Heart Calligraphy: an Abstract Portrait Inside the Body

Bin YU

Eindhoven University of Technology Eindhoven, the Netherlands B.Yu@tue.nl

Rogier Arents

1e Pijnackerstraat 36, 3036 GJ Rotterdam, the Netherlands rogierarents@gmail.com

Jun Hu

Eindhoven University of Technology Eindhoven, the Netherlands J.Hu@tue.nl

Mathias Funk

Eindhoven University of Technology Eindhoven, the Netherlands M.Funk@tue.nl

Loe Feijs

Eindhoven University of Technology Eindhoven, the Netherlands L.M.G.Feijs@tue.nl

Abstract

Heart Calligraphy is a biofeedback installation that creates abstract portraits of participants with their heartbeat data using a pen plotter. The real-time heart rate is mapped to the basic parameters of the pen's behaviors, namely speed, position, pressure and pendown time. Due to the natural variability in heart rate, every portrait becomes personal and unique graphic, which reflects the natural biorhythm inside human body. The installation explores the role of the body as a channel through which physiology manifests itself in a form of beauty.

Author Keywords

Biofeedback, heart rate variability, artistic visualization, pen plotter

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI): Miscellaneous;

Introduction

When experiencing excitement or fear, we feel our hearts beat faster. However, the heart is continually changing the frequency of its beat without us being aware of it. Biofeedback is a technique that measures the physiological processes, and then rapidly 'gives back' the data to the users helping them be aware of

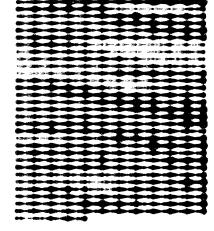


Figure 1: One Drawing by Heart Calligraphy (Pen pressure mapping, Rollerball pen, Inkjet paper)

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org TEI '16, February 14-17, 2016, Eindhoven, Netherlands © 2016 ACM. ISBN 978-1-4503-3582-9/16/02...\$15.00 DOI: http://dx.doi.org/10.1145/2839462.2856341

Figure 2: Wang Duo (Chinese, 1592–1652). Free Copy of Xu Jiaozhi's Calligraphy in semicursive script, dated 1635.

Figure 3: The Spiral painting of Metaphone [7]

their physiological conditions and promote self-regulation on their physiology [1]. In addition to external factors, our physiology is subject to many internal influences such as hormones, breathing patterns and mental states. For example, the heart rate is always influenced by the "fight" and "rest" responses of Autonomic Nervous System [2]. Heart Calligraphy is a participatory live-art installation, which offers the audience a biofeedback experience through the mechanical movement, sound, and artistic visualization.

Heart Calligraphy collects heart rate data from participants and transforms the data into the pen movements creating a unique calligraphy or drawing from the heart. We draw inspiration from Chinese calligraphy. In traditional Chinese culture, calligraphy, like a mirror, is a silent reflection of the mind. In the Han Dynasty, a scholar names Yang Hsiung¹ stated that "Scripts are the Mind Image" [3]. Today, some artists even state that Chinese calligraphy is "the electrocardiogram of the human spirits". A Chinese calligrapher's goal is to vividly and honestly convey his or her mind. This is the reason that the masters often emphasize that "the mind always leads the brush". Once the brush movement hesitates, a black mark is created.

Through this project, we follow a similar idea that "let the heart lead the brush", where each heartbeat triggers one movement, creating a line or a dot. The variation of heart rate is demonstrated by pen's behaviors in real time and the overall heart rate variability (HRV) information is reflected by the visual characteristics of the generated drawings on paper.

Besides, we are also curious to see how the working of a machine (plotter) could shape a form of biofeedback. As a biofeedback display, we also want to explore how an interactive experience could structure the participant's awareness and exploration of heart rate variability as a psycho-physiological phenomena.

Biofeedback Displays

In essence, biofeedback system is a real-time interactive system; where the input is measured from users' body (bio), and the output is the information (feedback) about their body (bio). Users interact with the system by manipulating their psycho-physiological activities. Biofeedback is not just about presentation of the bio-data; it offers the users a mediated experience of their internal physiological processes. To enhance this experience, many researchers have developed multi-model interfaces beyond a screen-based display. Sonic Cradle [4] is designed for a respiration biofeedback meditation practice. It provides an immersive experience where the user is suspended in darkness, controlling sound through the regulation of his respiration. Cardiomorphologies [5] is a physiologically responsive artwork, which presents participant's breath and heart rates through a large mandala-like video projection and real-time sonification. It offers the participants a new way of observing and experiencing subtle changes in the body state.

