T U /e technische universiteit eindhoven

Distributed Interfaces
for a Time-Based Media Application

Hu, Jun
ISBN 90-444-0123-8

| File v-up
=B &% pE| 8

/ stan ackermans institute,

DISTRIBUTED INTERFACES
FOR A TIME-BASED MEDIA APPLICATION

by
Hu, Jun

A final report of the post-masters program
User-System Interaction

IPO, Center for User-System Interaction
Stan Ackermans Institute
Eindhoven University of Technology

2001

Supervised by
dr.ir. Maddy D. Janse (Philips Research)
ir. G.C. Sjir van Loo (Philips Research)
dr.ir. Raymond N.J. Veldhuis (IPO/TUE)

prof.dr. Yibin Hou (IPO/TUE)

ISBN-INFOMATION

“Distributed Interfaces for a Time-Based Media Application” / Hu, Jun;
Eindhoven: Stan Ackermans Institute. - Ill.

Final report of the post-masters program: User-System Interaction
With reference

ISBN 90-444-0123-8

Keywords: distributed interfaces / time-based media /

Java is a registered trademark of Sun Microsystems, Inc.

Windows 2000 is a trademark of Microsoft Corporation.

LEGO and Lego Mindstorms are trademarks of the LEGO Group.

All other product names and company names mentioned herein are the property of their respective
owners.

SUMMARY

DISTRIBUTED INTERFACES
FOR A TIME-BASED MEDIA APPLICATION

This project addresses the architectural issues of presenting interactive time-based
media to distributed and networked devices. An experimental system was developed
in which the interactive content was presented on a PC as well as on a robotic toy
to create a more intuitive and pleasant interaction for children. This system, named
iStory, was implemented using open technologies such as Extensible Markup
Language (XML), Java Media Framework (JMF) and some other Java-based
technologies. The key objectives are to investigate the feasibility of some new
technologies, i.e., MPEG-4 and SMIL, and to develop a generic architecture for time-
based media applications that are characterized by distributed interfaces.

This report first presents an overview of some time-based media technologies, with
emphasis on the aspects of the content interaction. After introducing the
requirements collected from a storytelling application for children, i.e., the TOONS
application, a distributed content interaction model is developed to provide the
context for the models used in the iStory system. Based on this model, this report
analyzes the pros and cons of the current media technologies and some existing
interactive TV interface architectures.

The iStory system is then presented. It implements a new architecture for
storytelling applications. It provides functionalities for parsing, presenting and
synchronizing the distributed media presentation and interaction specified by the
StoryML, an XML-based language. The PAC-based interface architecture enables
distributed interfaces and is extended for the time-based media use. The system
develops MediaClock based and event based mechanisms for the synchronization.
The system architecture of the experimental implementation is presented and major
design issues are described.

In conclusion the relevance and applicability of the system is assessed and possible
future developments are suggested. The findings indicate that while the iStory
system can serve as a framework that can be refined and extended to fit the
requirements of interactive time-based media presentation to distributed interfaces,
there are still some issues that make their use for production purpose problematic.

Keywords distributed interfaces, time-based media

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisors, Dr. Maddy Janse, Dr.
Raymond Veldhuis, Mr. Sjir van Loo and Prof. Dr. Yibin Hou. Their expertise,
understanding and patience added considerably to my postgraduate experience. I
appreciate their vast knowledge and skills in many areas. I saw Dr. Veldhuis used a
blue sock to protect his palm-top computer, and “to shock snobs and moderate
modern technologies.” - He has different yet effective ways to manage problems,
not only for his palm-top computer, but also in his expertise of streaming media
technologies. Mr. Sjir van Loo is the system architect who told me that a car is more
than a car; it is also a real-time operating system. His experience and insight saved
me plenty of time from struggling with architectural issues of real-time systems. It
was Prof. Hou who opened a window for me to the mystery of User-System
Interaction. He always stands at high altitudes of the mountain called Information
Technology so that his global view often leads me out of the jungle of technological
chaos.

My special appreciation goes to Dr. Janse. She is the leader of the NexTV project.
She created and managed a very nice project environment in which I had got
enough freedom to concentrate on the research and design in my interests. She was
so kind as to read the manuscript thoroughly and correct my English, even one day
before I send it to the printer.

My collaboration with the NexTV group at Philips Research (Maddy Janse,
Magdalena Bukowska, Marcelle Stienstra, Erik Bastiaans) has been very beneficial to
me and I hope to them also. Magdalena has done a great job to collect the user
requirements, which gives a piece of land for my hype of distributed interfaces to
stand on.

The LEGO robot used in this project was originally assembled by Christoph
Bartneck, a PhD student from the IPO, who is able to make a lovely and fantastic
robotic toy out of a mess of the LEGO bricks within 5 minutes. Thanks to his
patient explanations and hands-on helps, I got to know the LEGO robotics system
and soon became a master.

I love the group of the USI 1999. There is a strong spirit of camaraderie in the
group. I have enjoyed the chance to work within such a unique team that has shaped
me as a designer and a person. We have contributed to each other’s education and
made our time at the IPO very pleasant. Thank you all for our philosophical and

I

political debates, exchanges of knowledge and skills, and international cooking
parties during this two-year program: Michiel Alders, Taras Bahnyuk, Oleksii
Bidiuk, Magdalena Bukowska, Hangjun Cho, Johannes Fahrenfort, Carsten
Friedrich, Ingrid Halters, Karin van der Hiele, Robbert Kramer, Aliaksei Kuliashou,
Sergey Lashin, Sergey Martchenko, Anita Morskate, Luuk Pernot, Weining Qi,
Jeroen van Rooij, and Hongyu Wang.

The final acknowledgement goes to my family, who has provided me with a level of
emotional support that can only be given, not expected.

CONTENTS

SUMMARY I
ACKNOWLEDGMENTS 111
CONTENTS v
LIST OF FIGURES VII
ABBREVIATIONS VIII
1 INTRODUCTION 1
1.1 BACKGROUND AND CONTEXT...cccectruerterenterenuetrrenessentesestentssestssesessessesessesessentssesessessesesseneesensssens 1
1.2 OBJECTIVES AND METHODS.......ceeteiteetesteeiteeeesseessaessesssessassesssssssessssssssssessssssssssassssssssssessssssesssans 3
1.3 SCOPE OF THISREPORTccuertrueutrueerrentesententesentssentssestesensentesentssenessenstesessentesentssenessensesessentesentesens 4
2 OVERVIEW OF TIME-BASED MEDIA SYSTEMS 6
2.1 TIME-BASED MEDIAooeviuruririniueueerisesessentsessassesssssasssssssssssssessssssssssesssnssssesssnssssessssssssssesssssssesssnsns 6
21.1 Content types
2012 MEGIA SEYEAINS ..o ves ettt sttt bttt aen 7
2,13 MEAIA AOLITETY ..ottt sttt st s 7
2.2 MEDIA APPLICATION DOCUMENTATIONcooovuieureeereereeenseeesseeessresseessseesseeesssessssessseessssssssssees 8
2.2.1 MPEG4 oottt e et e et ettt e ettt ts et e e s et e s s e ss s ebs s etass et e ssebess s essasetessetessesesnasas 9
222 SMIL ..ot is ettt ettt ettt bbbt s et st e b e b et s s s asas et e b et e b essasas st esesetessasanasane 10
2.3 CONTENT-BASED INTERACTIONccuertrueutrreerreneementenessetssentesensestssentesenessessesessentesentssensesenseseeses 11
23.1 Th7€€ [EVELS Of TECVACTIVILY. ..ottt sttt st 11
232 A CONLENE INLETACLION MOCELcevevecveevveereersreeresissssesisss s sss s s ses s ss s ssseses 12
233 An example: MPEG-4 (HEEYACIIVIEY c.ucueurevoreeeeereveseireeiseinevinessseisessssinesisessesisesssssnesisessesssesnesens 14
3 WHEN TECHNOLOGIES MEET REQUIREMENTS 16
3.1 USER REQUIREMENTS. ... oveeeveereseesessesessessessesessesssssesesssssessesessassssasessssessesessssessesessaesessesessnne
3.1.1 Conceptual model of TOONS.
312 Tangible n1erface AEUICSuwrrerereesereeisese ettt et
313 Four types of deCision POIMELSoc.vvemeereeereeeseeseeesseensessssessesssssasssssssssssssssssssssssssssssssssessssssnns
3.2 REQUIREMENTS FOR THE APPLICATION ARCHITECTURE.....ccccttuueeeeiieernnnieeeeeeerennneseeeessssnnnnnns 22
321 DiSLYIDUICA TICTTACES .ottt st ettt 22
322 COntext dependent iNEETACLION.vcveovveecreereerevseiseeiseseeseiseise st sississise s siseaesies 23
323 Synchronized media and INIETACIION.oceevveneeereesereeseseese st 24
3.3 DISTRIBUTED CONTENT INTERACTION MODELc.cctrtruememerereerereeressesentsessesenssesessenessesseneanas 24
3.4 SOME EXISTING INTERFACE ARCHITECTURESccoveeueerteenreereeteeneeeseenseesseeseenseessesssessesssenseensees 25
3041 FULUTE TV coeeeseeesre sttt sttt st s sttt s s as s nssse s sansessnansns 25
342 I1INCYSIVE DYOAACASE .e.eeeeveeveveeeeeereveeeee e vesere s s ses s s s es b ses bbb 26
4 STORYML 29
4.1 OBJECT-ORIENDED STORY COMPONENTS.......ccceeetieteereerreeieseessaeeesseessesssssssessasssessssssessssssesssans
4.1.1 Generalized iNteractive SLOTYouemrvoreereeneerereenssseiseesenseessisseasessseens
412 ENVUIYOMINENL couvevereveserieiriririresssessssssssssssssssssssssssssssssssssssssnssssssssssssssssnnns
G133 MOAIA ODJECES ottt sttt e

4.2 STORYML: XML-BASED DOCUMENTATION

v

4.2.1 WBY XMLttt sttt st st s sttt 33

422 SEOVYML @LOMMENLS ..ottt sttt et 34
5 PAC-ING THE STORYML PLAYER 41
5.1 AGENT-BASED SOFTWARE ARCHITECTURESc.cccesiuerruninrinsninsniessniessiessiessiessssesssiesassessssenes
5.1.1 MVC (Model-View-Comtroller) ... nnronreonrionnssneisseenseesseessssssssssssssssssssnsses
5.1.2 PAC (Presentation-Abstraction-Control)
5.1.3 Comparing PAC With MV C.....eereereneeneinstensiseinsessissesssnseassssssssssssenseaes
5.2 EXTENDING PACFOR TIME-BASED MEDIAcccerueriuerirerinersesesesesssessse s ssssessssessssesessenes
5.3 ISTORY ARCHITECURE.......cceecertruertrrerteersentssestesentesessessssensesensesensesessessssensssensesensesessensesensesensesenes
6 ISTORY MEDIA AND INTERACTION SYNCHRONIZATION 49
6.1 MEDIA SYNCHRONIZATIONcooetirunirrintinintensstessstessstessstessstessstessstessssessstessssessssessssessssessssessssenes 49
6.1.1 Synchronization 1eference MOEL.............eoreenmeneeseneesesetssseisee s sass s 49
6.1.2 Synchronization SPeCificarion MELHOAScoweereereersensseseenseinseessesssseesssissssssssessenes 50
6.1.3 INLEYACLION SPECI[ICALION ..ot eeseiseese s st sess s 51
6.2 ISTORY SYNCHRONIZATION.......cecetrrertrrerteersenessensesensssessesessessssessesensesensessssessssensesessesensessssenssses 52
6.2.1 1SLOTY SPECIfICALION LAYET ..ot et 52
6.2.2 GSEOTY OBJECE LAYOT .ottt s st
6.2.3 iStory stream layer
6.2.4 ISLOTY TOAIA LAYET ..ottt
7 ISTORY IMPLEMENTATION 55
7.1 AT THEDPCSIDE.....cciiieiiirieirietrenteenteststestssestssestesesseesse st ssessssessssessesessessssensssensesesensesensesensesenes
711 JAUA 2 PIALJOT Mttt st st
7.1.2 Java Media Framework and iSE07Y eXLENSIONScvwerrereeeeereeseereeeseenseiseesssansississssssassssssenees
713 IBM XML PAYSET ..ot sssasnns
7.1 SEOVYML PAVSET ettt ettt
7.2 AT THEROBOT SIDE ...ccectrteiruenerrenteerseessetssestesestesessessssessesensesensesessessssensssessesensessssessesensssensesenes
721 LEGO RIS oottt st i
7.2.2 LeJOS - an embedded Java Virthal MACHINE.cocveveeersrersresissesies s sissassassassansans
723 TOMY sttt ettt
7.3 COMMUNICATION ...coooituriiintrieisinssissssessissssissssiesssissstessssess e be s be s bes s besssbe b besasbebasbesassenas
7.4 SOME TECHNICAL DIFFICULTIESccectestetertertetersessens
7.4.1 Owerlay graphics on video..............
7.4.2 Start [Atency ...
7.4.3 Seamless video stream switching
7.4.4 Programming and debugging RCXcwoeoreineerrenerseenecneesseinerseinessseasesans
8 CONCLUSIONS AND FUTURE DEVELOPMENTS 69
8.1 HOWISTORY SATISFIED REQUIREMENTS........cceetetruertrrensenentenersenseseneesesesessesessensesensesensesensenesses 69
811 DSV IDULEA IMEETFACES. .vvervvrversrsressississssssissessnss 69
8.1.2 Context Aependent IMLEYACIIONccvveeeeureeereeneeerrirseneiseseeaseisssess s sass s 70
8.1.3 Synchronized media and iNteYACLIONc.vveecereeeeoreeseereereireeseiseiseesese s ssseisesassinees 70
8.2 STRENGTHS.....cuteteutrtetrietetenteststetste s teteseste e te s be st s be st ebe e e et e st e s et sbe e sbe e e st b estssentssentsseneesensentnsan 70
8.3 WEAKNESSES ...cvvurtreetirietinintssietsssstssss st sas b nss bbb i bbb ba b bas bbb s bbb s bbb bbb bbb 71
8.4 FUTURE DEVELOPMENTSccoistuitirininintenistensstessstesss st sss e sss e sas e sssbebas e sas b sas e sasbesas e sasbesastenas 71
REFERENCES 73
APPENDIX A. DTD (DATA TYPE DEFINITION) OF STORYML 77

VI

APPENDIX B. TOONS IN STORYML

APPENDIX C. SCREENSHOTS FROM ISTORY

VII

79
80

LIST OF FIGURES

Figure 1-1.Distributed content and distributed interfacesccceoveeveeirineriereenenrieiennen. 2
Figure 2-1. Three levels of INTEractivILY...c.cvovvueueueiriririeiecireiee e 11
Figure 2-2.Content interaction model........coccoeririeirieinininneirieeee e 13
Figure 2-3.Interactive architecture of MPEG-4 clientcccoveueueeeirireeieeinirieieeceeeeenene 14
Figure 3-1. TWO types Of INTEraACTION c.cuvvuiuiirireeieiiirtrieieicestete ettt 17
Figure 3-2.Conceptual model of TOONSccccivirirrriirinirieeieerireeieeetseeeeieeeee e 18
Figure 3-3.Simplified view of 2 dialogcccouvurueueinininiiiiiinirccce e 18
Figure 3-4. Karolina's roDOt. ..c.cueueuiiririiiciciiriicc ettt 20
Figure 3-5.Four types of deCISION POINTSceveveueriririeuereneirteieseseeneeseiesenesssseseseseessesesenens 22
Figure 3-6.Content interaction model with distributed interfacescccocevereirinernennnee. 24
Figure 3-7.Basic structure of the user interface in digital TVcccovereirinnireiiiieennen. 26
Figure 3-8.Components of an "immersive broadcast" programcccceveeveveuerereenenenen. 27
Figure 4-1.Generalized interactive story derived from the conceptual model 30
Figure 4-2.iStory object-oriented model.........oeueiriririeuiirinirieieiieeccrec e 33
Figure 5-1.Hierarchy of PAC agents........cccovurueueininirieiecnininieeieeniseieiecse st 43
Figure 5-2.PAC for time-based Mediacceveueueiriririeiiirieieeeeeeecee e 45
Figure 5-3.PAC based iStory architecture.........oceeevueeririenneiieeee e 47
Figure 6-1.Synchronization reference model [3].....cceceeiriririereenininieieecnrieeeeeeeenene 49
Figure 6-2.How iStory related to the synchronization reference model.......................... 52
Figure 6-3. Timeline based media synchronizationcceeeevnvnecncnnincccninneene. 54
Figure 7-1.iStory experimental system archit€Cture.........covvueveverenireruereenirereeneereneeeenenene 56
Figure 7-2.JMF interface hierarchy and iStory extensions..........cccoveeveverenrereereenineneenenen. 58
Figure 7-3.Some components of RIScccovurueeiirininiieininirieeccreeeceeseeeeeeesee e 61
FIGUIE 7-4. TOMY ettt ettt ettt 63

VIII

ABBREVIATIONS

API
AWT
BIFS
CSS
DMIF
DOM
DTD
DVB
EPG
GUI
HCI
HTML
HTTP
IR
IST

JEC
JMF
LDU
MHP
MIDI
MPEG
MVC
NexTV

NOP
PAC
QoS
RCX
RIS

Application Programming Interface
Abstract Window Toolkit

Binary Format for Scenes
Cascading Style Sheet

Delivery Multimedia Integration Framework
Document Object Model

Data Type Definition

Digital Video Broadcasting
Electronic Program Guide

Graphic User Interface
Human-Computer Interaction
Hyper Text Markup Language
Hypertext Transfer Protocol
Infrared

Information Society Technologies program of European
Community

Java Foundation Classes

Java Media Framework

Logical Data Unit

Multimedia Home Platform
Musical Instrument Digital Interface
Moving Picture Experts Group
Model-View-Controller

New media consumption in EXtended interactive TeleVision
environment

No-Operation instruction
Presentation-Abstraction-Control
Quality of Service

Robotic Command Explorer

Robotics Invention System

IX

RTP
SGML
SMIL
StoryML
UML
URL
USI
VOD
VRML
W3C
XML

Real-time Transport Protocol

Standard Generalized Markup Language
Synchronized Multimedia Integration Language
interactive Story Markup Language
Unified Modeling Language

Uniform Resource Locator
User-System Interaction

Video on Demand

Virtual Reality Modeling Language
World Wide Web Consortium
eXtensible Markup Language

1

1.1

INTRODUCTION

One day in the year 2007. 6:00pm in the afternoon. Xiaoxiao, a 12-year old boy,

is watching a storytelling program TOONS showing on a wall in the living room,
together with bis little robot Tony. The lights in the room are changing the
brightness following the story. Now in the story, a little girl enters a dark room.
The living room becomes dark too. Xiaoxiao can’t see clearly what’s happening in
that room and be doesn’t like the darkness, so be adjusts the light besides him. Both
the living room and the room in the story now are illuminated. In the story, the
girl is wandering in front of two doors.

