep track of the media time. The MediaClock 
defines the basic timing and synchronization operations 
that are needed to control the timed media presentation.  

4 TOONS IMPLEMENTATION 

For demonstration purpose, the TOONS application is 
implemented on a PC, a robot and a light, which 
respectively serves as an audiovisual interactor, a robotic 
interactor and an ambient light interactor. All these 
components are implemented using the Java technology. 
The PC provides the services of the content portal, the 
StoryML parser, the timeline controller and the interactor 
manager. The robot, named Tony (Figure 6), is assembled 
using the LEGO Mindstorms Robotics Invention System 
(RIS) [16]. Tony is powered by LeJOS, an embedded 
Java VM [17]. The light is controlled via a Java virtual 
interactor running on the PC.  

 

Figure 6. Tony 

In the TOONS show, after being ‘woken up’ at a certain 
moment, Tony is able to react on some events happening 
in the story. The user is invited to help the main character 
in the show to make decisions (for example to open the 
“left” or the “right” door) during a certain periods in time 
by playing with Tony. When the user decides to let the 
character go into the dark room, the light will be off and 
Tony behaves scared. The user can then switch on the 
light to light up both the dark room in the reality and the 
dark room in the virtual world.  

903



We demonstrate the adaptive architecture by adding and 
removing the light and Tony from the environment during 
the real-time show. 

5 CONCLUSIONS 

We presented a framework which allows the presentation 
of multimedia contents in different Environments. Each 
Environment can consist of multiple interactors 
distributed over a network. StoryML plays an important 
role in the framework: 

1. StoryML allows to separate the content from the 
concrete physical devices 

2. A StoryML document specifies abstract media objects 
at a high level and leaves the complexity to the 
implementation of the rendering interactors. 

3. StoryML supports the automatic mapping of the same 
document to different environments, or a dynamic 
environment.  

In the implementation of the StoryML system, Media 
objects are distributed to interactors, and synchronized 
with a timeline controller. Centralized synchronization 
needs a stable and fast network infrastructure to ensure 
that timed events can reach the interactors in time.  

An implicit assumption has been made in the design and 
implementation of the StoryML system: In the user's 
Environment, there is at least an audiovisual interactor 
with a screen and input accessories, on which the virtual 
software interactors can always present themselves if their 
physical counterpart is not available. This limits the use of 
StoryML framework for an interactive show which does 
not require any visual presentation, e.g. an interactive 
radio show. 

6 ACKNOWLEDGEMENTS 

The research reported in this paper is done in the context 
of NexTV project that is partly funded by the European 
Commission under the IST-programme.  

We are grateful to those who read and commented on the 
early drafts, and in particular to Emile Aarts, Maddy 
Janse and Warner ten Kate. 

REFERENCES 

[1] J.F.K. Buford, Architectures and Issues for Distributed 
Multimedia Systems, in J. F. K. Buford(Ed.), Multimedia 
Systems (Addison Wesley, 1994), 45-46. 

[2] D.J. Duke and I. Herman, A Standard for Multimedia 
Middleware, the 6th ACM International Conference on 
Multimedia '98, Bristol, UK, 1998, 381-390. 

[3] E. Strommen, Interactive Toy characters as Interfaces 
for Children, in E. Bergman(Ed.), Information Appliances 
and Beyond: Interactive design for consumer products 
(New York: Morgan Kaufmann Publishers, 2000), 257-
298. 

[4] R. Koenen, MPEG-4: Multimedia for Our Time, IEEE 
Spectrum, 36(2), 1999, 26-33. 

[5] M. Slowinski, T. Kennedy  et al, SMIL: Adding 
Multimedia to the Web (Sams, 2001). 

[6] C. Peng and P. Vuorimaa, Development of Java User 
Interface for Digital Television, the 8th International 
Conference on Computer Graphics, Visualization and 
Interactive Digital Media, Czech Republic, 2000, 120-
125. 

[7] L. Herrmann, Immersive Broadcast: Concept and 
Implementation, Rep 748, Philips Research LEP, 2000. 

[8] R. Mallart, Immersive Broadcast Reference 
Application, White Paper, Philips Research, 1999. 

[9] A. Bobick, S. Intille, J. Davis  et al, The KidsRoom: A 
Perceptually-Based Interactive and Immersive Story 
Environment, Presence: Teleoperators and Virtual 
Environments, 8(4), 1999, 367-391. 

[10] G. Eckel, Immersive Audio-Augmented 
Environments - The LISTEN Project, the 5th 
International Conference on Information Visualization 
(IV2001), Los Alamitos, CA, USA, 2001,  

[11] F. Sparacino, G. Davenport and A. Pentland, Media 
in performance: Interactive spaces for dance, theater, 
circus, and museum exhibits, IBM Systems Journal, 
39(3/4), 2000, 479-510. 

[12] J. Hu, Distributed Interfaces for a Time-based Media 
Application, Post-master thesis, Eindhoven University of 
Technology, Eindhoven, 2001. 

[13] G. Calvary, J. Coutaz  et al, From single -user 
architectural design to PAC*: a generic software 
architecture model for CSCW, CHI'97 Conference, 1997, 
242-249. 

[14] F. Buschmann, R. Meunier  et al, Pattern-Oriented 
Software Architecture, A System of Patterns (Chichester, 
UK: John Wiley & Sons, Inc., 1996). 

[15] G. Blakowski and R. Steinmetz, A Media 
Synchronization Survey: Reference Model, Specication, 
and Case Studies, IEEE Journal on Selected Areas in 
Communications, 14(1), 1996, 5-35. 

[16] M. Ferrari and G. Ferrari, Building and 
Programming LEGO Mindstorms Robots Kit (Syngress 
Media Inc, 2002). 

[17] B. Bagnall, Core LEGO MINDSTORMS 
Programming: Unleash the Power of the Java Platform  
(Prentice Hall PTR, 2002). 

904


	Table of Contents  