In another direction, some artists and designers who are inspired by the dynamic process inside body, devoted to creating artworks with bio-data. Some of them investigated artistic visualization of biofeedback information by way of "drawing" and "sculpting" data. For instance in [6], the authors proposed a biofeedback system which helps elderly people learn to become

¹ http://www.iep.utm.edu/yangxion/

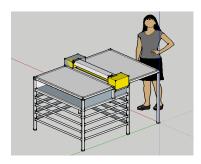


Figure 4: The sketch of the installation

Figure 5: The participants interacting with Heart Calligraphy

aware of their physical state and influence it into a healthier direction. This information is presented to the user as individual artwork (a digital painting), which is created from the measured biosignals and the position of a cursor. *Metaphone* [7] is an interactive installation that transforms the participant's bio-data into colors resulting in aquarelle paintings, as shown in Figure 3.

As a biofeedback display, it is important to balance the clarity of information and artistic/aesthetics expression. In our project, we use a pen plotter both as an interface and as part of a greater 'machinic' system, which can not only provide immediate feedback by its drawing 'behaviors', but also create a calligraphy/drawing as a delayed feedback. The plotter works on the Hewlett-Packard Graphics Language (HPGL-format) commands, which ensures that it can be controlled immediately and accurately. And the effect of actual ink touching paper allows deviations from the visualization in the program, which would contribute to the aesthetics of the graphics on the paper.

Heart Calligraphy

Implementation

Heart Calligraphy consists of a pulse sensor with *Arduino* board for the measurement of heart rate data, a pen plotter and a program based on *Processing* for plotter control. The sketch of the installation is shown in Figure 4. The plotter is integrated into a metal stand. The paper is placed on the plotter's flatbed, which covered with synthetic leather. The pulse sensor is integrated into the flatbed with a 3D printed plastic clip. The participant places the finger into the clip and rests the hand on the table.

A *Processing* sketch is developed to receive the Blood Volume Pulse (BVP) signal measured from the pulse sensor. The BVP signal is filtered by a 3th order Butterworth low pass filter with a cut-off frequency of 2Hz, then the peak of signal (pulse peak) was detected. Each time the system detects a pulse peak value it saves the time accordingly. Then the time difference between two peaks is saved as Inter Beat Interval (IBI). Here, we do not go deep into data analysis; instead, the IBI data is coupled to the parameters of pen's movements in HPGL-format commands. Then through a serial (RS-232C) port, the commands are transmitted to the pen plotter, controlling the pen acting on the surface of the paper.

Mapping Design

During the writing of Chinese calligraphy, it stresses the speed, strength and agility; one example is shown in Figure 2. The variations in strokes are mainly determined by the method of using brushes; for example, the pressure determines the thickness of lines, and the speed influences the texture. The drawing process of Heart Calligraphy follows the similar "pen's action control" drawing process. It involves two transforming processes: from IBI data to the pen movements and from the pen movements to the strokes on the paper. This gives the plotter a good controllability of data representation but also a flexibility and versatility to render the visualization artistically.

As a preliminary exploration with pen plotter, in the design of Heart Calligraphy, we do not intend to draw sophisticated graphics. Instead, we make the plotter draw the basic elements in Chinese calligraphy, namely lines and dots. In this study, four mapping methods

Figure 6: The "input" and "output" of Heart Calligraphy

Figure 7: The drawing on a paper of A3 size

have been implemented to discover the possibilities of interaction and the aesthetic impact: (1) position of the pen, (2) pressure of the pen, (3) speed of the pen and (4) the time of pen down. Besides, we experimented with different types of pens and papers such as fiber-tip pen (i.e. black marker), rotring pen, brush pen, tilt-tip brush pen, rollerball pen and charcoal.

Interaction

Heart Calligraphy invites participants to explore how their heart rate increases and decreases through the regulation of their psycho-physiological activities. The participants are introduced to Heart Calligraphy and asked to put on the pulse sensor on the finger. They receive a short introduction on how they can influence the pen's movement by breathing regulation, relaxation and mental/emotional focus. Then we turn on the plotter and left the participant alone. The plotter starts to draw graphics on the paper, as shown in Figure 6. To make the interaction immediate and transparent, we implement a heartbeat-triggered interactive mode for the installation, where the pen will act upon each individual heartbeat, and the IBI data will 'modulate' the pen's movements.

Generated Drawings

During about 10 minutes interaction, as the participant watches and reacts to the installation, his/her physical movements, breathing, and even emotion changes influence the pen's movements and finally reflected on the resulting drawings. Each drawing was created on A4 size paper as shown in figure 7. And based on different mappings, the strokes were drawn in rows or columns.

Figure 8 to 13 show a set of drawings. The drawings feature the rhythm of heart rate variability, indicated

by the changes on the length, thickness, and shape of lines or the size of dots. Especially when participants were managing to relax and regulate their breathing into a slow and smooth pattern, the visual characteristics of the drawing might be obvious.