“Xiaoxiao, Should I help that lonely girl?” Sleepy Tony is woken up by the lights
and seems attracted.

“Yes, go abead.” Tony approaches the wall and disappears from the living room.
Suddenly he appears in the story. “Hi, Can I belp yous” Tony asks the girl. “Yes. I
can’t decide which door to open.”

“Left one, Tony!” Xiaoxiao doesn’t know either, but the left door looks nicer.
“Xiaoxiao wants us to go left.” Tony opens the left door for the girl.

Behind the door there is a beautiful garden with colorful trees and puffy bushes.
The sunset beams through the leaves and drops motley shadow into the garden
and the living room as well. Xiaoxiao is surrounded by nice background music.
He can hear birds singing their happiness around him.

“What a nice garden!” Xiaoxiao is now immersed in the story.

BACKGROUND AND CONTEXT

People who have video viewing experience do have some “interaction” experience,
but not more than simple operations to stop, start, pause, and fast
forward/backward a video that is in progress. Some new technologies, such as
MPEG-4 [22]129], SMIL [48]49], enable delivering interactive multimedia content to
the consumers' homes. Possibly the greatest of the advance made by these time-
based technologies is that people need no longer be passive. Instead, it allows end
users to interact with media objects within a scene, whether they are natural or
synthetic. These time-based media programs involve people in "doing and playing"

2 1. Introduction

as well as "viewing". They can engage people in immersive experiences rather than
just watching audio-visual programs [21].

The networked home will render these experiences. Philips Research has introduced
a new notion of Ambient Intelligence that refers to electronic environments that are
sensitive and responsive to the presence of people [23]. In this vision, the networked
home will consist of clusters of embedded devices with user interfaces that extend
the natural interactions. Distributed and networked interfaces will build up an
immersive environment in the people's homes. By using physical interface agents, a
more natural environment in which real-life stimuli for all the human senses are
used, will give people more feeling of engagement [12]. Multimedia objects in the
content can be audio, video, text and 2D/3D graphic objects. These objects can be
even more abstract, such as, emotions, expressions and actions of characters. By
making the best use of the home environment, the media objects can be distributed
to several interface devices. For example, screens show the major part of the content
with audio-visual objects, surround audio equipments present the background music,
ambient lights create harmonious atmosphere, and robotic toys render the
expressions and actions of a character to react on the program. Thus, the networked
home will be the interactive media player.

During the past decade, research and development of time-based media technologies
have increasingly focused on models for distributed multimedia applications
[1][5][8][11]. The term “distributed multimedia” refers to the fact that the content
sources of a time-based media presentation to the final user are distributed over a
network. This report has a different focus which is about distributed interfaces in

the user’s home, rather than the distributed content that may be related to media
coding and delivery, network protocols and QoS (Quality of Service) (cf. Figure 1-1).

Server

~ 7T OS5 E
=] Olmeie
Surroundmg\

/

l “Screen Q Audio
@ User

=5 /\\ //

Home Network

Server

Live Vedio/Audio

Distributed Content Distributed Interfaces

;

Figure 1-1.Distributed content and distributed interfaces

Distributed Interfaces for a Time-Based Media Application 3

Distributed interfaces can raise several interesting research or design topics, e.g.,
distributed cognition [20], interface design, distributed content authoring tools and
methods, etc. The focus of the work presented in this report is on interface
architecture issues: how to structure the system and content to support such
distributed interfaces for time-based media applications? The user interface
controls the communication between user events at the distributed interface agents
and the interactive objects of the content, and this transformation constitutes the
user's immersive experience.

This work was done in the context of NexTV [19], a project funded by the
Information Society Technologies programme of the European Community. It
started in January 2000 and will last until December 2001. It involves 12 partners
from all over the world: Philips Research (The Netherlands) as the project
coordinator, Optibase (Israel), France Telecom R&D (France), T-Nova Deutsche
Telekom (Germany), KPN Research (The Netherlands), TILIB (Italy), Sun
Microsystems (USA), Sony Service Centre Europe N.V. (Belgium), Nederlands
Omroepproductie Bedrijf (NOB, The Netherlands), GMD (Germany), ETRI
(South Korea), and the Imperial Colledge of Science, Technology and Medicine
(UK).

The major goal of the NexTV project is to explore the potential of new technologies,
such as MPEG-4, DVB-MHP [13]26] , XML, for creating programs and
environments in which users can actually interact with the content of the programs
and be instrumental in creating their personal immersive experience [19].

The carrier for this 10-month USI final project is the development of an interactive
storytelling application (TOONS) for children (age 8-12) [31]. The application is to
enable children to create their own broadcast programs and environment by
providing the means for exploration, manipulation and creation of TV program
objects. The author of this report worked on this application together with
Magdalena Bukowska, a USI student from the IPO, and three other people from the
Media Interaction Group at Philips Research: Maddy Janse, the project leader,
Marcelle Stienstra, a PhD student working on tangible interface devices, and Erik
Bastiaans, a software engineer.

1.2 OBJECTIVES AND METHODS

One of the key objectives of this final USI project is to investigate the feasibility of
some new technologies, i.e., MPEG-4 and SMIL in the context of a time-based media
application that intends to take the advantage of distributed interfaces.

4 1. Introduction

Based on the feasibility study and the user requirements, another objective is to
develop generic interface architecture for these applications, in which the aspects of
time-based and distributed presentation and interaction should be taken into
account.

The NexTV project uses a user-centered design methodology for the fine-tuning of
the requirements [31]. Finding the user and application requirements for the
applications in the NexTV project is viewed as a process, which means that the
application development was started from a set of general requirements that describe
the overall scope of the application and that provide a starting point. These
requirements will be fine-tuned during the project by means of feedback from users.
In other words, the application development is considered as a process for acquiring
and fine-tuning the requirements for users, applications, and system platforms.

The author joined the NexTV project in November 2000, when the overall
requirements had been collected and documented. During the project, these
requirements were refined by gathering input from the target user group, which was
done by Magdalena Bukowska, while the author was doing literature research and
feasibility study. Based on these refined requirements, a conceptual design of the
interactive story was developed as an input for the system design, and current
technologies and existing architectures were also evaluated. This phase of work
established a theoretical and technical context for the system to be developed.
Concepts, models and terminology were introduced to serve as reference points in
the design and implementation.

The design and implementation of the system followed the Object-oriented
methodology. The system was implemented using a specific set of emerging
technologies, namely XML [46], Java [40][43] and JMF [37]. The intention was to
create open-standards-oriented system architecture. More than on implementing a
production-oriented system, the focus was on accessing the feasibility of the task and
identifying critical design and implementation issues.

1.3 SCOPE OF THIS REPORT

Chapter 2 provides an overview of general technology issues related to time-based
media systems, i.e. MPEG-4 and SMIL. A content interaction model is introduced
to generalize the concepts of these time-based media systems. Chapter 3 describes
the conceptual model of the TOONS, an interactive storytelling application. The
requirements from the users and the project are briefly introduced. Two existing
digital TV interface architectures and the existing technologies are analyzed in the
context of these requirements. The content interaction model is refined for the
distributed interfaces.

Distributed Interfaces for a Time-Based Media Application 5

Chapter 4 first introduces a generic interactive story model together with its object-
oriented model. The XML documentation (StoryML) enables the iStory to be
served, received, and processed over the network. Chapter 5 provides an overview
of two different interface architectures, i.e. MVC and PAC, and an analysis of their
pros and cons in the context of time-based media applications. The PAC is selected
and extended for the purpose of this design. The architecture of the StoryML player
(iStory) is given at the end of this chapter. The iStory system uses two
synchronization mechanisms based on a timeline controller, i.e., MediaClock based
and event based synchronization. Chapter 6 first introduces some concepts of
multimedia synchronization, and then in the context of these concepts, describes the
synchronization mechanisms used in the iStory system.

Chapter 7 gives the overview of the system architecture of the implementation with
a PC and a LEGO robotic toy, and some technical details and difficulties as well.

In conclusion, Chapter 8 summarizes insights gained and suggests possible paths for
further work.

2 OVERVIEW OF TIME-BASED MEDIA SYSTEMS

2.1 TIME-BASED MEDIA '

Any data that changes meaningfully with respect to time can be characterized
as time-based media. Audio clips, MIDI sequences, movie clips, and
animations are common forms of time-based media. Such media data can be
obtained from a variety of sources, such as local or network files, cameras,
microphones, and live broadcasts.

A key characteristic of time-based media is that it requires timely delivery and
processing. Once the flow of media data begins, there are strict timing
deadlines that must be met, both in terms of receiving and presenting the data.
For this reason, time-based media are often referred to as streaming media -
they are delivered in a steady stream that must be received and processed
within a particular timeframe to produce acceptable results

2.1.1 Content types

The format in which the media data is stored is referred to as its content type.
QuickTime, MPEG, and WAV are all examples of content types. Content
type is essentially synonymous with file type - content type is used because
media data is often acquired from sources other than local files.

Among the principle characteristics of multimedia systems is the capability to
process and present these content types, such as audio, video, image, text, 2D
and 3D graphics, and animations, to facilitate the communication of a specific
form of information. Instances of specific content type are often referred to as
media objects.

A high-level distinction is made between time-dependent and time-
independent content types [3][50]. Time-dependent media objects are handled
as streams of logical data units (LDUs) [3] or samples, which are presented
according to the implied or specified time dependencies of the object [25]. In
the common case of continuous media, successive data units are presented at
constant intervals. Typical examples of continuous media are audio and video
streams, which are rendered by playing back audio samples or video frames at
a specific rate.

! Some of the introduction about time-based media is edited from [37].

Distributed Interfaces for a Time-Based Media Application

Time-independent media, typically text or images, are not intrinsically related
to any points in time. The playback of such media in a multimedia
presentation is controlled by externally imposed time dependencies. For
example, an image may be displayed for the duration of a particular audio
stream, which means that the temporal endpoints of the audio stream are
imposed on the image. It is normally possible to pre-fetch time-independent
media objects completely before they are required, which makes the related
presentation issues trivial in comparison with time-dependent media.

2.1.2 Media streams

A media stream is the media data obtained from a local file, acquired over the
network, or captured from a camera or microphone. Media streams often
contain multiple channels of data called tracks. For example, a Quicktime file
might contain both an audio track and a video track. Media streams that
contain multiple tracks are often referred to as multiplexed or complex media
streams. Demultiplexing is the process of extracting individual tracks from a
complex media stream. A track's type identifies the kind of data it contains,
such as audio or video. The format of a track defines how the data for the
track is structured.

A media stream can be identified by its location and the protocol used to
access it. For example, a URL might be used to describe the location of a
QuickTime file on a local or remote system. If the file is local, it can be
accessed through the FILE protocol. On the other hand, if it's on a web
server, the file can be accessed through the HTTP protocol. A media locator
provides a way to identify the location of a media stream when a URL can't

be used.

2.1.3 Media delivery

Media streams can be categorized according to how the data is delivered:

Pull - data transfer is initiated and controlled from the client side. For
example, Hypertext Transfer Protocol (HTTP) and FILE are pull protocols.
This is also known as progressive streaming or progressive download, it refers
to online media that users can watch as the files are downloaded. The user can
see the part of the file that has been downloaded at a given time, but can’t
jump ahead to portions that haven’t been transferred yet. Progressive
streaming files don’t adjust during transmission to match the bandwidth of
the user’s connection like a real-time streaming format

8 2. Overview of Time-Based Media Systems

Push - the server initiates data transfer and controls the flow of data. For
example, Real-time Transport Protocol (RTP) is a push protocol used for
streaming media. Similarly, the SGI MediaBase protocol [35] is a push
protocol used for VoD (Video on Demand). Real-time streaming refers to
technologies that keep the bandwidth of the media signal matched to that of
the viewer’s connection so that the media is always seen in real-time. The
word real-time differentiates this type of streaming from HT'TP streaming
delivery. Dedicated streaming media servers and streaming protocols are
required to enable real-time streaming. Real-time streaming delivery always
happens in real-time, so it is well suited to live events. It also supports random
access of material, so the user can fast forward to other parts of the movie,
which may be useful for presentations and lectures. In theory, real-time
streaming movies should never pause once they start playing, but in reality,
periodic pauses may occur.

2.2 MEDIA APPLICATION DOCUMENTATION

Multimedia application is generally organized and managed in documents. A
document describes the components of a multimedia presentation together
with information such as associations, temporal and spatial relationships.
Documentation standards are essential for delivering applications across
heterogeneous platforms. The concept of "multimedia standard" implies a
declarative document format to represent an audiovisual scene as a
composition of audio and visual objects with specific properties and behavior,
in both dimensions of space and time.

MPEG-4 and SMIL are such a standard solution. They originate from
different communities and address a somewhat different "multimedia profile".
However, the bundle of concepts they share makes them suitable to convey
interactive time-based media applications to users, such as EPG’s, interactive
stories, sports events and so on.

The general issues that need to be addressed by a comprehensive media
documentation model can be summarized as follows:

— Synchronization

— Integration of multiple media types
— Composite media objects

— Media object addressing

- Hyperlinking

— Input model for interaction

Distributed Interfaces for a Time-Based Media Application

2.2.1 MPEG-4

MPEG-4 provides new coding technologies for the manipulation, storage and
communication of multimedia objects including video, speech, audio, texture,
graphics, text and animation. The standard is not a direct improvement of
MPEG-1 or MPEG-2 coding standards; rather it defines a different way of
integrating and interacting with scene content. It provides a set of

technologies to satisfy the needs of authors, service providers and end users
[29].

In MPEG-4, the elements in a scene can be described by using a tree-like
structure. At the root of the tree we have the entire (or Composite) scene.
This composite scene is broken down into individual objects (such as a person
or a movie clip) and then into atomic structures called Media Objects (such as
the person's video and audio channels), which make up the leaves of the tree.
MPEG-4 standardizes a number of primitive media objects. It is capable of
representing both natural and synthetic content types, such as still images,
video objects, audio objects, text, graphics, talking synthetic heads, synthetic
sound etc.

MPEG-4 uses a language called Binary Format for Scenes (BIFS) to describe
and dynamically change the content of the scene. It is through BIFS
commands that objects in a scene can be added, removed, or have their visual
and acoustic properties changed without changing the object itself. BIFS can
be used to animate objects by sending a BIFS command and to define their
behavior in response to user input at the decoder.

The event model of BIFS uses the VRML concept of ROUTE:s to propagate
events between scene elements. ROUTEs are connections that assign the
value of one field to another field. ROUTESs combined with interpolators can
cause animation in a scene. User inputs can be detected with sensors. Sensors
generate events when the user interacts with an object or a group of objects.
Sensors also react to changes in the environment and changes of time, and
drive the time of animations.

MPEG-] is a set of APIs (Application Programming Interfaces) that allow Java
code to communicate with an MPEG-4 player engine. By combining MPEG-4
media with safe executable code, content creators may embed complex
control and data processing mechanisms with their media data to intelligently
manage the operation of the audio-visual session.

10 2. Overview of Time-Based Media Systems

222 SMIL

SMIL is a proposed recommendation developed by the W3C Synchronized
Multimedia (SYMM) Working Group. It aims to bring synchronized
multimedia to the Web without requiring expensive authoring tools. All the
descriptors in the SMIL specification follow an HTML-like format. These
syntax elements provide an extension on top of HTML and XML that tells
the browser how to position in time and space, and how to link to other
content. The syntax of SMIL is defined using the DTD (Document Type
Definition) notation. The formalism is human readable.

Using SMIL, authors can create a multimedia presentation in terms of layout,
temporal behavior, and events associated to timers and anchor selections. A
SMIL document essentially includes a "layout" and a "body".