Figure 1, 8 and 9 show the drawings that were produced by mapping from IBI data to pressure of the pen. The drawing in figure 8 was produced on white paper with a rollerball marker. The pen drew lines of equal length in rows but the pen pressure was adjusted according to the updated IBI data. The main visual characteristic of this drawing is a repeating size change of dots that mirror the natural oscillation of heart rate caused by deep breathing.

Figure 8: The drawing by pressure-mapping (Rollerball pen)

Figure 9: The drawing pen pressure-mapping (Charcoal)

Similar to figure 8, the drawing in figure 9 was also produced by pressure mapping, but with a charcoal. The drawing shows large grey blocks different in size and shade.

Figures 10 and 11 show the drawings that were produced by mapping the data to the position of the pen, resulting in lines of different length. The drawing in figure 10 was created with brush and inkjet ink. The pen was put down on the paper at each heartbeat and drew a line with a new length. Compared to figure 10, in drawing of figure 11, there was a equal-length space between adjacent lines.

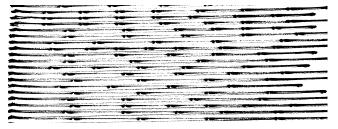


Figure 10: The drawing by position-mapping (Brush)

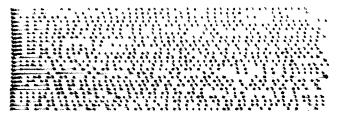


Figure 11: The drawing by position-mapping (Brush)

The figure 12 shows the drawing of speed mapping. The speed of pen movement is adjusted by IBI data. Compared to other works, in this drawing, the thickness and texture of lines seems to have more complicated detailed change. The fast movement

results in a thin pale line. If the space between lines is reduced, the lines could form an area with a transition of texture.

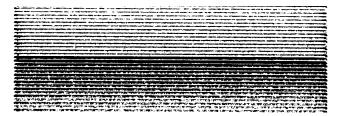


Figure 12: The drawing by speed-mapping (Brush)

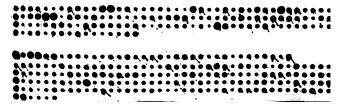


Figure 13: The drawing by pen-down time mapping (Pipet)

The figure 13 features round ink spots in different size. It was generated by a pipet with inkjet ink. The ink spots result from the pen staying on the paper for a relatively long time. At each heartbeat, the pen was moved to next location and placed on the paper. The pen-down time was determined by IBI data. The slower heart rate is, for a longer time the pen would be touching the paper, leaving a larger spot.

Discussion and Future work

Through Heart Calligraphy, we explored the aesthetics/ artistic visualization of heart rate variability in the context of biofeedback. As shown in above figures, four basic mapping methods have been explored. We found that the pen plotter has a great, untapped potential as an interactive visualization tool. In term of information clarity, the details of data can be clearly expressed by using length-mapping visualization. The pressure mapping and speed mapping mainly influence the thickness and texture of each single stroke and visualize the overall results. The pen-down timing control results in various spots of different size at different location. This enriches the artistic expressiveness of the plotter. From another direction, Heart Calligraphy is part of an interactive arts installation exploring bio-data as materials in art creation. It created a new artistic form of "inside out".

As a HRV biofeedback display, Heart Calligraphy present feedback in a physically based audiovisual modality. It enables the participants to be aware of the natural oscillation in the heart rate through mechanical movement, sound, and visualization. It leaves the participants much space to explore how activities and psychology influence his or her physiology. These explorations contribute to their self-awareness and selfregulation on their physiology- for instance when we realize the impact of stress/relaxation and breathing on the heartbeat. Besides, we think the multi-modal feedback of Heart Calligraphy offers an enriched the participatory user experience. Some audience even reported a relaxing atmosphere induced by the plotter while listening to the machine responds to their heartbeat.

In the future, it will be interesting to explore more graphic patterns of drawings as the output and to introduce more bio-signals as the input, such as breathing signal and Galvanic skin resistance (GSR). We would also like to find out that what experience of

the participant received during the interaction could contribute to a biofeedback practice.

Acknowledgements

The authors would like to thank the China Scholarship Council, Grafisch Atelier Daglicht, and Creative Industries Fund NL for their support on the project.

References

- Brown, Barbara B. 1974. New mind, new body: Bio-feedback: New directions for the mind. Harper & Row.
- 2. Sztajzel, Juan. 2004. Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. *Swiss medical weekly* 134: 514-522.
- 3. Bush, Susan, and Hsio-yen Shih. 2012. Early Chinese texts on painting. *Hong Kong University Press.*
- 4. Vidyarthi, J., Riecke, B. E., & Gromala, D. 2012. Sonic Cradle: designing for an immersive experience of meditation by connecting respiration to music. In *Proceedings of the designing interactive systems conference* (DIS 06) 408-417
- Neumark, N., & Khut, G. P. 2007.
 Cardiomorphologies: An inner journey through art. MultiMedia, 14(4): 5-7.
- 6. Soutschek, S., Hoenig, & Kornhuber, J. 2010. Immersive Painting. In Arts and Technology: 33-39.
- Šimbelis, V., Lundström, A., Höök, K., Solsona, J., & Lewandowski, V. 2014. Metaphone: machine aesthetics meets interaction design. In *Proceedings* of the SIGCHI Conference on Human Factors in Computing Systems (CHI 14): 1-1

Proceedings of the Tenth Anniversary Conference on Tangible Embedded and Embodied Interaction

14-17 February 2016, Eindhoven, the Netherlands

Conference Chairs: Saskia Bakker, Caroline Hummels, Brygg Ullmer

Program Chairs: Luc Geurts, Bart Hengeveld, Daniel Saakes

Publications Chair: Mendel Broekhuijsen

Sponsors:

Eindhoven University of Technology, Koninklijke Nederlandse Akademie van Wetenschappen, Fontys Eindhoven, Microsoft Research, Tangible Display

The Association for Computing Machinery 2 Penn Plaza, Suite 701 New York, New York 10121-0701

Copyright © 2016 by the Association for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of portions of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyright for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Request permission to republish from: permissions@acm.org or Fax +1 (212) 869-0481.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted provided that the per-copy fee indicated in the code is paid through www.copyright.com.

Notice to Past Authors of ACM-Published Articles

ACM intends to create a complete electronic archive of all articles and/or other material previously published by ACM. If you have written a work that has been previously published by ACM in any journal or conference proceedings prior to 1978, or any SIG Newsletter at any time, and you do NOT want this work to appear in the ACM Digital Library, please inform permissions@acm.org, stating the title of the work, the author(s), and where and when published.

ISBN: 978-1-4503-3582-9

Additional copies may be ordered prepaid from:

ACM Order Department

PO Box 30777

New York, NY 10087-0777, USA

Phone: 1-800-342-6626 (USA and Canada)

+1-212-626-0500 (Global) Fax: +1-212-944-1318 E-mail: acmhelp@acm.org

Hours of Operation: 8:30 am - 4:30 pm ET

& SIG**CHI**

TEI'16 Chairs' Welcome

Welcome to ACM TEI'16, the 10th-anniversary edition of the International Conference on Tangible, Embedded and Embodied Interaction, hosted at Eindhoven University of Technology, the Netherlands from February 14th to February 17th, 2016.

This year's conference marks TEI's tenth anniversary. We see this as a perfect opportunity for recalling some of our founding values and complementing these with contemporary values, for reemphasizing the relationship between interactive products and systems and the body, and for learning from each other's approaches and rationales. To do this, we have established the theme 'Our Body Is Our Manual': As the interactions we propose in our products and systems are aimed to inform our embodied selves, we should also allow ourselves to be informed by our bodies when designing and researching these interactions. Through a wide palette of work ranging from highly technical to highly artistic, and from highly applied to highly conceptual or theoretical, we wish to trigger discussion and reflection, with the aim of emphasizing what binds us.

TEI'16 hosts a four-day program, starting out with the **Graduate Student Consortium** and a series of **Studio-Workshops** that embody the essence of our community by offering intellectual and practical experiences to conference attendees with diverse skills and backgrounds. The main program is kicked off by **Takeo Igarashi**, who in his opening keynote discusses computer tools that allow end users control over the design of artifacts in their lives. After the opening keynote, the Papers track commences, in a slightly different set up than before. This year we do not include Q&As in the presentations but instead wrap up each session with a reflective discussion between the presenters. The day concludes with the **Demos, Posters** and **Work-In-Progress** exhibition. From day two until day four the **Art Exhibition** questions and frames the impact of new technologies on our lives and proposes new modes of embodiment. Following day three's Papers sessions we host a full afternoon of **Studio-Workshops**, engaging all TEI attendees in active, hands-on discussions. Day four includes three Papers sessions, a lunch lecture and panel discussion, and the closing keynote by **Tom Djajadiningrat**, who reconsiders tangible interaction by discussing new technologies, illustrated through examples by Philips Design.

This year we received 178 submissions to the Papers track, which were all equally subjected to a double-blind peer review process of at least three reviewers and a meta-reviewer. A total of 45 accepted papers makes for an acceptance rate of 25%. For the Work-in-Progress track we received 100 submissions, which were subjected to a double-blind peer review process of two reviewers each. This resulted in 40 accepted submissions, making for an acceptance rate of 40%.