The layout specifies a set of "regions" on the screen. The region element
controls the position, size and scaling of media object elements. The author
can select between SMIL "basic layout” and expressing layout in CSS2
(Cascading Style Sheet).

The body contains information related to the temporal and linking behavior
of the document. A document structure relies on a tree-like aggregation of
"synchronization elements”, which type can be sequential or parallel. These
elements synchronize the presentation of their children. At the leaf nodes
there are "Media object elements", which manage the presentation of
animation, audio, image, video, text and text-stream elements. Elements
activation can be deferred to the occurrence of an event (e.g. generated by a
video clip). Links are actuated only by the user and support navigation
between objects. A link can activate a new document or a single object within
a document.

SMIL represents the Web perspective, which demands capability to
synchronize streams with other elements in the framework of a single
application. A native support by Web browsers will allow widespread
availability of applications, and, thanks to the text format, a search engine is
able to find a SMIL document on the Web. The simple syntax allows building
applications without the need of a sophisticated authoring tool.

Distributed Interfaces for a Time-Based Media Application

11

2.3 CONTENT-BASED INTERACTION
2.3.1 Three levels of interactivity

In general, there are three levels of interactivity in the context of interactive
content: Content retrieval, content navigation and content-based interaction

(cf. Figure 2-1).

Interactive Content ~ |———————+ Content-based Interaction
Player = F———————1 Content Navigation
Platform ==

pm————— Content Retrieval

Network !

Figure 2-1.Three levels of interactivity

At the level of content retrieving, the user can retrieve the content by sending
a query to the system or the system can filter desired content out with user
profiles. The user can select one from many results that the system provides.
Selecting a TV channel or searching a website are good examples of content
retrieving.

The user can also make use of the means provided by the content player itself
to navigate the content, e.g., pause, fast forward/backward a video, or go
back/forward to, scroll up/down a web page.

Interactive content contains not only rich multimedia information (media
objects), but also application logic that can be declarative and/or procedural.
The later makes the output of interactive content affected either by the user
directly, or by responding in some way to its "knowledge" of the user or users
(i.e. of their behaviors and characteristics). In this way, the content is
interactive:

Interactive content = data (media objects) + control (application logic)

This report concentrates more on the content-based interaction, which means
users can manipulate and influence the content they receive, through the
interface authorized inside the content, presented by a player.

12 2. Overview of Time-Based Media Systems

2.3.2 A content interaction model

In [9], a HCI (Human Computer Interaction) model is presented that
introduces the taxonomy of the VRML application interactivity. Inspired by
this model, a content interaction model is developed below to generalize the
content-based interaction.

In a co-operative user-system process, both the user and the system possess
information that needs to be exchanged. The user wants to either import his
knowledge to the system or tell the system what data he wants to retrieve
from it. The system is supposed to deliver the requested information to the
user. It can send status messages and ask the user for more information.

In principle, all system input and output requires the following two-step
transformation: abstraction and interpretation for input, representation and
presentation for output, which in turn forms user-system dialogs [9]. The
content player and I/O devices form the bridge between the physical media
and the digital content carried inside the system.

The physical signals received through the input devices are highly fragmented
and contain no explicit semantics. The input device detects physical signals
and describes them in a digital form. An abstraction function is necessary to
recognize the larger symbolic forms to give presentation of the inputs as user
events. The result of the abstraction function is still merely a representation
and not the concept behind the representation. To retrieve the concept, the
system must use an interpretation function. The retrieved concepts or
commands can then be further processed or stored in some internal system
representation [9].

An opposite two-step transformation process is necessary at the output side
[9]. For example, when the system has to convey certain content to the user,
the content must be represented in a certain form. This could be a
representative data structure in an abstract form. The application logic in the
representation is parsed and will control the system behavior and processes,
which makes the content interactive. The media content in the representation
subsequently be specified or rendered into a raw description of the
presentation that the output devices can handle.

At the user’s side, Norman’s seven stages model gives a clear overview of
interaction [32]. The user might perform similar presentation-representation
manipulation of information, which is not shown in detail in Figure 2-2:

Distributed Interfaces for a Time-Based Media Application

13

Form a goal - the environmental state that is to be achieved;

— Translate the goal into an intention to do some specific action that
ought to achieve the goal;

— Translate the intention into a more detailed set of commands - a plan
for manipulating the interface;

— Execute the plan - present the inputs to the system by the input
devices;

— Perceive the state of the system - perceive the output presentation of
the system by the output devices;

— Interpret the perception in light of expectations;

— Evaluate or compare the results or the intentions and goal.

|

representin Content 1 ferin Content
i 9 Representation 9 P i

A A

Interactive
Streaming Content
Downloading Essence

Parsing

Content Control
application Logic

Content User Goals

Server

System

Network

User Input User Input

Representation i‘“’"a‘& Presentation execution

Legend: |::> Process — » Control Flow

Figure 2-2.Content interaction model

Up-streaming/uploading

Figure 2-2 shows the concrete process information transformation that the
system performs during a user-system dialogue. Either the user or the system
can initiate the dialogue circle. For the user’s side, Figure 2-2 simplifies
Norman’s seven stages to a simple form: The user evaluates the information
conveyed by the content presentation and reacts with user input presentation
to fulfill certain tasks or goals.

Interactive content can be stored locally or come from a network, or from a
combination of both. User input information might be sent to the content
server over the network to influence the content according to the application
semantics. In most of the cases, network transportation of the content and the
user input is transparent to the user and the application, unless slow network
transportation delays the response of user input or the application wants the
user to be aware of the difference between local and remote access of content.

14 2. Overview of Time-Based Media Systems

2.3.3 An example: MPEG-4 interactivity

The most significant aspect of MPEG-4 is that users no longer need to be
passive in the consumption of Multimedia. The extent of interactivity with
most common multimedia applications is the ability to stop, rewind, fast-
forward, play and pause. In MPEG-4, the user can directly interact with
objects within the scene. The implementation of the media objects as separate
entities, combined with separate scene descriptors, allows a user to potentially
move around in the scene, move objects around, modify attributes of each
object such as color, or add and remove objects from the scene. The
possibilities of interaction are nearly endless, with the limits resting solely on
the multimedia author. This i1s known as client-side interaction [29].

Interaction behavior is specified in the scene description information encoded
in the BIFS stream, which implements declarative application logic. This
information specifies the modification of attributes of scene objects according
to certain user actions. User actions on media objects (such as mouse clicks,
etc.) are passed to the data controller.

The data controller either traverses the scene graph to derive the nodes of
these media objects for firing the appropriate event handlers to process these
events, or sends the user events back to server for client-server interaction.

Figure 2-3 shows the interactive architecture of the MPEG-4 client.

Tnput
Events

@
o
2
—{ Ty -
w ream £
E Transport ! E
(]
> Stream 2 i g User
Transport | Object ™\ | Media ﬁ
:> Stream 3 Decoder 1 T Object 1 | o
Transport ! Object \ ! Media !
:> Stream 4 i Decoder 2 i Object 2 :
) :|':>< 1 H . |
I : |
| | | |
! Representin | ! Presentin |
Lo Sopreserne __meemne
Legend: |::> Data Flow —_— Control Flow

Figure 2-3.Interactive architecture of MPEG-4 client

Distributed Interfaces for a Time-Based Media Application

15

In MPEG-4 version 2, MPEG-] introduces procedural functionality for
creating interactive applications. It can also be streamed to and decoded at the
client side. It will be passed to the data controller and executed to perform
higher interactivity.

MPEGH+4 interactivity provides standardized bricks to build up interactive
applications. Depending on how the content and user input are organized
(application logic) and how the content and user input are presented (I/O
devices), different levels of content interactivity can be achieved in MPEG-4
applications.

3 WHEN TECHNOLOGIES MEET REQUIREMENTS

3.1 USER REQUIREMENTS

The overall goal of TOONS is to develop an interactive storytelling
application in the broadcast domain to enable young children in the age group
8-12 years old to [30][31],

— Create their own broadcast environment by positioning them the role
of program maker.

— Provide them with tools to interact with the broadcast environment;

— Make personal content.

To achieve this goal, a user-centered methodology is used in the NexTV
project. The story and interaction scenario are created in cooperation with the
end-users. According to the goal of the TOONS application, Magdalena
Bukowska conducted user trials to collect the input from the target user
group. Some raw video materials were edited from an “Old House” scenario
created by NOB, one of the NexTV project partners, the Dutch broadcast
production company. She created a Macromedia Director® movie out of the
assets provided by NOB and additional 2D hand drawings, with limited
interaction. The input of the users was used to create the interactive story and
to develop a conceptual model of the story. (More details about this part of
work can be found in the USI final report of Magdalena Bukowska [6])

3.1.1 Conceptual model of TOONS
3.1.1.1 Two types of interaction

Depending on how the interaction is initialized, two different types of
interactions can be involved in the TOONS application (cf. Figure 3-1):

1. Initialized by the application.

The users can only give their responses to the program at a certain moment or
in a certain period. In this case, the application initializes the interaction by
starting a feed-forward and feedback loop. The application initializes the
dialogue by providing feed-forward information such that the user is invited
or enticed to give responses. The user evaluates this feed-forward information
and compares this with his/her goal to make up their mind about their
response. If the user responds, immediate feedback is expected to confirm the

16

Distributed Interfaces for a Time-Based Media Application 17

user’s input. The interaction will result in immediate or delayed changing of
the story content.

The dialogue has to be finished within a certain period. If the user does not

give any response in this time period, the application will proceed with a
default response.

2. Initalized by the user.

The user can interact with the application as long as the program is playing,
although the available functions may vary throughout the program. In this
case, the user initializes the dialogue by activating the interface. The following
dialog procedures are similar to the dialogue procedures in the case that the
interaction is initialized by the application.

Goals

O
<5 alln

‘ Intention Formation ‘ ‘ Evaluation Perception
‘ Actiotion Selection ‘ Interpret Perception
User {}
§ ‘ Action Excution ‘ ‘ Perceive the state ‘
K] 5
3 < %
@ ~ @
F w b 3
s o
Q w
[0}
4
System ‘ < > Applicaton

Figure 3-1.Two types of interaction’

The TOONS application is a broadcast program which tries to push content
to the user according to the user’s interest. In this sense, most of the
interactions are initialized by the application and the dialogs between the
system and the user appear linear.

Note that the term “feedback” here refers to the immediate information that
is given by the system to confirm the input of the user, whereas the term
“results” refers to the immediate or later changes of the story content affected

2 This figure is based on Don Norman’s seven stages model [32]. Two gray dots indicate possible starting
points of a dialog.

18 3.When Technologies Meet Requirements

by the user input. This implies that, when the interaction causes immediate
changes in the content, the results may be used as feedback.

3.1.1.2 Interaction in TOONS

Figure 3-2 shows the conceptual model of TOONS. The application starts
with an introduction or opening sequence, followed by a set-up sequence in
which the user can choose different appearances for the main character in the
story. In the middle of the sequence there are several decision points where
the user can decide. For example, to open different doors, the user can knock
on different buttons on a console. Different decisions at the decision points
will lead to several different storylines depending on the choices the user
made. Within the storylines, the user can also customize the unfolding story
by adding content, for example, a companion or a drawing they made. The
story will end up with a finishing sequence in which the scenario promises
that more episodes are coming or that the whole story has just finished.

B B R B

[Storyline
["HEEm Dialog

Figure 3-2.Conceptual model of TOONS

» Timeline

Decision Point

Feed-forward feedback

User input

:(f— The user may barge in

Figure 3-3.Simplified view of a dialog

A simplified view of a dialog is shown in Figure 3-3. Notice that the user may
barge in to respond to the program at any point as long as the feed-forward
information is playing.

Distributed Interfaces for a Time-Based Media Application

19

By giving a certain amount of feed-forward information, the TOONS
application will entice the user to,

— Make decisions by selecting objects to switch the storylines
immediately or at a later point in time.

— Customize the story by adding or deleting objects or by changing
their properties. This will cause an immediate change in the scene
which might influence the storyline.

The responses from the user might cause,

— Immediate feedback to confirm user input. For example, a voice
saying “Yes, you made it! The left door will be opened for you.” after
the user made the choice to open one of several doors.

— Immediate changes on the objects in the scene. For example, the user
can choose their favorite color for the figures’ clothes and once the
selection is made, the color will be changed as both result and
feedback.

— Later changes on the objects in the scene. In TOONS, the user might
like the main character to have a companion. Once the user decides so,
the companion will appear in the scene.

— Immediate switch among several available storylines. It can be treated
as immediate feedback to user input as well.

— Later switch among several storylines. According to the decisions or
choices the user made earlier, the application will tell different stories,
starting at specific moments later in the story.

3.1.2 Tangible interface devices

“The children have tangible interaction tools in their possession to interact
with the on-screen objects and streams. These interaction devices will provide
feed-forward and feedback in order to facilitate the interaction with the story.
Feed-forward can be obtained for example through light or sound in the
interface device to indicate what can be activated, what actions can be
undertaken, and how the actions can be achieved. This information must be
broadcast by the broadcaster along with the story: what actions can be
undertaken at what point in the story. To enhance its effect, the story should
also supply information needed for the interaction, be it clues, voice-overs
that tell the users that a decision point is at hand or similar things.

The feed back provided by the interface device should be given immediately
after actions are undertaken by the children. This can be in the interface

20 3.When Technologies Meet Requirements

device itself, through sounds (‘c/ick’ when a button is pressed) or light (an
illuminated button that has been activated). In any case, information about
the result of the user action should always be immediately presented, so that
the users know that their actions did have some effect.” [30]

Not only the designers, but also the users, have such an idea to introduce
tangible interface devices into the TOONS application. During the user trials
[6], Karolina, a 12-year old girl, suggested a robot as the tangible interface
device (cf. Figure 3-4). “As I understand, there will be a special device sold
together with the program that can be used to make choice, rights” She suggested
some buttons on its hands as the input channel, and a touch screen in its
“belly” as the output channel.

Figure 3-4.Karolina's robot

3.1.3 Four types of decision points”’

The TOONS application focuses on four different types of decision points.
These decision points are derived from enabling features of the MPEG-4
object representation. These decision points are:

3 This part of content is edited from Marcelle Stienstra’s descriptions and drawings, appears in the
NexTV deliverable “Application Version 17 [30].

Distributed Interfaces for a Time-Based Media Application 21

1. Influencing the story line by choosing an object. The story line depends on
the object that is chosen by the user, for example a key or a shovel. If the user,
for example, chose the key, the character in the story would move into the
secret room through the door with the large lock that the user were now able
to open. It is assumed that this type of decision point will support children
that are interested in action and adventure in the plot of a story.

2. Influencing the story line by choosing an emotion, i.e., changing a property
of an object. The user can select an emotion for a specific character in the
story. This emotion can be a happy or a sad mood. Depending on this mood a
different story line will be followed. The moods can be attached to characters
but also to objects, rooms and so on. It is assumed that this type of decision
point will support children that are interested in the social and emotional
developments of characters in a story.

3. Adding characters to the scene, i.e., adding an object. The user can add a
character to the story. This character will appear in the story, but does not
influence the story line. It is assumed that this type of decision point will
support children’s fantasy and the ability to create one’s own story in the
context that is provided by the broadcast story.

4. Influencing the storyline by forming a team, i.e., changing the relation
between objects. The user can form a team of two characters from a number
of characters. Depending on which characters are in a team, a different story
line will be shown. It is assumed that this type of decision point will support
children that are interested in the social and emotional development of
characters in a story.

22 3.When Technologies Meet Requirements

Influencing the story by choosing an object

Adding characters the the scene Influencing the story by forming a team

Figure 3-5.Four types of decision points

3.2 REQUIREMENTS FOR THE APPLICATION ARCHITECTURE

According to the use requirements, the system architecture should emphasize
and support the following:

3.2.1 Distributed interfaces

In the TOONS application, several different components can be distinguished
from the user’s perspective. Full screen audiovisual scenes entertain the users
with the story. Interactive objects are present in the scenes, which can listen
and react to the user input to personalize their storylines. Graphic user
interfaces can be present as overlays on top of the scene, which can be menus,
buttons, icons and arbitrary-shaped video clips, or a combination of them.

Different input and output devices can be used to interact with the content.
Simple selections and choices can be made with a remote control, while mass
data input and complex GUI operations can be done with a remote keyboard
and a mouse. A smart card can be used to identify user profiles and to feed the
application with predefined configurations. The LED display on the front
panel of a set-top box can present extra text information with regard to the
real-time streamed content.

Distributed Interfaces for a Time-Based Media Application

23

The application can also play part of the content and get user responses from
some networked devices in the home environment. These devices could be as
simple as a bi-directional interface device that can play feed-forward and
feedback information that is given by the application, e.g., an interactive toy
with touch sensors and sound output. They can also be as sophisticated as
robots that have their own behaviors and intelligence. Furthermore, a second
screen may be used to present more extra media information; for off-line
configuration and entertainment, a PC system can be connected. These
networked devices will provide the users with more immersive experiences.

3.2.2 Context dependent interaction

Here the term “context” means the environment availability, application
context, and user preference.

The target system platform can vary from a simple TV set with a set-top box,
to a complicated home network environment. The interface devices can be as
simple as a remote control or as complex as a robot with multi-modality
interfaces. Furthermore, the configuration of such an environment is dynamic
in both space and time dimensions. The user may activate or introduce new
interface devices during the program. The application has to “know” what
kind of environment it is running on at every moment and adjust itself to fit
the environment on the fly.