Of course, organizing this conference could not have been possible without the energy and commitment of many, many people. We would like to thank everyone who contributed to TEI'16: the authors for submitting their quality work to the conference, all the organizing committee chairs for managing their part of the conference, the program committee and external reviewers for safeguarding the quality of the conference, the local organizing committee, the sponsors, supporters and partners, and the TEI steering committee.

We wish you a great conference!

Conference Chairs

Saskia Bakker

Eindhoven University of Technology (NL)

Caroline Hummels

Eindhoven University of Technology (NL)

Brygg Ullmer

Louisiana State University (USA)

Program Chairs

Luc Geurts

KU Leuven (Belgium)

Bart Hengeveld

Eindhoven University of Technology (NL)

Daniel Saakes

KAIST (Korea)

Table of Contents

TEI'16 Conference Organizers	XIII
TEI'16 Program Committee & Reviewers	XV
TEI'16 Sponsors	XXII
Keynote Addresses	
Design Everything By Yourself. User Interfaces For Graphics, Cad Modeling, And Robots	1
Takeo Igarashi (University of Tokyo)	
Inherently Meaningful Tom Djajadiningrat (Philips Design)	2
Paper Session 1: Stuff That Works	
Session Chair: Peter Bennett	
Navigation of Pitch Space on a Digital Musical Instrument with Dynamic Tactile Feedback	3
Robert Jack, Tony Stockman, Andrew McPherson	
MobiSweep: Exploring Spatial Design Ideation Using a Smartphone as a Hand-held Reference Plane	12
Vinayak Vinayak, Devarajan Ramanujan, Cecil Piya, Karthik Ramani	
TMotion: Embedded 3D Mobile Input using MagneticSensing Technique	21
DataSpoon: Overcoming Design Challenges in Tangible and Embedded Assistive Technologies	30
Oren Zuckerman, Tamar Gal, Tal Keren-Capelovitch, Tal Krasovsky, Ayelet Gal-Oz, Tamar Weiss	
T4Tags 2.0: A Tangible System for Supporting Users' Needs in the Domestic Environment	38
Andrea Vianello, Yves Florack, Andrea Bellucci, Giulio Jacucci	
Paper Session 2: Share, Show And Tell Session Chair: Vero Vanden Abeele	
Interactive Jewellery: a design exploration Maarten Versteeg, Elise van den Hoven, Caroline Hummels	44
Technologies for Everyday Life Reflection: Illustrating a Design Space Ine Mols, Elise van den Hoven, Berry Eggen	53

	Towards a Framework for Tangible Narratives	62
	Daniel Harley, Jean Ho Chu, Jamie Kwan, Ali Mazalek	
	Designing the Behavior of Interactive Objects	70
	Marco Spadafora, Victor Chahunea, Nikolas Martelaro, David Sirkin, Wendy Ju	
	Ideating in Skills: Developing tools for embodied co-design	78
Paper	Session 3: What Your Body Can Do For You	
Session	n Chair: Katrin Wolf	
	Modifying Gesture Elicitation: Do Kinaesthetic Priming and Increased Production Reduce Legacy Bias?	86
	Lynn Hoff, Eva Hornecker, Sven Bertel	
	If Your Mind Can Grasp It, Your Hands Will Help Simon Stusak, Moritz Hobe, Andreas Butz	92
	Exploring the Aesthetic of Tangible Interaction: Experiments on the Perception of Hybrid Objects	100
	Daniela Petrelli, Alessandro Soranzo, Luigina Ciolfi, John Reidy	
	The Aesthetics of Heat: Guiding Awareness with Thermal Stimuli	109
	Substituting Color for Haptic Attributes in Conceptual Metaphors for Tangible Interaction Design	118
	Diana Löffler, Lennart Arlt, Takashi Toriizuka, Robert Tscharn, Joern Hurtienne	
-	Session 4: When Learning Is Tough Chair: Patrizia Marti	
	It Could Just as Well Have Been in Greek: Experiences from Introducing Code as a Design Material to Exhibition Design Students	126
	Jennie Schaeffer, Rikard Lindell	
	A Tangible Embedded Programming System to Convey Event-Handling Concept Danli Wang, Lan Zhang, Chao Xu, Haichen Hu, Yunfeng Qi	133
	SynFlo: A Tangible Museum Exhibit for Exploring Bio-Design	141
	Engaging 'At-Risk' Students through Maker Culture Activities	150
	Using Tangible Smart Replicas as Controls for an Interactive Museum Exhibition	159