The way of interaction may also depend on the application context. For
example, in order to illuminate a dark room in the virtual world created by
the application, a user can actually simply switch on a light instead of pressing
up or down buttons on a remote control (see the story introduced in chapter

1).

However, the user may still choose the remote control because he/she doesn’t
like to turn the light on, even though there is such a light available. The user,
not the system, decides which way of interaction is preferred throughout the
interactive program.

For the demonstration purpose, the TOONS application implements only
some of the above. For future extensions, however, all of the above has to be
taken into account to arrive at generic system architecture for similar
applications.

24 3.When Technologies Meet Requirements

3.2.3 Synchronized media and interaction

In an interactive media application, not only the media, but also the
interactions are time-based and should be synchronized with each other, in an
environment which consists of many interface devices. Multiple
representations of the content or its parts should be distributed and
synchronized on these devices according to their nature or application
semantics. A time dependent change-propagation mechanism should be
developed for user-system interaction to ensure that all concerned system
components are notified of changes to the content or the configuration, at the
right moments in time.

3.3 DISTRIBUTED CONTENT INTERACTION MODEL

Distributed Interfaces introduce new challenges to the content interaction
model presented in section 2.3 (cf. Figure 2-2). This model implicitly assumes
that only one device, e.g., a PC or a television, is used for the presentation.
Although multiple input devices may be included in this model, such as a
keyboard, a mouse and a remote control, these devices are treated as
accessories for user input and fully controlled by the presentation device.

Figure 3-6 shows a new content interaction model in which multiple
interactors have been considered. An interactor is a software or hardware
entity with independent and different capability for data processing, and with
different input and output components which form a user interface. These
interactors are networked together and cooperate with each other to present
the interactive content.

Content . Distributing Content . Rendering Content evaluation
Representation Repi on

representing Presentation
A A

A

Interactive
Content
Essence

K Parsing

Content Control
(application Logic)

Content Control
(Local Application Logic) Interactors

System
User
Goal

Network

A J

Collection

) J
Abstraction

User Input

User Input
Representation Pi i

=

User Input "
o) P! N execution

Legend: |::> Process —» Control Flow

Figure 3-6.Content interaction model with distributed interfaces

Distributed Interfaces for a Time-Based Media Application

25

The application logic is parsed from the content representation. According to
the application logic the content is distributed to different interactors and the
user events (user input representation) are collected from these interactors.
Under the control of the Local Application Logic and parsed from the local
content, each interactor performs the two-step transformation process which
was described in section 2.3: abstraction and interpretation for input,
representation and presentation for output. The user interacts with these
interactors and in turn with the interactive content.

This approach challenges current media documentation technologies. It
requires that the documentation technology is able to deal with the
distribution of the interaction and the media objects, in an environment
which consists of multiple interactors. BIFS based MPEG-4 documentation
emphasizes the composition of media objects on one rendering device. It
doesn’t take the multiple interactors into account, nor does it have a notation
for distributed interfaces. The SMIL 2.0 introduces MultiWindowLayout
module, which contains elements and attributes providing for creation and
control of multiple top level windows [49]. This is very promising and comes
close to the requirements for distributed content interaction. Although these
top level windows are supposed to be on the same rendering device, they can
to some extent, be recognized as a software interactor with the same
capability.

The TOONS application intends to make use of multiple interactors with
different capabilities, i.e., an audiovisual device and a tangible interface device.
In this sense, neither MPEG-4 nor SMIL can fully satisfy the requirements.

3.4 SOME EXISTING INTERFACE ARCHITECTURES
3.4.1 Future TV

Future TV is a research project which aims to study the digital television as
platform for new interactive multimedia services [14]. One of the goals in this
project is to implement the user interface of digital television by using well-
known APIs defined for the DVB Java platform. A paper has been published
describing how to develop a Java user interface, which includes not only
graphics but also time-based media [34].

Figure 3-7 illustrates this basic user interface structure for interactive
television services or applications on a set-top box. The Java user interface is
composed of graphical user interface (GUI) and broadcasting content. The
GUTI includes graphics and user input as the so called Look & Feel. Graphics

26 3.When Technologies Meet Requirements

in this case means the visual presentation of interface widgets. Broadcasting
content consists of video, audio, subtitles, teletext, and data. This structure

serves a clear architecture for users to manipulate content-related information,

such as EPG, Home Shopping, TV chat and so on.

Set-Top-Boxes

Java User Interface

Graphical User Interface Broadcasting Content

‘ Graphics (Look) ‘ ‘ User Input (Feel) ‘

‘ Audio/Video ‘ ‘ Teletext ‘ ‘ Subtitles ‘ ‘ Data ‘

Figure 3-7 Basic structure of the user interface in digital TV

In this structure, however, the GUL is not a part of the content. The user may
select different content by manipulating GUI widgets, but the interaction
does not influence anything inside the content. It facilitates content retrieval
and navigation, rather than content-based interaction. The content producer
and service provider serve the content and content-related information. How
the interface should look like and how the user can operate it depend on the
implementation of the local platform.

This structure has no concern for networked multiple devices and distributed
interfaces, nor synchronization between the media and the interaction.

3.4.2 Immersive broadcast

Immersive broadcast is a generic term for interactive multimedia applications
mainly targeting enhanced digital television programs [27]. An “immersive
broadcast” application for sports events is presented in [16]. In this application,
the consumer can compose his own personal program from a variety of
streams of audiovisual and graphics data. Conceptually, video clips, text and
graphics are overlaid on top of the TV program to provide a richer and more
compelling experience.

Distributed Interfaces for a Time-Based Media Application

The application is composed of the following components [16][27]:

— Views. Views are live components that occupy the full screen, often
consisting of a full screen video, associated audio channel, and some
additional assets such as text, graphics, and images.

- Highlights. Highlights are stored views that are assessed on demand
and provide instant-replay of important events. They are similar to
views but do not contain live content.

— Standing & Results Overlay. It is a pop-up screen overlaid on any
other screen to provide a snapshot of the current standings and results.
The content of this screen is dynamic and the transparency effect is
required.

— User interface for navigation & browsing between or through views,
highlights, and overlays

— Alerts. Alerts are user interface elements that pop up unexpectedly to
give direct access to a view or a highlight when a noteworthy event
takes place.

These components can be categorized into content presentation components
(views, highlights and the overlay) and content navigation components (cf.
Figure 3-8). Compared to the structure shown in Figure 3-7, here the user
interface components are a part of the broadcasting content. The user
interaction will influence the presentation of the live or stored content, or
content related information.

Immersive Broadcast Content

Content Navitation Content Presentation
Navigation Widgets Alerts Views Highlights Overlay

Figure 3-8.Components of an "immersive broadcast" program

This structure doesn’t take into account the distributed presentation and
interaction either; the user interaction still stays on a level of content
navigation, which will not change what’s in the content.

28 3.When Technologies Meet Requirements

In short, none of the existing interface architectures can account for the
distributed presentation of content and the actual interaction of users with the
content itself. For this we need a different approach. This approach will be
presented in the next chapters.

4 STORYML

To achieve the goal of TOONS and satisfy the requirements described in
chapter 3, the first question which has to be answered is how to describe such
an interactive story that will be played in a distributed environment. A new
documentation technology has to be developed, since existing open standards
can hardly describe an environment which involves many distributed
interfaces instead of only one multimedia terminal.

This chapter presents StoryML, an XML based specification language for
interactive stories. It is aiming at a technical solution for the interactive story
representation, which can be served, received, and processed over the network
and finally played in a distributed environment.

4.1 OBJECT-ORIENDED STORY COMPONENTS

The development of StoryML is based on the conceptual model of interactive
stories, presented in chapter 3. This model was developed in the coordination
with both content producers and final users [6]. StoryML reflects directly
many concepts from this model. One objective of doing so is to make
StoryML an easy authoring language for content producers, with a higher
level of abstraction which is independent of media representation technologies.

The StoryML elements are derived from the conceptual model of interactive
stories and the requirements for distributed interfaces by using an object-
oriented approach.

4.1.1 Generalized interactive story

Figure 4-1 shows the generalized interactive story model which is directly
derived from the conceptual model (cf. Figure 3-2). An interactive story
consists of many storylines and the user can influence these storylines. Many
linear dialogs compose the interaction between the user and the story. A
dialog always starts with the system conveying certain feed-forward
information the user, the user makes decisions or choices and then the system
shows immediate feed-back information to the user. The dialog results in
switching between the storylines, or changes to one or many storylines.
Compared with the conceptual model, this model clearly expresses the
hierarchy structure of the interactive story. It no longer emphasizes different
phases of a story, which is related to the implementation of a specific story.

29

30 4. StoryML

This model explicitly defines a story line as a primitive story component
which has the same temporal dimension and behavior with the story, that is,
starting or stopping a story means starting or stopping these storylines at the
same time.

The feed-forward and feedback components are separated from the storyline
as primitive components because they have different temporal behavior.
Different from the storylines, when to start a feedback component or when
to stop a feedback component depends on when the user will respond during
a dialog.

Timeline y,
»

‘ Storyline 1‘
| Storyline 2‘
Storyline q
Interaction
[— | (— | — |
[
Dialog
Feed-forward Feedback

Figure 4-1.Generalized interactive story derived from the conceptual model

4.1.2 Environment

The interactive story will be played in an environment which consists of
many networked devices, such as audiovisual screens, surrounding audios
systems, ambient lights, and robotic toys and so on. These devices are
abstracted as interactors.

An interactor is a self-contained entity which has an expertise of data
processing and user interaction. Its input and output facilities form an
interface with which a user can interact. It is able to abstract the user inputs as
events and communicate with other interactors. An interactor can be present
in an environment as a software entity, alive in a computer system or
embodied in a hardware device. According to its expertise, these interactors
can be categorized into different types.

An environment is then defined as a dynamic configuration of many
interactors. Each of the interactors is assigned different tasks by the

Distributed Interfaces for a Time-Based Media Application 31

environment according to the definition of a story, such as rendering media
objects and reporting the user responses during different periods of time.

4.1.3 Media objects

Storylines, feed-forward and feedback components are all time-based media
objects. A time-based media object is defined as a data stream which has
internal time independencies, can be rendered by any of the interactors in the
environment, and can be perceived by a user via any channel or many
channels of perception.

4.1.3.1 Abstract media objects

Traditional media objects are audiovisual objects, such as audio, video, text,
and 2D/3D graphic objects. Some new standards like MPEG-4 have
introduced new media objects that have a higher level of abstraction, e.g., face
and body animation [22][29]. We go one step further: As its definition implies,
a time-based media object here can be even more abstract, for example,
expressions, behaviors, and even emotions, can be defined as a media object as
long as it can be recognized and rendered by an interactor.

The definition and the range of abstract media objects are application-
dependent. In a storytelling application, “behavior” is defined as a time-based
object for all the interactors: Audio-visual devices, robots, lights and
surrounding audio systems. All these devices have a capability to render
“behavior”.

Different interactors can render the same media object in a different way, but
it should entertain the user with a similar experience that is predefined by the
author. For example, at a certain moment in a program, both a robotic toy
and an ambient light can render media object “happiness” from the program.
The user’s perception doesn’t change, but the presentation of “happiness” is
different.

The user may have different configurations of an environment. The
abstraction of media objects provides possibilities for the content producer to
describe a story at a high level without knowing the details of the
environment configuration. For example, a content producer can specify
“from now on for 10 seconds, performs the ‘happiness’ behavior on a robot”.
The author doesn’t have to know whether there is a robot present in the
environment or not, and if there is one present, how this robot will perform

32 4. StoryML

the ‘happiness’. It solely depends on the configuration of the environment
and the implementation of the robot.

4.1.3.2 Time dependencies

As introduced in chapter 2, many multimedia systems make a high-level
distinction between time-dependent media objects (e.g. audio, video streams)
and time-independent media objects (e.g. images, text, graphics). The reason to
do so is that the system has to facilitate both media types with starting and
stopping mechanisms; time-independent media objects are not intrinsically
related to any points in time. The system doesn’t have to support this kind of
media with mechanisms that can report media time and receive notification

on whether a specific time point has been reached during playing these objects.

To distinguish between these types of media, the following assumption has
been made. After the time-independent media objects have been started and
before they are stopped, they will stay static, or they will be animated
asynchronously. During playback, the time-independent media will not be
synchronized with other objects, nor will they generate any time-based events.
Furthermore, they can’t start and stop by themselves since there are no
internal time dependencies defined. The playback of such media in a
multimedia presentation has to be controlled by externally imposed time
dependencies. This will be sometime troublesome in a distributed

presentation environment.

Media objects are distributed to different self-contained interactors. If the
time-dependencies have to be externally imposed on the object, the control
information has to be dispatched separately along the network. This increases
the complexity of media synchronization.

Storylines, feed-forward and feedback components in a story can be
recognized as time-based media objects. The playback of these objects is
related to an implicit timeline. To simplify the situation, a dimension of time
is added to all of the media objects, that is, time-dependent and time-
independent media objects are all time-based. They are encapsulated with
internal time dependencies and thus the complexity of time control is hidden
inside a media object.

Figure 4-2 shows the object-oriented model of an interactive story and the
environment. To summarize, an interactive story application defines an
interactive story and a desired environment. The story consists of many
storylines and a definition of possible user interaction during the story. User

Distributed Interfaces for a Time-Based Media Application

33

interaction can result in switching between storylines, or changes within a
storyline. Dialogues make up the interaction. A dialogue is a linear
conversation between the system and the user, which in turn consists of feed-
forward from the media objects, and depends on the user’s response and the
feedback from the media objects. The environment may have many
interactors. The interactors render the media objects. And finally, the story is
rendered in an environment.

X . ! Audiovisual Ambient Surrounding
‘ Video ‘ Audio H Text ‘ Image H Text ‘ ‘ Behavior ‘ Device H Robot H Lights ‘ Audio system
Media Object } Interactor ‘
0..n render

l1..n|event 1..n

Feedforward ‘ ‘ Feedback

Storyline

1.1
Story } Environment
0.1

render

Figure 4-2.iStory object-oriented model

4.2 STORYML: XML-BASED DOCUMENTATION
4.2.1 Why XML

Based on the object-oriented story model, an XML based specification
language, i.e., StoryML, is developed for authoring, serving, delivering and
presenting an interactive story. XML stands for eXtensible Markup Language.
Markup languages can be used to identify the document structures. The
common markup languages currently in use are SGML and HTML. SGML
(Standard Generalized Markup Language) is a standard system for defining
and using document formats [18]. HTML (Hyper Text Markup Language) is a
language used for hypertext linking, multimedia and displaying of simple
documents on the Web [47].

XML is designed to provide an easy-to-write, easy-to-interpret, and easy-to-
implement subset of SGML. It is not a fixed format like HTML. XML is a
meta-language used to define other markup languages for structured
documents. Structured documents are those that contain content stored

34 4. StoryML

hierarchically, in a specified format. In this sense, HTML is just one of the
SGML or XML applications. XML is designed so that a particular markup
language, such as StoryML, meets the application needs more quickly,
efficiently and logically.

4.2.2 StoryML elements

StoryML is developed based on the object-oriented model presented in Figure
4-2 . The StoryML elements are directly derived from the objects in this
model. The syntax of StoryML documents is defined by the DTD, which can
be found in [Appendix A. DTD (Data Type Definition) of StoryML]. An
application example of StoryML can be found in [Appendix B. TOONS in
StoryML].

4.2.2.1 The “id” attribute of a StoryML element

Each element of StoryML has an “id” attribute. This attribute uniquely
identifies an element within a document. Its value is an XML identifier.

4.2.2.2 Attributes of a media object

In a StoryML document, the “storyline”, “feedforward” and “feedback”
elements define a media object. These media objects have the following
common attributes:

src The value of the src attribute is the URL of the media
object
content If the media object can not be retrieved from the network

with its URL, the media data can be defined directly using
this attribute. This attribute is often used for an abstract
media object, e.g., a robotic behavior.

interactor This attribute defines the “id” of a desired interactor on
which this media object will be rendered.

type This attribute specifies the type of the media object, which
has fixed value of “audio”, “video”, “audiovisual”, “text”,

» «

“image” “graphics” and “behavior”. The default value is
“audiovisual”. Specifying the media type of a storyline
implies that, if the desired interactor doesn’t exist in the
environment or is not capable of rendering this storyline,

the media object will be rendered by an alternative

Distributed Interfaces for a Time-Based Media Application

35

interactor if suitable.

4.2.2.3 The “StoryML” element

The “StoryML?” is the root element of a StoryML document.
Element attributes:

id Defined in 4.2.2.1
Element content:

environment Defined in 4.2.2.4

story Defined in 4.2.2.6

The “StoryML” element may contain one interactive story and one desired
environment.

4.2.2.4 The “environment” element

The “environment” element determines a desired configuration of the
environment, in which the interactive story will play.

Element attribute:

id Defined in 4.2.2.1
Element content:

interactor Defined in 4.2.2.5

The “environment” element may contain many “interactors” which will be
used for presenting the media objects.

4.2.2.5 The “interactor” element

The “interactor” element specifies a desired interaction agent for the
interactive story.

Element attributes:

id Defined in 4.2.2.1

36 4. StoryML

type This attribute indicates of the interactor’s capability of
media presentation. The “type” of an interactor also
implies the possible user events which can be generated
and abstracted by this interactor. The value of “type” is
predefined: “audiovisual” for an audiovisual device, or
“robot” for a robotic device. This can be extended in the
future version of StoryML to support more types of
interactors. The default value of “type” is “audiovisual”.

Element content: The “interactor” element is an empty element.

4.2.2.6 The “story” element

The “story” element defines the storylines and the user interaction. All these
storylines will be started at the same point in time. This point is then referred
as time “0” on the implicit timeline. The maximum duration of these
storylines implies the duration of the story. Operations on the story, such as
starting, stopping, suspending, and resuming, are imposed to all these
storylines, the implicit timeline, and the interaction elements as well.

Element attribute
id Defined in 4.2.2.1

title This attribute defines the story title, which can be shown
by a player, e.g., to the title bar of a window, or on top of
a video presentation at the beginning of the story.

Element content:
storyline Defined in 4.2.2.7
interaction Defined in 4.2.2.8

The “story” element may contain many “storyline” elements and one
“Interaction” element.

4.2.2.7 The “storyline” element

The “storyline” element defines a media object, normally an audiovisual
media object, which defines a storyline for the “story” element.

Element attributes:

Distributed Interfaces for a Time-Based Media Application 37

id Defined in 4.2.2.1
src Defined in 4.2.2.2
content Defined in 4.2.2.2
interactor Defined in 4.2.2.2
type Defined in 4.2.2.2

Element content: The “storyline” element is an empty element.

4.2.2.8 The “interaction” element

All possible user interactions in an interactive story are specified in the
“interaction” element.

Element attribute
id Defined in 4.2.2.1
Element content:
Dialog Defined in 4.2.2.9
The “interaction” element may contain many “dialog” elements

4.2.2.9 The “dialog” element

The “dialog” element specifies a linear session between the story and the user.
The story starts the session by sending “feedforward” media objects to desired
interactors, these interactors will then listen to the user responses. The user
response will trigger an immediate “feedback”. This session will result in
switching between storylines and or a change to a storyline

Element attribute

id Defined in 4.2.2.1

begin This attribute specifies the time in milliseconds for the
explicit begin of a dialog. The time refers to a point on the
implicit timeline which starts at time “0”. Right on the
“begin” time, the dialog will start the “feedback” objects.

38 4. StoryML

end This attribute specifies the time in milliseconds for the
explicit end of a dialog. The time refers to a point on the
implicit timeline which starts at time “0”. By the “end”
time of the dialogue, all the media objects specified in the
“dialog” element will be stopped and eliminated, and the
interactor will no longer listen to the user events specified
in this “dialog”

wait This attribute specifies the time in milliseconds until when
the dialogue will wait for the user responses from the
interactors. After this time, the feedforward media objects
will be stopped and eliminated, the interactors will no
longer listen to the user events specified in this “dialog”,
and a default user response will be taken. If the default
user response is not specified in this “dialog” element, the
first “response” element will be treated as the default
response. If this attribute is not specified, the “end” time
will be taken as the “wait” time.

type This attribute specifies what kind of result will happen to
the storyline, whether an “immediate” or “delayed” result.
The immediate result will happen right when the user
responds. The delayed result will happen when the dialog

is finished, that is, at the “end” of the dialog. The default
value is “delayed”.

Element content:
feedforward Defined in 4.2.2.10
response Defined in 4.2.2.11

The “dialog” element may contain many “feedforward” and “response”
elements. In case no “response” element is specified for a “dialog”, it can be
used as a mechanism for rendering the “feedforward” media objects on the
interactors during a certain period in time, without expecting user responses..

4.2.2.10 The “feedforward” element

The “feedforward” element specifies a media object, which will be rendered
by an interactor as feed-forward information.

Distributed Interfaces for a Time-Based Media Application

Element attributes:

id Defined in 4.2.2.1
src Defined in 4.2.2.2
content Defined in 4.2.2.2
interactor Defined in 4.2.2.2
type Defined in 4.2.2.2

Element content: The “feedforward” element is an empty element.

4.2.2.11 The “response” element

The “dialog” element specifies a possible user event which can be expected
form an interactor. Once this user event is received, it will trigger the
feedback media objects to be rendered by desired interactors immediately, and
will result in switching between storylines or a change to a storyline.

Element attribute

id Defined in 4.2.2.1

interactor This attribute specifies the “id” of an interactor, which
will listen to certain user event during the “begin” and
“wait” time of the dialog

event This attribute specifies the expected user event from the
interactor.

storyline This attribute specifies the “id” of a storyline.

action If the user event is received from the interactor, one of

following actions can be taken, which is specified by this
attribute:

- “switchto”: switch to the storyline (specified by
the “storyline” attribute) on the interactor
(specified by the “interactor” attribute).

40 4. StoryML

— “change”: a change will be made to the storyline.
The default value of this attribute is “switchto™.

changecontent If the value of “action” attribute is “change”, this attribute
specifies what kind of change will be made to the
storyline.

default This attribute specifies if a response will be used as a
default response if the user doesn’t respond before the
“wait” time of a dialog. The value if this attribute can be
either “yes” or “no”, the default value is “no”.

Element content:
feedback Defined in 4.2.2.12

The “response” element may contain many “feedback” elements.

4.2.2.12 The “feedback” element

The “feedback” element specifies a media object, which will be rendered by an
interactor as feedback information.

Element attributes:

id Defined in 4.2.2.1
src Defined in 4.2.2.2
content Defined in 4.2.2.2
interactor Defined in 4.2.2.2
type Defined in 4.2.2.2

Element content: The “feedback” element is an empty element.

5 PAC-ING THE STORYML PLAYER

In chapter 4, StoryML has been defined as a solution for interactive story
documentation, in which the distributed presentation environment has been
taken into account. Now the task is to design appropriate software
architecture for a StoryML player.

The definition of appropriate software architecture is an important issue in
user interface design. Without an adequate architectural framework, the
construction of interactive system is hard to achieve, the resulting software is
difficult to maintain and iterative refinement is made impossible. iStory, the
StoryML player, is considered as a complex interactive system. The structure
of such an interactive system is provided by its architecture.

A number of architectural models have been developed and progressively
refined for the software design of interactive systems. These include the
Seeheim model [33] revisited by the Arch model [45] which in turn has been
refined in terms of the multi-agent paradigm.

5.1 AGENT-BASED SOFTWARE ARCHITECTURES

Agent-based models structure an interactive system as a collection of
specialized computational components called agents that produce and react to
events or stimuli. An agent has a state, possesses an expertise and is capable of
initiating and reacting to events. Thus an agent is a unit of competence which
operates in parallel and in coordination with other agents. Agents of an
interactive system that communicate directly with the user are so-called
“interactors”. An interactor provides users with a perceptual representation of
its internal state. It listens to the users, possesses an expertise which is
convenient for them, and provides them with an adequate feedback [7].

An interactive system like iStory can take the following advantages of agent-
based architectures [10].

— Agent-based models stress a highly parallel modular organization and
distribute the state of the interaction among a collection of co-
operating units. Modularity, parallelism and distribution are
convenient mechanisms for supporting the interactive design of user
interfaces, for implementing physically distributed applications, and
for handling multi-thread dialogues.

41

42 5. PAC-ing the StoryML Player

— The agent-based models can easily be implemented in terms of object-
oriented languages: an object class defines a category of agents where
class operators and attributes respectively model the instruction set
and the state of the agent, and where an event class denotes a method.
Each object can be implemented as a thread in a multi-thread
operation system, which enables the agent as an active object. The
inheritance and aggregation mechanism provided by the object-
oriented languages can be usefully exploited to modify a user interface
without changing the existing function core.

Many agent-based models have been developed along the lines of the object-
oriented and the event processing paradigms. MVC and PAC are the most
popular and often used ones [15].

5.1.1 MVC (Model-View-Controller)

The MVC model divides an agent into three components: model, view and
controller, which respectively denotes processing, output and input. The
model component encapsulates core data and functionality. The model is
independent of specific output representations or input behavior. View
components display information to the user. A View obtains the data from
the model. There can be multiple views of the model. Each view has an
associated controller component. Controllers receive input, usually as events
that encode hardware signals from a keyboard, a mouse or a remote control.
Events are translated to serve requests for the view or the model. The user
interacts with the agent solely through controllers.

The separation of the model from the view and controller components allows
multiple views of the same model. If the user changes the model via the
controller of one view, other views dependent on this data should reflect the
changes. The views in turn retrieve new data from the model and update the
displayed information.

5.1.2 PAC (Presentation-Abstraction-Control)

In the PAC architecture, an agent has a presentation component for its
perceivable input and output behavior, an abstraction for its function core,
and a control to express dependencies. The control of an agent is in charge of
the communicating with other agents and of expressing dependencies between
the abstract and the presentation components of the agent. In PAC, the
abstraction and presentation components of the agents are not authorized to
directly communicate with each other or with their counterparts of other

Distributed Interfaces for a Time-Based Media Application 43

agents. Dependencies of any sort are conveyed via the controls of the agents.
The interactive application is modeled as a set of PAC agents whose
communication scheme forms a hierarchy [7] (cf. Figure 5-1).

Figure 5-1.Hierarchy of PAC agents

An interactive application can be structured as a tree-like hierarchy of PAC
agents. The top level PAC agent provides the function core of the system;
bottom-level agents represent self-contained semantic concepts on which users
of the system can act. Intermediate-level agents represent either combination
of, or relationships between, lower-level agents.

5.1.3 Comparing PAC with MVC

The PAC based architecture takes a different approach to decoupling the user
interface aspects of an agent from its functional core. Its abstraction
component corresponds to the model component in the MVC model, and its
presentation component corresponds to the view and controller components
in the MVC model. . The communication between the abstraction and
presentation components in the PAC model is decoupled by the control
component. The interaction between presentation and abstraction
components is not limited to just calling an update procedure, as it is within
the MVC model.

PAC based architecture is more suitable for iStory than MVC, because of the
following reasons:

— The iStory system involves independent devices as physical
interactors. It should have the ability to adapt to the changing
configuration. PAC can satisfy these requirements by separating self-
reliant subtasks of a system into cooperating but loosely-coupled
agents. Individual PAC agents provide their own human-computer

44 5. PAC-ing the StoryML Player

interaction. This allows the development of a dedicated data model
and user interface for each semantic concept or task within the system.
PAC agents can be distributed easily to different threads, processes or
machines.

— The PAC based architecture emphasizes the communication and
cooperation between agents with a mediating control component. The
MVC architecture lacks this. It is crucial to have such a mechanism for
a distributed application like iStory. In the PAC architecture, all
agents communicate with each other via their control component
with a pre-defined interface. So, existing agents can dynamically
register new PAC agents to the system to ensure communication and
cooperation.

— The input and output channel of the individual interactors in iStory
are often coupled. In the MVC architecture, controller and view are
separate but closely-related components, whereas the PAC
architecture takes this intimate relationship between these two
components into account and considers the user accessible part of the
system as one presentation component.

— The iStory system has to facilitate content based interaction, which
means that the user can interact with interactive media objects in the
content. The media objects and the attached possible operation are
often documented together as an entity, which will be rendered by
one of the interactors. At a conceptual level, this request can be easily
assigned to the presentation component of this interactor. Separating
the attached operation from the media object will increase the
complexity.

5.2 EXTENDING PAC FOR TIME-BASED MEDIA

In a PAC system, the control components are the communication mediators
between the abstraction and presentation parts of an agent, and between
different PAC agents. The quality of the control component implementations
is therefore crucial to an effective collaboration between agents and for the
overall quality of the system architecture. The individual roles of components
should be strongly separated from each other. The implementation of these
roles should not depend on specific details of other agents.

The overhead in the communication between PAC agents may impact the
efficiency of the system. For example, if a bottom-level agent retrieves data

Distributed Interfaces for a Time-Based Media Application 45

from the top-level agent, all the intermediate-level agents along the path from
the bottom to the top of the PAC hierarchy are involved in this data
transportation. If agents are distributed, data transfer also requires inter-
process communication, together with marshaling, un-marshaling,
fragmentation and re-assembling of data [15].

This may trouble the use of the PAC architecture for the iStory system.
Time-based media objects are distributed over the PAC hierarchy in real-time.
These objects are often video, audio streams, which are considered as mass
data. According to the PAC paradigm, the system has to stream these objects
along the network of control components, whereas other important real-time
controlling messages or events might be stuck in the PAC hierarchy.

To overcome this potential pitfall, iStory extends the abstraction component.
For time-based media, each abstraction component is also considered as a
media processor, which takes a MediaSource as input, performs some
processing on the media data, and then outputs the processed media data. It
can send the output data to a presentation component, or to its MediaSink (cf.
Figure 5-2).

Regarding the PAC hierarchy as a network, an agent with a MediaSink
attached to its abstraction component can be viewed as a streaming media
server and those agents which require a MediaSource can be viewed as
streaming media clients. A direct pipeline can be built between a MediaSink
and a MediaSource and the media can be streamed through the pipeline with
real-time streaming protocols. Pipelines can be built and cut off only by the
control components. Thus, the control hierarchy remains intact.

MediaSource
\

MediaSink

MediaSink

Figure 5-2.PAC for time-based media

46 5. PAC-ing the StoryML Player

5.3 ISTORY ARCHITECURE

Figure 5-3 shows the semantic hierarchical structure of the TOONS
application.

The top-level iStory agent provides the functional core of the system. Most
other agents depend or operate on this core. It communicates with the
content server, provides access to the content and its metadata, parses the
application logic from the content document, and presents the interactive
story to the user.

The content portal establishes the connection to content servers provides the
system with time-based content. In many cases, particularly when presenting
a media stream that resides on the network, the presentation of the media
stream cannot begin immediately. The time it takes before presentation can
begin is referred to as the start latency. The content pre-fetcher overcomes the
start latency by pre-fetching certain amount of data, and ensures that the
media objects are prepared to start at certain moments.

The interactive stories are documented in StoryML. An XML parser can first
parse the document into DOM (Document Object Model) objects then in
turn the StoryML parser translates them into internal representations.

At the bottom level are several agents which reside in, and respectively
indicate different physical interface devices. These devices are often equipped
with embedded processors, memory, and possibly some input and output
accessories. The audiovisual device shows the live audiovisual objects which
present the main content of the story. This can be a PC or a TV set.
Normally the story or program occupies the full screen and the audio
channels. The robot renders extra multi-modality information or some
robotic behaviors as feedback and feed-forward to the user and gathers user
responses to the story. The ambient light renders the information about
mood from the story or program. Users can adjust the brightness of the light
as mood input as well. More physical agents can be involved into iStory
architecture at this level.

Distributed Interfaces for a Time-Based Media Application

47

StoryML
Parser
Timeline
Controller

Content Portal
Content
Pre-fetcher

Interactor
Manager
Audiovisual Robotic
Interactor Interactor
Audiovisual
Device

Figure 5-3.PAC based iStory architecture

Ambient Light
Interactor

Ambient Light

For each physical agent, there is an intermediate virtual interactor connected
as its software counterpart. Provided with this layer of virtual interactor, the
system can achieve the following:

An intermediate virtual interactor is connected to each physical agent, e.g., a
robot, as its software counterpart. With this layer of virtual interactor(s), the
system can achieve the following:

— Decoupling of media processing from the physical interface devices
and enabling process distribution. It is possible to assign media
processing tasks of a physical agent, such as decoding a stream or
composing a scene, to another more capable device in the network, by
moving the virtual interactor to that device. The result of the
processing is then transferred back to the physical presentation
component of the physical agent for direct rendering. The media
processing, therefore, can also be distributed to the network. For
example, if the robot’s processor is not powerful enough to decode an
audio stream, its software interactor in a PC will do 1t and then send
the audio signal directly to the robot’s audio output.

— Easy switching of the user interaction from the physical device to its
virtual counterpart or vice versa. The virtual interactors maintain the
configuration of the system to observe and verify the availability of
interface devices. If the environment can not satisfy the story with the
preferred interfaces devices, the system can always provide
alternatives. If a physical device is not available in the environment or
the user prefers interacting with the virtual interactors, then the
virtual interactor functions as the substitute and presents its interface

48 5. PAC-ing the StoryML Player

on a screen which is manipulated by the user with standard input
devices such as a keyboard or a mouse.

— Satisfying the requirements for the variety of the interface devices.
These virtual interactors can be viewed as software drivers for physical
agents, which hide the differences between diverse yet homogeneous
devices, and provide the higher level agents with the same interface.

The software interactors are coordinated by an interactor manager. The
presentation component of the interactor manager provides the interface for
creating and ending different interactions and navigations between these
software interactors. The interactor manager transfers user-events between
software interactors and keeps them synchronized. If the user interaction on
one of the software interactors will result in changes on the others, the
interactor manager ensures those software interactors will be notified right
away or register these changes to the timeline controller, depending on the
temporal nature of these changes.

The interactor manager also maintains a timeline controller, which plays an
important role in synchronizing user interaction with the story. The dialogs
between the user and the story are always registered to and initialized by the
timeline controller. If the user response results in a later change to the
storyline, this change will be also registered to the timeline.

6 ISTORY MEDIA AND INTERACTION SYNCHRONIZATION

PAC-based architecture paves the basic infrastructure for playing an
interactive story on multiple interactors in a distributed presentation
environment. The content distributed to these interactors has to be
synchronized according to their nature or application semantics. A time
dependent change-propagation mechanism has to be developed for user-
system interaction to ensure that all concerned system components are
notified of changes to the content or the configuration, at the right moments
in time.