Paper Session 5: Keep In Shape

Session Chair: Tek Jin Nam

LivingSurface: Biofeedback through Shape-changing Display	168
Bin Yu, Nienke Bongers, Alissa van Asseldonk, Jun Hu, Mathias Funk, Loe Feijs	
Tangible Viewports: Getting Out of Flatland in Desktop Environments	176
Renaud Gervais, Joan Sol Roo, Martin Hachet	
ReFlex: A Flexible Smartphone with Active Haptic Feedback for Bend Input	185
Paul Strohmeier, Jesse Burstyn, Juan Pablo Carrascal, Vincent Levesque, Roel Vertegaal	
A basic form language for shape-changing interfaces	193
Morten Winther, Anna Vallgårda	
Balancing user and system control in shape-changing interfaces:	
a designerly exploration	202
Majken Kirkegaard Rasmussen, Timothy Merritt, Miguel Bruns Alonso, Mariane Graves Petersen	
Paper Session 6: With All Your Forces	
Session Chair: Ellen Do	
On the Other Hand: Embodied Metaphors for Interactions with Mnemonic	
Objects in Live Presentations	211
Fabian Hemmert, Gesche Joost	
Snake Charmer: Physically Enabling Virtual Objects	218
Bruno Araujo, Ricardo Jota, Varum Chadalavada, Jia Xian Yao,	
Karan Singh, Daniel Wigdor	
TOBE: Tangible Out-of-Body Experience	227
Renaud Gervais, Jérémy Frey, Alexis Gay, Fabien Lotte, Martin Hachet	
Paper Session 7: Not For Kids Only	
Session Chair: Panos Markopoulos	
From Patchwork to Appliqué: Reflections from an Interaction Design Remake	236
Moa Bergsmark, Ylva Fernaeus	
Embodied Companion Technologies for Autistic Children	245
Katharina Spiel, Julia Makhaeva, Christopher Frauenberger	
SmallTalk: Using Tangible Interactions to Gather Feedback from Children	253
Sarah Gallacher, Connie Golsteijn, Yvonne Rogers, Licia Capra, Sophie Eustace	
Tangible Play Objects: Influence of Different Combinations of Feedback Modalities	262
Hanneke Hooft van Huysduynen, Linda de Valk, Tilde Bekker	
ChillFish: A Respiration Game for Children with ADHD	271
Tobias Sonne, Mads Møller Jensen	

Papers: Demos and Posters

	Comparing Tangible and Multi-touch Interaction for Interactive Data Visualization Tasks	279
	Shiroq Al-Megren, Roy A. Ruddle	
	Sparse Tangibles: Collaborative Exploration of Gene Networks using Active	
	Tangibles and Interactive Tabletops	287
	Ahmed Sabbir Arif, Roozbeh Manshaei, Sean Delong, Brien East,	
	Matthew Kyan, Ali Mazalek	
	Designing the Vertigo Experience: Vertigo as a Design Resource for Digital	
	Bodily Play	296
	Richard Byrne, Joe Marshall, Florian 'Floyd' Mueller	
	Gleamy: An Ambient Display Lamp with a Transparency-Controllable Shade	304
	Seijin Cha, Moon-Hwan Lee, Tek-Jin Nam	
	Pneumatibles - Exploring Soft Robotic Actuators for the Design of User	
	Interfaces with Pneumotactile Feedback	308
	Kristian Gohlke, Eva Hornecker, Wolfgang Sattler	
	DoDoc: a Composite Interface that Supports Reflection-in-Action	316
	Pauline Gourlet, Sarah Garcin, Louis Eveillard, Ferdinand Dervieux	
	Soft Pillows and the Near and Dear: Physical-to-Abstract Mappings with	
	Image-Schematic Metaphors	324
	Jörn Hurtienne, Oliver Meschke	
	Experience as an Object to Think with: from Sensing-in-action to Making-Sense	
	of action in Full-Body Interaction Learning Environments	332
	Laura Malinverni, Edith Ackermann, Narcis Pares	
	Crafting Mechatronic Percussion with Everyday Materials	340
	Hyunjoo Oh, Jiffer Harriman, Abhishek Narula, Mark D. Gross,	
	Michael Eisenberg, Sherry Hsi	
	Engagement Through Embodiment: A Case For Mindful Interaction	349
	Vincent van Rheden, Bart Hengeveld	
	miMic: The Microphone as a Pencil	357
	Davide Rocchesso, Davide A. Mauro, and Stefano Delle Monache	
	MOR4R: How to Create 3D Objects Using a Microwave Oven	365
	Kentaro Yasu	
Worl	k-in-Progress	
	EmotiPlant: Human-Plant Interaction for Older Adults	272
	Leonardo Angelini, Stefania Caparrotta, Omar Abou Khaled, Elena Mugellini	3 / 3
	Makatagi A Makayanaga ag a Thind Dlaga for Children	200
	Maketec: A Makerspace as a Third Place for Children	300
	DAVID DOLEG, OLEH BUCKELIIUN	