This chapter presents the synchronization mechanisms developed in iStory
system, in the context of a multimedia synchronization reference model.

6.1 MEDIA SYNCHRONIZATION
6.1.1 Synchronization reference model

A layered reference model for multimedia synchronization is introduced by
[26] and further developed in [3]. The model provides four layers of
abstraction through which a multimedia application can access
synchronization services. Each layer implements synchronization
mechanisms which are provided by an appropriate interface. These interfaces
can be used to specify or enforce the temporal relationships. Each interface
defines services, which can be used by an application directly, or by the next
higher layer to implement an interface.

‘ Multimedia Application ‘

4

Specification Layer High

v

Object Layer

v

‘ Stream Layer

Abstraction

Media Layer Low

Figure 6-1.Synchronization reference model [3]

The media layer provides a multimedia application with the capability to
perform operations on single, continuous media stream. A media stream is

49

50 6. iStory Media and Interaction Synchronization

considered to be made up of a sequence of logical data units (LDUs), such as
audio samples or video frames, which are to be played back at a specified rate.
At the media layer the application is responsible for the LDUs of a stream
being played back at correct intervals, thus enforcing intra-media
synchronization.

The stteam layer operates on continuous media streams, as well as groups of
media streams. In a group all streams are presented by using mechanisms for
inter-stream synchronization. Grouped streams are played back in parallel,
controlled by a common clock or time-base [37]. The main responsibilities of
an application are the grouping, starting and stopping of media streams. While
the application is not required to operate in a real-time environment, stream
playback is assumed to occur under real-time conditions.

The object layer provides a unified abstraction for any type of media, time-
dependent (e.g., audio, video streams) or time-independent (e.g., graphics, text
objects). The abstraction offered to the application is that of a complete,
synchronized presentation. This layer takes a synchronization specification as
input and is responsible for the correct schedule of the overall presentation.

The specification layer is responsible for producing a synchronization
specification representing a certain document. The layer contains any tools,
such as authoring systems, used to create or modify synchronization
specifications. Rather than postulating concrete systems the specification layer
is characterized by the various temporal models used to define
synchronization relationships between media objects in a presentation.

6.1.2 Synchronization specification methods

According to [3], synchronization speciation methods can be classified into
the following main categories:

— Interval-based specifications, which allow the specification of temporal
relations between the time intervals of the presentation of media
objects. Temporal intervals are defined by their starting points and
ending points. In [1], the author introduces 13 basic relations that can
exist between temporal intervals, namely such as before, meets,
overlaps, during, equals and so on.

— Axes-based specifications, which relate presentation events to axes that
are shared by the objects of the presentation. A common model of
axes-based specifications is the timeline. Based on a global timer, the

Distributed Interfaces for a Time-Based Media Application

51

synchronization is described by attaching all objects, independently of
each other, to a time axis. Removing one object does not affect the
synchronization of the other objects.

— Control flow-based specifications, in which at given synchronization
points, the flow of the presentations is synchronized. Many methods
belong to this category, such as hierarchical specification, reference
points, and timed Petri nets [3] . One of the recent examples is the
SMIL time model, in which sequential and parallel playback of media
items, respectively, represented by synchronization elements <seq>
and < par> [48][49]. Media objects are regarded as a tree consisting of
nodes which denote serial or parallel presentation of the outgoing sub-
trees, which forms a hierarchical control flow.

— Event-based specifications, in which events in the presentation of
media trigger presentation actions. Typical presentation actions are
start, stop and prepare a presentation [37]. The events that initiate
presentation actions may be external (e.g. generated by a timeline) or
internal to the presentation generated by a time-dependent media
object that reaches a specific LDU.

6.1.3 Interaction specification

Time-based content interaction involves the user input as a parameter of
media presentation, with which the user can manipulate the media objects, or
influence later presentation of other objects in the content. The user
interaction has a temporal nature which is related to certain media objects or
the overall content. At the specification layer, the interaction therefore has to
be synchronized with media presentation. This is often done by attaching
input sensors or hyperlinks to media objects in the content document.

In SMIL, in addition to the “A” element inherited from HTML allows
associating a link with a complete media object, the “ANCHOR” element
allows associating a link destination to not only spatial, but also temporal
subparts of a media object [48][49].

In a BIFS scene of MPEG-4, sensor nodes can be attached to media objects,
detect events in their environment and fire events. For instance, a
TouchSensor detects a click of a mouse, a ProximitySensor detects that the
user entered a region of the space. Sensor nodes are classified in three
categories: nodes usable for 2D and 3D sensors, 2D specific nodes, and 3D

52 6. iStory Media and Interaction Synchronization

specific nodes. Interpolator, Sensor and ROUTE statements enable the design
of interactive scenes.

6.2 ISTORY SYNCHRONIZATION

One of the key characteristics of the iStory system is related to media and
interaction synchronization issues. In this section the system is classified and
described according to the above mentioned synchronization reference model.
Figure 6-2 presents a summary of how various elements of the iStory system
related to the reference model.

Specification Layer StoryML

XML Parser, iStory Object Model,

Object Layer Timeline Controller

iStory Media Objects, MediaClock,

Stream Layer Timeline Controller

Media Codecs/Plugins of a

Media Layer Multimedia Platform

Reference Model iStory Synchronization

Figure 6-2.How iStory related to the synchronization reference model

6.2.1 iStory specification layer

iStory does not provide services explicitly belonging to the specification layer,
only the interface between the specification and object layer is defined. The
specification layer is responsible for producing a StoryML document, which
contains the synchronization specification for a presentation. The methods
and tools for producing the document remain a variety of options such as
basic text editors, visual authoring tools or dynamic generation. The StoryML
document acts as the input to the object layer.

In StoryML, media objects and interaction dialogues refer to an implicit
timeline by specifying their starting and stopping point in time (cf. Chapter
4). The metaphor behind it can be easily understood by comparing with the
conceptual model of the interactive story (cf. “Conceptual model of TOONS”
in Chapter 3). Synchronizing objects by means of a timeline allows a very
good abstraction from the internal structure of single-medium objects and
composite multimedia objects. Define the beginning of a video presentation
to an audiovisual interactor in a story requires no knowledge of the related

Distributed Interfaces for a Time-Based Media Application

53

video frames. The timeline approach is therefore quite intuitive and easy to
use in authoring situations.

6.2.2 iStory object layer
6.2.2.1 Parsing the StoryML to internal object models

A crucial part of iStory system is dedicated to provide object layer services.
Input StoryML documents are analyzed using an XML parser in order to
build a structural object representation of the synchronization specification.
The object structure mirrors the StoryML document structure to a schedule
for the presentation, which is managed by a timeline controller. iStory
implements a global timeline controller (cf. Figure 5-3) for synchronizing
media objects and interaction, which might distributed to several interactors.

The presentation of a document is managed at object layer through close
communication with stream layer entities. Scheduling constraints are mapped
to stream layer method invocations, which control the playback and
synchronization of media streams.

6.2.2.2 Event based interaction synchronization

In StoryML, possible user interactions are authored with defining dialogs.
These dialogs are registered to the timeline controller. At a predefined
moment, the timeline controller initializes a dialog with starting several media
objects on target interactors, as feed-forward information.

The dialog then requests the interactors to listen to the user events. Unlike
MPEG-4 or SMIL, the StoryML doesn’t associate any user input to a specific
media object, but an interactor instead. If the user reacts, the interactor will
abstract the user response as an event and this event will trigger feedback
media objects. If the user event results in a later change, then register this
change to the timeline controller. Thus, the user interaction is synchronized
in iStory system.

6.2.3 iStory stream layer

6.2.3.1 Ticktacking media objects

In iStory, a media object is defined as an entity which can be rendered by an
interactor. Audio or video streams, text, graphics, images, robotic behaviors,
and a composite object, are all media objects (cf. Chapter 4).

54 6. iStory Media and Interaction Synchronization

Each media object implements a MediaClock to keep track of time for a
particular media object. The MediaClock defines the basic timing and
synchronization operations that are needed to control the presentation of
media data.

A MediaClock uses a TimeBase to keep track of the passage of time while a
media stream is being presented. The only information that a TimeBase
provides is its current time, which is referred to as the time-base time. The
time-base time cannot be stopped or reset. Time-base time is often based on
the system clock and viewed as a real world clock.

Even these time-independent media objects, such as image, test, graphics and
robotic behaviors, are attached with a MediaClock. Therefore, all the media
objects can be viewed as time-based media, or media streams.

6.2.3.2 MediaClock based media synchronization

The timeline controller also implements a MediaClock, which the system
keeps as the master MediaClock. Media objects are registered to the timeline
controller with their starting and stopping time. Once a media object is
started by the timeline controller, its MediaClock is synchronized with, or in
other words, controlled by the master MediaClock. If the media objects are
not fast enough, then reduce the quality (e.g. drop frames in a video stream) to
catch up if necessary (cf. Figure 6-3).

Slave Master

Media Object Timeline Controller

0.* 1

Figure 6-3.Timeline based media synchronization

6.2.4 iStory media layer

The intra-media synchronization issues are not in the interests of this project.
Many multimedia platforms, such as JMF (Java Media Platform), have various
codecs or plugins for many different media formats providing the media layer
services. iStory leaves the design and implementation of this layer to these
dedicated platforms.

7

ISTORY IMPLEMENTATION

One day in the year 2001. 6:00pm in the afternoon. Xiaoxiao, a 6-year old
boy, is watching a storytelling program TOONS showing on a PC screen,
together with bis little robot Tony. It seems that Tony is not so interested —
Tony has a light on his head but now it is off- He is sleeping.

“Hi, wake up.” Xiaoxiao pats Tony’s side. He wants to watch the program
together with Tony. But Tony is a bit annoyed and reacts with a
descending arpeggio.

In the story, a girl comes to the front gate of a castle. Suddenly, one of the
rooms in the castle bursts with terrifying sounds. Xiaoxiao noticed that
Tony is woken up by the sounds and his head light is now dimly on.

“Finally you wake up.” Xiaoxiao jogs Tony. This time Tony is happy to be
touched and plays an ascending arpeggio, but still moves away a bit from
Xiaoxiao.

The girl wants to know what’s happening in the castle. She browses through
the rooms for some time and now she is standing in front of two doors.

“Which door should I enter? They all look the same... The left? The right?

Hmm, I am not sure... Tony, maybe you can belp me...”

The story catches Tony’s attention. Tony was moving back and forth,
[lashing bis head light., now be is standing there with bis bead light brightly
on.

>

“Hi, Tony, it seems that you can belp her. Hmm... The left door looks nicer”.
Xiaoxiao taps the left side of Tony. Tony reacts with a beep.

In the story, the left door opens for the girl. Bebind the door there is a
beantiful garden with colorful trees and puffy bushes.

After a while, Tony is getting tired, his head light becomes dim again.

For demonstration purpose, the iStory system was implemented on a PC and

a robot, which respectively serve as an audiovisual interactor and a robotic
interactor. The PC also provides services of the content portal, StoryML

55

56 7. iStory Implementation

parser, timeline controller and interactor manager. All these components of
both sides are based on Java [40][43] technology. Figure 7-1 shows the system
architecture of the experimental implementation.

Application
Audiovisual Virtual Robotic
Interactor SIEIpHIL AT Interactor Tony
iStory StoryML IR
Extensions Parser IR (Fies] Prococal
Java Media IBM Java
Framework XML Parser CommAPI
LeJOS
(An Embedded Java VM) S~
'/:_: Java 2 Platform ‘ I;ff-]
e
p
. ‘ Windows 2000 ‘ 4 T MR

JAVA - e o | T

Figure 7-1.iStory experimental system architecture

7.1 AT THE PC SIDE
7.1.1 Java 2 Platform

The java 2 platform [37] provides the operating system services for iStory at
the PC side. It serves as an abstraction between the upper layer building bocks
in the architecture and the operation system, i.e., Windows 2000 in this
implementation. It provides cross-platform portability, a secure runtime
environment, and networking and connectivity APIs.

In addition to the programming language and object-oriented model, iStory
uses the following services provided by the Java 2 platform:

— The Java build-in multi-thread supports for concurrent processing,
which serves as the infrastructure for interactive agents. Agents are
implemented as one Java thread and Java events are used for effective
and light-weight communication between agents.

— Threads are also used to perform a variety of asynchronous tasks. The
most important scenario is the enforcement of the playback and
timeline schedule.

Distributed Interfaces for a Time-Based Media Application

57

— The JFC/Swing user interface toolkit [40] is used to construct the
presentation component of the agents at the PC side, such as the
audiovisual interactor, the StoryML player, and so on.

7.1.2 Java Media Framework and iStory extensions

The Java Media Framework API (JMF) [39] enables audio, video and other
time-based media to be added to Java applications and applets. JMF provides
iStory the means for controlling individual media streams in a way that is
independent from delivery mechanisms, transport protocols, media types and
encoding formats. The iStory system uses JMF 2.1.1 mechanisms to
synchronize media and deal with the timing issues.

Figure 7-2 shows the key java interfaces defined by JMF and iStory
extensions. The Clock interface defines the basic timing and synchronization
for the control of the media object playback in the JMF. A Clock has a
TimeBase object which presents the flow of the real world time, independent
of any other media objects. The media time of a media object, which has a
Clock, represents the current position in time in the media stream of the
object. The iStory system implements the interface of the Clock (namely
MediaClock in the iStory system) and TimeBase for all media objects,
including robotic behavior.

The Controller interface extends Clock to provide methods for managing the
system resources and preloading data, and a listening mechanism that allows
the Player to receive notification of media events. It defines a state model for
controlling the transition of a media object through various resource
allocation states. The interface also defines methods for registering event
listeners, which will be notified through events of state changes or other
occurrences in the Controller. The Duration provides a method to determine
the duration of the media being played.

The Player supports standardized user control and relaxes some of the
operational restrictions imposed by the Clock. To synchronize the player
with other media players, all Players must use the same TimeBase. The
Player's user interface can include both a visual component as well as a
control-panel component. A Player has a DataSource, which represents the
location and delivery protocol associated with a specific media object. The
iStory MediaSource extents the DataSource for the abstraction component of
a PAC agent which requires media inputs from other agents.

58 7. iStory Implementation

A JMF Processor is a Player that takes a DataSource as input, performs some
user-defined processing on the media data, and then outputs the processed
media data. A Processor can send the output data to a presentation
component of an agent or to a DataSource. While the processing performed
by a Player is predefined, a Processor allows the application developer to
define the type of processing that is applied to the media data. This enables
the application the creation of effects, and the mixing and composing of
media data in real-time. If the data is sent to a DataSource they can be used as
the input to another Player or Processor. This kind of DataSource is
extended as a MediaSink in the iStory System. A pipeline can be built
between a MediaSink and a MediaSource in the PAC-based iStory architecture
to provide direct media transportation between PAC agents, using real-time
streaming protocols.

An iStory Media Object Processor implements the interface of a JMF
Processor, which can be used as a Player. It has a MediaSource to provide
direct visual output to the presentation component of a PAC agent, or as a
Processor to perform certain media processing and generate a MediaSink.

The iStory Timeline Controller implements the interface of the J]MF
Controller, which provides methods for an iStory Media Object to register as
a TimeEvent Listener, which extents the Media Object by defining a point in
time and a behavior of the Media Object. The Timeline Controller will
generate a TimeEvent at the registered moment and notify all the TimeEvent
Listeners, which are associated with this TimeEvent, to perform certain
behavior.

[] [

Controller Listener

1 creates

R Controller Event

iStory
Timeline Controller

‘ Player H DataSource K—{ iStory MediaSource ‘
1 1
DataSource K—{ iStory MediaSink ‘

1 creates

creates

. . . iStory
‘ TimeEvent ‘ ‘ TimeEvent Listener }—H Ml Gl Fiessssar

Figure 7-2.JMF interface hierarchy and iStory extensions

Distributed Interfaces for a Time-Based Media Application

59

7.1.3 IBM XML parser

The iStory system uses the IBM XML Suite of Java Beans [17] to parse the
StoryML to DOM (Document Object Model) objects, which allows iStory to
access and update the content, structure and style of StoryML documents. It
provides a rich set of functionalities to perform various XML related
operations like viewing, searching, editing, or processing XML documents.
The XML Bean Suite includes the following beans*:

— XMLCore beans are non-visual beans which are used by other beans.
Primarily they provide a facility to convert an XML file to a DOM
document or vice versa. Other beans in this suite operate on a DOM
document rather than operating directly on XML files.

— XMLViewer beans are a set of generic viewers, which can be used to
view any XML data, irrespective of the Document Type Definition
(DTD) that it may follow.

— XMLEditor beans are designed to construct XML editors for editing
valid XML data. These beans directly correspond to the various
constructs of a Document Type Declaration (DTD), like elements,
attributes, operators, etc.

— XMLProcessing beans provide a set of beans which can perform
various processes like searching, filtering, tokenizing DOM nodes into
strings etc. All these beans are non-visual beans and can be used with
any GUI interface.

— XMLConvenience beans are pre-wired bean idioms for most common
wiring scenarios in which XML beans can be used with AWT
(Abstract Window Toolkit).

7.1.4 StoryML parser

The StoryML parser is built on the base of the IBM XML Suite. A
DOMGenerator bean parses a StoryML document to a DOM document,
which in turn is used as input for an XMLTokenizer bean.

The XMLTokenizer bean traverses the entire tree under the DOM Document
and breaks it up into String tokens. Each time a DOM Node is encountered,

* The following descriptions about the IBM XML Suite of Java beans are edited from its online
document.

60 7. iStory Implementation

it fires document related events like the start and end of
elements/attributes/text, etc. The order of these events matches the order of
information in the StoryML document. These events are used for the
StoryML parser to construct the internal representation of the StoryML
objects.

Based on these objects, the iStory system creates the Timeline Controller, the
Interactor Manager and all the media objects. The Interactor Manager then
prepares all the virtual interactors required by the StoryML, and in turn the
virtual interactors try to talk to the physical environment and negotiate with
the physical counterparts to build the connection.

7.2 AT THE ROBOT SIDE
7.2.1 LEGO RIS

The robot used for the demonstration is assembled using the LEGO
Mindstorms Robotics Invention System (RIS) [24]. RIS includes two motors,
two touch sensors, one light sensor, more than 700 LEGO bricks, and a
programmable brick RCX. The RCX (Robotic Command Explorer) contains
a microcontroller, a Hitachi H8/3292, with a H8/300 processor, 16KB of
ROM and 32 Kb of RAM. The ROM contains low-level routines for the
motors and sensors. With an infrared tower connected to a serial port of a
PC, a wireless infrared connection can be build between a RCX and the PC
(cf. Figure 7-3).

Through the H8/3292 based device controllers the control program accesses
RCX input/output devices like buttons, a speaker, and a LCD display.
Furthermore, sensors like a touch sensor or a temperature sensor can be
connected to the RCX input ports providing sensor input to the control
program and the control program can activate actuators like motors
connected to the RCX output ports. Stimuli from the environment can be
registered by a sensor, e.g. a touch sensor, and transformed into input values
for the control program. The resulting response can be accomplished by the
control program through values output to actuators, e.g. a motor.

Distributed Interfaces for a Time-Based Media Application

61

3 Input Ports

/

4 ‘7 Touch Sensor

LCD Display
3 Output Ports

Light Sensor

Infrared Transmitter/Reciever

Touch Sensor —&

Motor

Infrared Tower

Figure 7-3.Some components of RIS

The development of control programs takes place on a host computer (e.g., a
PC). The control program is downloaded to the RCX through a serial
communication link provided by the infrared transmitter/receiver. The
control program can be developed in different programming environments
offered by LEGO or in other alternative programming environments.

7.2.2 LeJOS - an embedded Java virtual machine

There are two categories of alternate programming environments for the
RCX. The first uses the default firmware on the RCX and provides alternate
programming environments on the desktop PC. The second class of alternate
programming environment uses replacement firmware and also provides a set
of PC-side tools for programming. LeJOS falls into this category. LeJOS was
created by Jose Solorzano, a Java developer and LEGO robot enthusiast [36].

Only a small subset of the Java Virtual Machine and APIs can be
implemented on such a small device like the RCX. LeJOS is indeed a small
Java Virtual Machine that is downloaded to the RCX to replace the standard
firmware from LEGO. The current footprint of LeJOS in the RCX is 17 Kb.

Java programs are written and byte-compiled on the PC and downloaded to
the RCX. A LeJOS program can use some standard Java libraries, such as
java.lang, java.io, and java.util. It has libraries for control of motors, sensors,
LCD and Buttons. Furthermore, it has SensorListener and ButtonListener for
the communication between several RCX-Bricks or between RCX and PC. It

62 7. iStory Implementation

also includes substantial additional functionality, including support for
threads, floating point, string constants and multi-program downloading.

723 Tony

Figure 7-4 shows the robot, named Tony, used in the iStory system. Tony is
equipped with four touch sensors. The left and front touch sensors are
connected to the same input port on the RCX brick, while the right and back
touch sensor occupy another input port. Depending on the context of the
interaction and the status, Tony can distinguish which sensor is being
touched.

A light on Tony’s head is connected to one of the output ports on the RCX.
With this light, the robot shows its attention at different levels with a
different level of brightness. Tony has two wheels that are driven by two
motors connected to another output port, so that it can move back and forth.

The speaker in the RCX can play ascending and descending arpeggio, which
indicates respectively an annoyed or happy mood.

Tony is programmed in Java and simply can perform four different behaviors:
it can be at sleep, relaxed, in attention, and tired. The LCD display on the
RCX shows the state of the behavior that the robot is currently performing.
Table 7-1 shows how Tony will execute different behaviors and possible
interactions during a performance.

A request can be send from another device, for example, a PC, which has an
infrared tower connected to its serial port, to Tony’s infrared receiver. The
term “request”, instead of a “command”, indicates that Tony doesn’t have to
perform the requested behavior - Tony is independent. Whether a behavior
will be exhibited depends on its current mood and interests, and on the
quality of the request (the quality of infrared connection, bad connection will
make the request unclear for Tony).

Only when Tony is performing “in attention” and any of its touch sensors is
being triggered, it will give immediate feedback with a beep and then send out
an event to other devices, indicating which sensor has been touched.

Tony is presented to a StoryML show in the iStory system as an interface
agent, and as a companion for the user. It watches the program together with
the user, and performs some requests from the program, i.e. renders some
robotic behavior objects from the program. When the program gets Tony’s

Distributed Interfaces for a Time-Based Media Application

63

attention, the user can press one of its touch sensors to react on the program.
The user will get immediate feedback from Tony and from the program as
well. The feedback from the program is shown on one or many interactors.

The brightness of the
light indicates the
level of attention

LED Display shows the
Descending and ascending current behavior
arpeggio from RCX indicate

respectively annoyed and

happy mood

Infrared Receiver/Transmitter

Touch Sensor (Right side)

Touch Sensor (Front)

Figure 7-4.Tony ’

Table 7-1.Tony's behaviors and possible interactons

Behavior Sleeping Relaxed In Attention Tired
Flashing for a
Light Off Dim while, then Dim
g bright
g Ascending
g Sound Quiet Quiet arpeggio then Quiet
5 quiet
& Move forth and
Movement At rest At rest back once, then At rest
at rest
% E Sound Descend.ing Ascendi.ng Beep Descend'ing
=i arpeggio arpeggio arpeggio
pq? 5..% Movement Moving
away

* Tony is based on a robot assembled by Christoph Bartneck.

64 7. iStory Implementation

Events Which sensor 1s

sent out touched

7.3 COMMUNICATION

In order to enable the bidirectional communication between the PC and
Tony through the infrared connection, an IR Protocol agent is build at both
sides based on the LeJOS and Java Communications API version 2.0[38]. Java
Communication APl is a standard extension API that enables Java
applications to talk to serial and parallel data ports on a computer. This
version of the Java Communications API contains support for RS232 serial
ports and IEEE 1284 parallel ports.

A Virtual Robotic Interactor is created at the PC side as Tony’s software
counterpart. This Virtual Interactor keeps verifying every 2 seconds whether
Tony is present in the environment by sending a handshaking message. If
Tony is not found, the Virtual Robotic Interactor will be visible on the screen
with a standard graphic user interface, with which the user can interact by
using standard input devices such as a keyboard or a mouse. If Tony is present
in the environment, the Virtual Robotic Interactor is hiding in the
background. All the requests sent to the Virtual Robotic Interactor will then
be transferred to Tony, through the IR Protocol agent.

The IR Protocol agent uses the Java Communications API to handle low-level
details of IR communication with the Tony’s RCX through the IR tower. A
supporting class was created to assist the IR Protocol agent in the
asynchronous receipt of messages between the PC and the RCX.

The infrared communication between a PC and a RCX is originally designed
for sending commands and data from the PC to the RCX. After sending out a
message, the IR tower will wait for the verification from the RCX for only 4
seconds to save battery power. These 4 seconds are the only chance for the
RCX to send messages back to the IR tower. To ensure continuous
bidirectional communication between the IR tower and the RCX, the IR
Protocol agent keeps the IR tower alive by sending out a NOP (No-
Operation instruction) every 4 seconds.

Distributed Interfaces for a Time-Based Media Application 65

7.4 SOME TECHNICAL DIFFICULTIES
7.4.1 Owerlay graphics on video

One of the key requirements for showing an interactive program on a screen
is to overlay GUI components, graphics and text over the video using
transparency. This can be done in Java by JFC/Swing components.
JEC/Swing components are light weight components. JMF by default uses
heavy weight components for the visual component of a video stream. Heavy
weight components are used to JMF's advantage as they permit using native
rendering methods for higher frame rate video. However, the lightweight
widgets are always covered by the heavyweight component of the video when
the alpha channel is set, which makes the overlay problematic.

JMF 2.1.1 comes with several different video renderers. Although the default
video renderer uses heavy weight components, it is possible to force a player
to render using light weight components.

But in practice, the author found out that this solution is implementation
dependent since it may not work with all players. Furthermore, although a
transparent graphics, especially an animation, can be put on a light weight
video component, the performance of video playback is badly reduced.

One of the possible solutions is to use Java 2D [41]. With Java 2D, It is
possible to draw graphics and text into a Java 2D BufferedImage directly,
when the video bits are about to be rendered. This functionality can be
expected in future versions of JMF.

There is another alternative way to place a transparent component over the
video. Usually, some dedicated platforms, such as Philips TriMedia set-top
box, have a graphics processor which supports colors with transparency. This
has been specified in the GUI API of DVB Java platforms as a TV extension
[34].

In this project, this problem remains unsolved. To work around it, all the
needed overlay components were merged into video streams. The problems
with this method are that each light component has to be presented as a heavy
video stream and that this limits the number of this kind of components.
Direct manipulation on these light components is impossible.

66 7. iStory Implementation

7.4.2 Start latency

In JMF, starting synchronous playback is based on JMF knowing the Start
Latency of each media object. That is, JMF calculates the maximum time it
will take to start all involved threads in order to determine a common instant
when all the threads can be started.

To determine how much time is required to start a media object, one can call
the getStartLatency method of the media object. For media objects that have a
variable start latency, the return value of getStartLatency represents the

maximum possible start latency. But for some media types, getStartLatency
might return LATENCY UNKNOWN.

The iStory system often uses these media objects as feedback and feed-forward
information. It means that these media objects have to be partly pre-fetched
for immediate start-up. For such objects the start latency must be guessed.
This introduces uncertainty in synchronously starting media streams.

7.4.3 Seamless video stream switching

The iStory system presents the storylines using MPEG-1 or MPEG-2 streams.
One of the important requirements is to switch between these storylines
seamlessly.

MPEG uses three different frame types; I, P and B. I frames are self-contained
and independent, while P and B frames contain mostly frame differences.
Jumping into a bit stream at a P or B frame means that the I frame to which
the P or B frame refers is missing. The result is garbage until the next I frame.
Although the garbage frames could be hidden with a black screen, the user

will suffer flicking screen during stream switching.

Furthermore, the amount of time required to send MPEG frames varies.
Because video frames occur at regular intervals, MPEG decoders use a buffer
to reconcile the differences between input and output data rates. MPEG
encoders must carefully construct bit streams to prevent decoder buffer
over/underflow. Switching between different bit streams together can cause
buffer management problems.

Seamless switching can be done with MPEG streams by first decoding to
video, then switching the video and finally re-encoding the switched video.
This is seamless and frame accurate, but has two drawbacks: high cost and
reduced picture quality. Encoders are expensive, and each time the stream is

Distributed Interfaces for a Time-Based Media Application

67

decoded and re-encoded, additional coding artifacts are produced. Directly
switching the bit stream would be a better solution.

The focus of this project is not to solve this problem. So the iStory system
takes another approach. As the first method mentioned above, the iStory
system first decodes MPEG stream to video. This is done with the facilities
provided by the JMF Players and results in visual components containing
these video streams. These visual components are organized into a
presentation window using Java AW'T CardLayout manager. The
presentation window is the container of these visual components. A
CardLayout object is a layout manager for a container. It treats each
component in the container as a card. Only one card is visible at a time and
the container acts as a stack of cards. Switching MPEG streams is then simply
done by bringing a visual component to the front in the presentation window
using CardLayout manager, with DoubleBuffer enabled to achieve faster
switching.

7.4.4 Programming and debugging RCX

Memory really is in short supply on the RCX. After all, one has only got
32KB of RAM to play around with, of which the LeJOS firmware takes up
about 17KB. Furthermore, LeJOS doesn't actually implement garbage
collection. If objects are created in a loop, or in response to sensor events,
then it is probably going to run out of memory sooner or later. Discarded
objects will never be collected as garbage.

Debugging on a small device like the RCX is difficult. One of the problems is
that the development cycle is awkward - The program is coded and compiled
on one machine (i.e. a PC) and tested on another (i.e. the RCX). LeJOS
appears to include an emulator that can be used to test the code, but most of
the functions of a Robot are related to its robotic input and output, which can
hardly be simulated on a PC.

To debug the LeJOS program on a RCX is rather tricky. One of the methods
is to put the debug information on the LCD screen. Although only five
characters can be shown on it it is still enough to be a useful debug tool.
Another possibility is to play sounds. It is useful to signal when the program
makes certain decisions or when it detects specific sensor conditions.

LeJOS can also display an uncaught exception on the LCD screen. The
exception is displayed as AAAA B, where AAAA are the method signature
numbers and B is the exception class index number. With a signature number

68 7. iStory Implementation

and class index check list, it is possible to figure out what exception was
thrown and which method threw it.

8 CONCLUSIONS AND FUTURE DEVELOPMENTS

In chapter 1, the focus of the work presented in this report has been brought
forward in a question: how to structure the system and content to support
distributed interfaces for time-based media applications?

First this question was addressed by evaluating and using existing content
documentation and system architecture technologies. By using user-centered
approaches, these technologies were analyzed and examined in the context of
user requirements. The author concluded that these technologies could hardly
satisfy these user requirements and that new approaches had to be developed.

8.1 HOW ISTORY SATISFIED REQUIREMENTS

The iStory system was developed as a basic framework and a starting point
for enabling interactive time-based media content to be presented in a
networked environment, e.g., the user’s home. The design and
implementation of this experimental system, i.e., the iStory system was
presented. The goal of the design and implementation is not a system that will
be used for production purposes.

The iStory system structures the interactive story in StoryML, an XML-based
content documentation language. To play a StoryML document, a StoryML
player was developed with an extended PAC-based architecture. MediaClock
and timeline based mechanisms enable the media and interaction
synchronization in this architecture. These technologies together satisfied the
requirements which were presented in section 3.2.

8.1.1 Distributed interfaces

StoryML has been defined as a solution for interactive story documentation,
in which appropriate elements, i.e. <environment>, <interactor>, are
dedicated to describing a desired environment which has multiple interactors
involved. In the user’s environment, the devices involved are self-contained
and standalone. The StoryML player makes use of the PAC-based
architecture, which emphasizes the independence of these devices and the
communications between the system components.

The Abstraction component of a PAC agent is extended with MediaSource
and MediaSink ports. A direct pipeline is built between a MediaSink and a

69

70 8. Conclusions and Future Developments

MediaSource to improve the efficiency of the communication between these
distributed agents while the control hierarchy of the system remains intact.

8.1.2 Context dependent interaction

The environment involves multiple devices with a variety of user interfaces.
The configuration of such an environment is dynamic in both space and time
dimensions. The StoryML player always first satisfies the desired
environment described in the StoryML with virtual software interactors,
which is designed as an obligatory layer in its architecture. Software
interactors function as the software counterparts for physical devices that are
required by a StoryML document for interaction and presentation.

These physical devices might or might not always be available in the
environment of the user. Since the configuration of the user environment is
dynamic, an application can not assume a static, stable or pre-defined
configuration of available physical devices for interaction. Many physical
devices can be present in this type of end-user environment. The software
interactors take the role of the physical device if it is not available. The user
interaction can be switched between the hardware devices and their counter
software interactors on the fly according to the current configuration of the
system or the preference of the user.

8.1.3 Synchronized media and interaction

In StoryML, an implicit timeline is used for media and interaction
synchronization specification. By comparing with the conceptual model of
the interactive story, it is quite an intuitive way and the metaphor behind it
can be easily understood.

The StoryML player implements the timeline as an agent, i.e., the
TimelineController, which monitors and manages the synchronization. This
agent implements a MediaClock as the basic clock, to which all the media
object’s MediaClocks are synchronized. Time-based events are registered to
and triggered by the timeline at certain moments to start, suspend, resume
and stop a dialog between the user and the content.

8.2 STRENGTHS

Many strengths of the iStory system come with open technologies. The iStory
system is based on XML and Java technologies. A combination of XML and
Java is natural: “XML is the portable data and Java technology is the portable,
maintainable code” [44]. XML is the preferred technology in many

Distributed Interfaces for a Time-Based Media Application 71

information-transfer scenarios because of its ability to encode information in a
way that is easy to read, process, and generate. XML gives Java something to
do [4]. Java provides XML with the capabilities of platform-independent data
processing. Together, XML and Java technologies provide the iStory system
with strengths of simplicity, portability, and flexibility.

JMF decouples both media types and network protocols from applications.
Integrating support for new media types and protocols into the iStory system
is straightforward. JMF 2.0 plug-in architecture makes it easy to add new
codecs for emerging standards, such as MPEG-4 audio/video codecs. The Java
programming environment allows developing Java plug-ins that will work on
any Java platform, or plug-ins that make optimal use of the native
hardware/software audio and video facilities.