Functional Demonstrators to Support Understanding of Smart Materials	386
Bahareh Barati, Elvin Karana, Kaspar Jansen, Paul Hekkert	
IrukaTact: Submersible Haptic Search Glove	392
Aisen C. Chacin, Takeshi Oozu, Hiroo Iwata	
Penseive Box: Themes for Digital Memorialization Practices	398
Charu Chaudhari, Anjanakshi Prakash, A.M. Tsaasan, Jed R. Brubaker,	
Joshua Tanenbaum	
Embodying Alternate Attitudes: Design Opportunities for Physical	
Interfaces in Persuasive Gaming Experiences	404
Emily S Cramer, Brendan B Matkin, Alissa N Antle	
Exploring the Potential of Realtime Haptic Feedback during Social Interactions	410
Ionut Damian, Elisabeth André	
Comparing bare-hand-in-air Gesture and Object-in-hand Tangible User	
Interaction for Navigation of 3D Objects in Modeling	417
Sanmathi Dangeti, Yingjie (Victor) Chen, Chunhui Zheng	
Storytime with Hue: An Innovative Approach to Storytelling Where	
Storytellers Control a Dynamic Lighting Environment	422
Catherine Downey, Sherin W. Kamel	
InfoPhys: Direct Manipulation of Information Visualisation through a	400
Force-Feedback Pointing Device	428
Christian Frisson, Bruno Dumas	
Making Communication Frequency Tangible: How Green Is My Tree?	434
Carolina Fuentes, Iyubanit Rodriguez, Valeria Herskovic	
Code Bits: An Inexpensive Tangible Computational Thinking Toolkit	
For K-12 Curriculum	441
Sidhant Goyal, Rohan S Vijay, Charu Monga, Pratul Kalita	
TASK: Introducing The Interactive Audience Sensor Kit	448
Florian Güldenpfennig, Oliver Hödl, Peter Reichl, Christian Löw,	
Andreas Gartus, Matthew Pelowski	
Toward Thingy Oriented Programming: Recording Marcos With Tangibles	455
Florian Güldenpfennig, Daniel Dudo, Peter Purgathofer	
Exploring the Use of Shape Change in Home Appliances	462
Frederik Lund Jakobsen, Stefan Michael Pedersen, Jacob Albæk Schnedler,	
Nikolai Houlberg Øllegaard	
MARCut: Marker-based Laser Cutting for Personal Fabrication on Existing	
Objects	468
Takashi Kikuchi, Yuichi Hiroi, Ross Smith, Bruce Thomas, Maki Sugimoto	

UnicrePaint: Digital Painting through Physical Objects for Unique Creative Experiences	475
Mami Kosaka, Kaori Fujinami	4/5
Grasping Cultural Context through Multisensory Interactions	482
Jamie Kwan, Jean Ho Chu, Daniel Harley, Melanie McBride, Ali Mazalek	
Exploring SCI as Means of Interaction through the Design Case of Vacuum Cleaning	488
Lasse Legaard, Christian Hannesbo Lorentzen, Josephine Raun Thomsen, Jonas Techen	
Four Stories About Feeling Close Over A Distance	494
Eva Lenz, Marc Hassenzahl, Wasili Adamow, Patrick Beedgen, Kirstin Kohler, Thies Schneider	
Click: Using Smart Devices For Physical Collaborative Coding Education	500
HandyFeet: Social Bodily Play Via Split Control of a Human Puppet's Limbs Robb Mitchell, Andreas Fender, Florian 'Floyd' Mueller	506
HydroMorph: Shape Changing Water Membrane for Display and Interaction	512
Tangible Modeling Methods for Faster Rapid Prototyping Satoshi Nakamaru, Jakob Bak, Dhruv Saxena	518
Expressing Intent: An Exploration of Rich Interactions	524
Interactive Jewellery as Memory Cue: Designing a Sound Locket for Individual Reminiscence	532
Karin Niemantsverdriet, Maarten Versteeg	
Designing a Multi-user Interactive Simulation Using AR Glasses	539
MoCap Tango: Traces Of Complexity Jeroen Peeters, Ambra Trotto, Stoffel Kuenen	545
Functional Interactive Tatting - Bringing Together a Traditional Handicraft and Electronics	551
Tactile Band: Accessing Gaze Signals from the Sighted in Face-to-Face Communication	556
Shi Qiu, Matthias Rauterberg, Jun Hu	
E-Gaze Glasses: Simulating Natural Gazes for Blind People	563
Shi Oiu. Siti Aisvah Anas, Hirotaka Osawa, Matthias Rauterbera, Jun Hu	