Although the StoryML system is application or domain oriented - its focus is
on a storytelling application for a limited target user group, the development
approaches and results can serve as a framework for similar applications. As a
good starting point, it paves a way towards generic solutions for serving
interactive content in a distributed environment.

8.3 WEAKNESSES

In the iStory system, the content distribution and synchronization is at the
level of media objects. Media objects are distributed to interactors, and
synchronized with a TimelineController. Centralized synchronization
requires a stable and fast network infrastructure to ensure that time-based
events can reach the interactors in time. Although some efforts have been
made to improve the efficiency of the communication between the agents or
interactors, this is a pitfall if the iStory system is running on a poor network.

An implicit assumption has been made in the design and implementation of
the iStory system: In the user’s environment, there is at least an audiovisual
interactor with a screen and input accessories, on which the virtual software
interactors can always present themselves if their physical counterpart is not
available. This limits the use of iStory framework for an interactive program
which does not require any visual presentation, e.g. an interactive radio
program.

8.4 FUTURE DEVELOPMENTS

StoryML doesn’t associate any user input to a specific media object, but to an
interactor instead. The interaction specification stays on the level of StoryML

72 8. Conclusions and Future Developments

document. Considering that a media object in StoryML can be a MPEG-4
stream, the media object itself will contain another layer with interactive
objects with which the user can interact. How to deal with such multilayered
interactive content is not answered in this project but has to be addressed in
future development.

Another untouched issue is multi-user interaction. In a media presentation
environment, especially the home environment, different user profiles should
be considered in the future development: children, parents, guests,
neighborhoods, etc. Different users would like to have different favorite
interface devices or interface “look&feel”. Multiple users may enjoy the
content together: cooperatively or competitively in the home or at different
places. This introduces an interesting direction: The environment, and the
distributed interfaces in the environment, should be adaptive to different
users.

For presenting interactive content in a distributed environment, another
possible alternative approach is so-called scalable interactors. Instead of
dispatching media objects to the interactors, the interactive content document
itself, e.g., a StoryML document will be directly distributed to all the
interactors. Each interactor parses and distills the document and renders
different parts. This approach does not make any assumption about the
configuration of the environment. The synchronization of the media objects
1s also distributed, which will reduce the needs for centralized
synchronization considerably. This will overcome weaknesses that the iStory
system has. It is very interesting, though it is not clear yet how these same
documents rendered by different interactors can keep updated simultaneously
when the user interacts with one of them.

It is 6:30pm already.
TOONS is over, but it promises that more episodes are coming. “Tony,
when will be the next TOONS show?” Xiaoxiao enjoyed the program very

mauch.

“Next week, same time.” Tony says.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Allen, J.F. Maintaining Knowledge about temporal intervals. Commun.
ACM, Vol. 26, pp.832-843, Nov. 1983.

Blair, G.S.; Coulson, G.; Papathomas, M.; Robin, P.; Stefani, J.B.; Horn,
F.; Hazard, L. A Programming Model and System Infrastructure for Real-
Time Synchronization in Distributed Multimedia Systems. IEEE Journal
on Selected Areas in Communications, Jan., 1996. Vol 14, Issue 1, pp. 249-
263.

Blakowski, G.; Steinmetz, R. A Media Synchronization Survey:
Reference Model, Specification and Case Studies. IEEE Journal on Selected
Avreas in Communications, Jan. 1996. Vol. 14, Issue 1, pp 5-35.

Bosak, Jon. XML, Java, and the Future of the Web. Available on the Web:
< http://www.ibiblio.org/pub/sun-
info/standards/xml/why/xmlapps.htm >

Buford, J.F.K. Architectures and Issues for Distributed Multimedia
Systems. In: Buford J.F.K. Multimedia Systems. New York, New York,
USA: ACM Press, 1994, pp.45-46.

Bukowska, M. Winky Dink Half a Century Later. Interaction with
Broadcast Content: Concept Development Based on an Interactive
Storytelling Application for Children. Final report of the post-masters
program: User-System Interaction. Aug. 2001. ISBN 90-444-0116-5.

Calvary G., Coutaz J. Nigay L. From single -user architectural design to
PAC*: a generic software architecture model for CSCW. Proceedings of
the ACM CHI'97, Addison-Wesley, pp242-249.

Choti, S.; Chung K.; Shin, Y. Distributed Multimedia Presentation System
Based on the MHEG. Proceedings, 12" International Conference on
Information Networking, 1998. Jan. 21-23, 1998. pp.403-406.

Coomans, M.K.D.; Timmermans, H.J.P. Towards a Taxonomy of
Virtual Reality User Interfaces. Proceedings, IEEE conference on
Information Visualization (IV '97). 1997. London.

[10] Coutaz, J. PAC-ing the Architecture of Your User Interface. DSV-IS 97,

4" Eurographics Workshop on Design, Specification and Verification of
Interactive Systems, Springer Verlag Publ., pp. 15-32.

73

74 References

[11] Duke, D.].; Herman, I. A Standard for Multimedia Middleware.
Proceedings of the 6" ACM International Conference on Multimedia *98.
Bristol, UK. pp 381-390.

[12] Eric S. Interactive Toy characters as Interfaces for Children. Information
Appliances and Beyond: Interactive design for consumer products. Morgan
Kaufmann Publishers, 2000.

[13] Evain,],P, The Multimedia Home Platform - an overview. EBU Technical
Review, Spring 1998.

[14] Future TV project. < http://www.tml.hut.fi/Research/future-
tv/index.html >

[15] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements

of Reusable Object-Oriented Software. Reading, Massachusetts: Addison-
Wesley, 1994.

[16] Herrmann, L. Immersive Broadcast: Concept and Implementation. Philips
LEP Techinical Report C 2000 748.

[17]IBM XML Suite of Java Beans
< http://www.alphaworks.ibm.com/alphabeans >

[18]ISO (International Organization for Standardization). ISO 8879:1986(E).
Information processing - Text and Office Systems - Standard Generalized
Markup Language (SGML). First edition - 1986-10-15. [Geneva:
International Organization for Standardization, 1986.

[19]IST program. NexTV Project.
< http://www.extra.research.philips.com/euprojects/nextv/ >

[20] James H., Edwin h., David K. Distributed Cognition: Toward a New
Foundation for Human-Computer Interaction Research. Transactions on
Computer-Human Interaction, ACM Press, New York, vol.7, No. 2, June
2000, pp. 174-19.

[21]Jeremy S. G. A taxonomy of interactivity. Available on the Web:
< http://www.itvnews.com/research/creation.htm >

[22] Koenen R. MPEG-4, Multimedia for Our Time. IEEE Spectrum, Vol. 36,
No. 2, February 1999, pp. 26-33.

[23] Koninklijke Philips Electronics N.V. Special item: Ambient Intelligence.
Available on the Web:
< http://www.research.philips.com/generalinfo/special/ambintel/ >

[24] LEGO Mindstorms Robotics Invention System (RIS)
< http://mindstorms.lego.com/ >

Distributed Interfaces for a Time-Based Media Application 75

[25] Little, T.D.C. Time-Based Media Representation and Delivery. In:
Buford J.F.K. Multimedia Systems. New York, New York, USA: ACM
Press, 1994. pp. 175-200.

[26] Luetteke,G. The DVB Multimedia Home Platform. Philips Consumer
Electronics, Hamburg, November 1998.

[27]Mallart, R. Immersive Broadcast Reference Application. White Paper, Sept.
1999.

[28] Meyer, T.; Effelsberg, W. Steinmetz, R. A Taxonomy on Multimedia
Synchronization. Proceedings of the 4* Workshop on Future Trends of
distributed Computing Systems, 1993. Sept. 22-24, 1993. pp. 97-103.

[29] MPEG. Overview of the MPEG-4 Standard. Available on the Web:
< http://www.cselt.it/ mpeg/standards/ mpeg-4/ mpeg-4.htm >

[30] NexTV. Deliverable D1 WP3: Application Version 1. March 2001.

[31] NexTV. Deliverable D2 WP1: Requirements for the Selected Application and
its User Interface. June 2000.

[32] Norman D.A.; Draper S.W., User Centered System Design. New
Perspectives on Human Computer Interaction, Lawrence Erlbaum
Associates, Inc., Hillsdale, NJ, 1986.

[33] Pfaff G.E. et al.: User Interface Management Systems, Pfaff, G.E. ed.,
Eurographics Seminars, Springer Verlag, 1985.

[34] Peng, C.; Vuorimaa, P. Development of Java User Interface for Digital
Television. 8” International Conferences in Central Europe on Computer
Graphics, Visualization and Computer Vision. 2000.

[35] SGI. SGI Mediabase: Intelligent Media Streaming for Intranets and the
Internet. Available on the Web:
< http://www.csupomona.edu/ ~ glen/mediabase/sgi.pdf >

[36] Solorzano, J. leJOS: Java based OS for Lego RCX. Available on the Web:
< http://lejos.sourceforge.net/ >

[37] Sun Microsystems, Inc. Java 2 SDK, Standard Edition Documentation
Version 1.3.1. Available on the Web:
< http://java.sun.com/j2se/1.3/docs/ >

[38] Sun Microsystems, Inc. Java Communications API Users Guide, Available
on the Web:
< http://java.sun.com/products/javacomm/javadocs/API users guide.h
tml >

76 References

[39] Sun Microsystems, Inc. Java Media Framework API Guide. Available on
the Web: < http://java.sun.com/products/java-
media/jm{/2.1.1/guide/ >

[40] Sun Microsystems, Inc. Java Foundation Classes (JFC).
< http://java.sun.com/products/jfc/ >

[41] Sun Microsystems, Inc. Programmer's Guide to the Java 2D API: Enhanced
Graphics and Imaging for Java. Available on the Web:
< http://java.sun.com/j2se/1.3/docs/guide/2d/spec/j2d-title.fm.html >

[42] Sun Microsystems, Inc. The Java Language Specification. Available on the
Web: < http://java.sun.com/docs/books/jls/index.html >

[43] Sun Microsystems, Inc. The Java Virtual Machine Specification. Available
on the Web: <http://java.sun.com/docs/books/vmspec/index.html >

[44] Sun Microsystems, Inc. XML technology support in the Java platform -
FAQ. Available on the Web:
< http://java.sun.com/pr/1999/03/pr990309-faq.html >

[45] The UIMS Tool Developers Workshop. A Metamodel for the Runtime
Architecture of an Interactive System. SIGCHI Bulletin, 24(1):32--37,
January 1992.

[46] W3C. Extensible Markup Language (XML) 1.0 (Second Edition). Available
on the Web: < http://www.w3.org/TR/2000/REC-xml-20001006 >

[471W3C. HTML 4.01 Specification. Available on the Web:
< http://www.w3.org/ TR/html4/ >

[481 W3C. Synchronized Multimedia Integration Language (SMIL) 1.0
Specification. Available on the Web: <http://www.w3.org/ TR/REC-
smil/ >

[491 W3C. Synchronized Multimedia Integration Language (SMIL 2.0)
Specification. Available on the Web:
< http://www.w3.org/ TR/smil20/cover.html >

[50] Wahl, T.; Rothermel, K. Representing Time in Multimedia Systems.
Proceedings of the International conference on Multimedia Computing and
Systems, 1994, May 15-19, 1994. pp. 538-543.

APPENDIX A. DTD (DATA TYPE DEFINITION) OF STORYML

<?xml encoding="1is0-8859-1"?>

<=
StoryML.dtd
This is the XML document type definition (DTD) for StoryML 1.0.
Date: 2000/05/30
Author: Hu, Jun <mail@mrhujun.com>
——>
<!-- Generally useful entities -->

<!ENTITY % id-attr "id ID #IMPLIED">
<!ENTITY % title-attr "title CDATA #IMPLIED">
<!ENTITY % media-attr "
src CDATA #IMPLIED
content CDATA #IMPLIED
interactor IDREF #IMPLIED
type (audio|video|audiovisual | text|image |graphics|behavior)
'audiovisual'
">
<!- StoryML Document -——>
<l--
The root element StoryML contains all other elements.
-——>
<!ELEMENT StoryML (environment?,story?)>
<!ATTLIST StoryML
$id-attr;

>

<I- Environment Element -——>
<!ELEMENT environment (interactor*)>
<!ATTLIST environment

$id-attr;

>

<!- Interactor Element -—>
<!ELEMENT interactor EMPTY>
<!ATTLIST interactor

$id-attr;

type (audiovisual | robot) "audiovisual"

>

<!- Story Element -——>
<!ELEMENT story (storyline*, interaction+)>
<!ATTLIST story

$id-attr;

gtitle-attr;

>

<!- Storyline Element -—>
<!ELEMENT storyline EMPTY>
<!ATTLIST storyline

$id-attr;

$media-attr;

<= Interaction Element -——>

77

78

Appendix A. DTD (Data Type Definition) of StoryML

<!ELEMENT interaction
<!ATTLIST interaction

(dialog*)>

$id-attr;
>
<I- Dialog Element -—>
<!ELEMENT dialog (feedforward*, response*)>
<!ATTLIST dialog
%id-attr;
begin CDATA #IMPLIED
end CDATA #IMPLIED
wait CDATA #IMPLIED
type (immediate|delayed) "delayed"
>
<I- Feedforward Element -—>
<!ELEMENT feedforward EMPTY>
<!ATTLIST feedforward
$id-attr;
Smedia-attr;
>
<!- Response Element -——>
<!ELEMENT response (feedback*)>
<!ATTLIST response
%id-attr;
interactor IDREF #IMPLIED
event CDATA #IMPLIED
storyline IDREF #IMPLIED
action (switchto|change) "switchto"
changecontent CDATA #IMPLIED
default (yes|no) "no"
>
<!- Feedback Element -—>

<!ELEMENT feedback EMPTY>

<!ATTLIST feedback
$id-attr;
gmedia-attr;

APPENDIX B. TOONS IN STORYML

<?xml version="1.0"?>
<IDOCTYPE StoryML SYSTEM "StoryML.dtd">

<l--
This is the XML document for TOONS.
Date: 2000/05/30
Author: Hu, Jun <mail@mrhujun.com>
==——>
<StoryML>
<environment id="ToonsPlatform">
<interactor id="screen" type="audiovisual" />
<interactor id="Tony" type="robot" />
</environment>
<story id="TOONS" title="TOONS (c)Philips Research" >
<storyline id="HappyGarden"
src="file:E: /happygarden.mpg" interactor="screen"
<storyline id="AngryGarden"
src="file:E:/angrygarden.mpg" interactor="screen"
<interaction>
<dialog id="WakeupTony" begin="25000" end="65000" >
<feedforward content="relaxed"
type="behavior" interactor="Tony" />
</dialog>
<dialog id="WhichDoorToEnter"
begin="37000" end="52000" wait="48000" >
<feedforward content="attention"
type="behavior" interactor="Tony" />
<response interactor="Tony" event="left" default="yes"
storyline="HappyGarden" action="switchto" >
<feedback src="file:E:/door open blue feedback.mpg"
type="video" interactor="screen" />
</response>
<response interactor="Tony" event="right"
storyline="AngryGarden" action="switchto">
<feedback src="file:E:/door open green feedback.mpg"
type="video" interactor="screen" />
</response>
</dialog>
</interaction>
</story>
</StoryML>

79

/>

/>

APPENDIX C. SCREENSHOTS FROM ISTORY

File View Help

e - T

[StoryL
@ [environment
= interactor
= interactor
9 [story
=] stondine
[stongdine
@ [interaction
% [dialog
= feedforward
%] dialog
7 feedforward
9
[feedback
% Jresponse
= feedback

21 interactor=lego

[event=left

D switchto=happygarden
D default=yes

[feedback

(% |E StoryML Parser
<response-
- interactor = lego
- eyent = right
- gyitchto = angrygarden
- default = no
<feedback>-
- Src = file:D:sdoor_open green feedb
- type = wideo
- interactor = SCEeen
< /feedhacks-
< /response>
</dialog-
<finteractions-
<jstory>
FEtoryMLs
ML

The StoryML parser creates the internal objects
according to the DOM (Document Object Model). After
pre-fetching certain amount of content, the story is now
ready to show.

80

Distributed Interfaces for a Time-Based Media Application

81

TOONS starts. It seems that Tony is not so interested -
Tony has a light on his head but now it is off. He is sleeping.

Blast! Tony is woken up by the sounds and his head light is

now dimly on.

Audiovisual Agent - screen

=T}

82 Appendix C. Screenshots from iStory

Audiovisual Agent - screen

The girl is standing in front of two doors. “Which door should I
enter? They all look the same...The left? The right? Hmm, I am
not sure... Tony, maybe you can help me...” The story catches
Tony’s attention. Tony was moving back and forth, flashing his
head light, now he is standing there with his head light brightly on.

The user can make decision by tapping Tony’s left or right touch
sensors. The user selected the left door, so the left door is opening
for the girl now.

Distributed Interfaces for a Time-Based Media Application

83

Behind the left door there is a beautiful garden with colorful trees and
puffy bushes. Tony is getting tired and his head light becomes dim

again.

Hello, I am Tany.
Reguest wake up
Reguest attention
StarListening: left
StartListening: right

The software interactor takes the role of Tony if he is not
available. The user interaction can be switched between Tony and

84

Appendix C. Screenshots from iStory

the software interactor on the fly according to the current
configuration of the environment or the preference of the user.