Inner Garden: an Augmented Sandbox Designed for Self-Reflection	570
A Tangible Tool for Visual Impaired Users to Learn Geometry Lisa Marie Rühmann, Nuno Otero, Ian Oakley	577
Cubio: A Low-Budget Platform for Exploring Stackable Interactions	584
The Speaker's Staff: Supporting Remote Multidisciplinary Team Meetings in Hospitals Bert Vandenberghe, David Geerts	591
MagnetoWear: A Magnetic Wearable Device to Interact With the Smartphone to Perform Personalized Actions	597
Present-at-Body Self-Awareness in Equestrians: Exploring Embodied 'Feel' through Tactile Wearables	603
Designing Sculpting Light Systems for Information Decoration Jiang Wu, Harm van Essen, Berry Eggen	609
DrawForming: An Interactive Fabrication Method for Vacuum Forming Junichi Yamaoka, Yasuaki Kakehi	615
KIP3: Robotic Companion as an External Cue to Students with ADHD	621
Art Exhibition	
The BIOdress: A Body-worn Interface for Environmental Embodiment	627
POEME: A Poetry Engine Powered by Your Movement	635
Functionality in Wearable Tech: Device, as Jewelry, as Body Mediator	641
Dividual Plays Experimental Lab - An installation derived from Dividual Plays Keina Konno, Richi Owaki, Yoshito Onishi, Ryo Kanda, Sheep, Akiko Takeshita, Tsubasa Nishi, Naoko Shiomi, Kyle McDonald, Satoru Higa, Motoi Shimizu, Yosuke Sakai, Yasuaki Kakehi, Kazuhiro Jo, Yoko Ando, Kazunao Abe and Takayuki Ito	647
A Flying Pantograph: Interleaving Expressivity of Human and Machine	653
What We Have Lost / What We Have Gained: Tangible Interactions between Physical and Digital Bodies	658

	Exploring Bodies, Mediation and Points of View using a Robotic Avatar <i>Paul Strohmeier</i>	663
	Tangible Scores	669
	Enrique Tomàs	
	Heart Calligraphy: an Abstract Portrait Inside the Body	675
	Bin Yu, Rogier Arents, Jun Hu, Mathias Funk and Loe Feijs	
Gradu	ate Student Consortium	
	Crafting Tangible Interaction to Prompt Visitors' Engagement in House Museums Caroline Claisse	681
	Towards Self-Aware Materials Artem Dementyev	685
	Exploring the Design Space of Tangible Systems Supported for Early Reading Acquisition in Children with Dyslexia	689
	Min Fan, Alissa N. Antle, Emily S. Cramer	
	Embodied Spatial Thinking in Tangible Computing Brendan Alexander Harmon	693
	Performance-Led Design of Computationally Generated Audio for Interactive Applications	697
	Christian Heinrichs, Andrew McPherson	
	Designing for the Mindbody in Technology-Mediated Music-Making <i>Aura Pon</i>	701
	Exploring 3D Printed Interaction	705
	Designing Posture Monitoring Garments to Support Rehabilitation	709
Stude	nt Design Challenge	
	BrainstORB	713
	Conor Byrne, Evan Healy, Nigel Frahill, Rebecca Power	
	Sensole: An Insole-Based Tickle Tactile Interface	717
	Eric Geißler, Andreas Mühlenberend, Klaus Harnack	
	InflatiBits – A Modular Soft Robotic Construction Kit for Children	723
	Whoosh Gloves: Interactive Tool to Form a Dialog Between Dancer and Choreographer	720
	Svetlana Mironcika, Joanne Pek, Jochem Franse, Ya Shu	, 2 9

Hulagram: Inspiring Creativity Through Human Movement	733
Tommy Blocks: a modern redesign of the classical children's building blocks	738
MuSme: A Tangible Skin Suit for Music Creation	743
Studio-Workshops	
Designing Tangibles for Children: One Day Hands-on Workshop	749
Tangible Data, explorations in data Physicalization Trevor Hogan, Eva Hornecker, Simon Stusak, Yvonne Jansen, Jason Alexander, Andrew Vande Moere, Uta Hinrichs, Kieran Nolan	753
MeMod: A Modular Hacking And Programming Toolkit For Everyday Objects Austin S. Lee, Dhairya Dand	757
The Interaction Engine: Tools for Prototyping Connected Devices	762
TEI 2016 Studio: Inflated Curiosity	766
Bodily Sketching With Sensable Stretchables	770
Embodying Soft Wearables Research Oscar Tomico, Danielle Wilde	774
Stereo Haptics: Designing Haptic Interactions using Audio Tools Siyan Zhao, Zachary Schwemler, Adam Fritz, Ali Israr	778
Developing Responsive and Interactive Environments with the ROSS Toolkit	782
GaussStudio: Designing Seamless Tangible Interactions on Portable Displays Rong-Hao Liang, Han-Chih Kuo, Miguel Bruns Alonso, Bing-Yu Chen	786
Second Workshop on Full-Body and Multisensory Experience	790