
Component-wise Mapping of Media-needs
to a Distributed Presentation Environment

Loe Feijs, Jun Hu
Department of Industrial Design

Eindhoven University of Technology
Den Dolech 2, 5600MB Eindhoven, The Netherlands

{l.m.g.feijs, j.hu}@tue.nl

Abstract

Whereas formal specification and verification have
shown value by improving reliability and trustworthiness of
traditional industrial systems, we made a contribution by
applying them to the field of distributed multimedia presen-
tations in an Ambient Intelligence context. We investigate a
mapping problem in which media needs are to be satisfied
using given presentation resources. The goal of the inves-
tigation is to see whether Broy’s stream-based component
framework can be used to model media-related interfaces
and constraints in an elegant way. The formalization will
serve as a framework for the development of an automated
mapper that can handle real media needs and real presen-
tation resources. It combines the well-known notations of
Z with an underlying concurrency theory. We show that
not only verification issues can be handled such as band-
width and delay constraints, but also architecture-level is-
sues such as network structural media-type compatibilities.

1 Introduction

In the vision of Ambient Intelligence, technology be-
comes invisible, embedded in our natural surroundings,
present whenever we need it, enabled by simple and ef-
fortless interactions, attuned to all our senses, adaptive to
users and context and autonomously acting [1]. Interac-
tive media presentations will no longer be folded in a flat
screen with 5.1 speakers, but instead, will be distributed into
the user’s environment. The environment with distributed
and networked interfaces, functioning as interactive theater,
will engage people in more immersive experiences. In a
previous study done in Philips Electronics, we have shown
how to structure the content and system to present interac-
tive media to a distributed environment that consists of not

only screens and speakers, but also lights and robots [6, 7].
It was done in the context of EU funded R&D projects
(NexTV [11] and ICE-CREAM [9]). (Figure 1 shows two
users interacting with the ICE-CREAM demonstration, ex-
hibited in IBC 2003 [8]).

Figure 1. ICE-CREAM theater at IBC 2003

One of the problems is the variety of such environments -
thinking of how different people arrange their living rooms.
This has been a long-existing problem with regard to web
browsers. In order to give the same look-and-feel on a sin-
gle web page to the users, the poor authors often have to
work very hard to use all kinds of tricks, and when this fails,
write different versions for different browsers. On the other
hand, web authors are lucky - if they only consider Internet
Explorer, they will possibly cover 4/5 of the audience, and
if they are kind enough to consider Mozilla users, they will
almost cover them all. We are not that lucky. We can not
assume that there are only Explorer-like living rooms and
Mozilla-like living rooms. They are different, in terms of
available components and connections. It is impossible to
have one version to fit them all. Instead we should have
only one abstract media description for all living rooms,
then map the media needs to every physical room, to create
the experience for end users as intended as possible. Similar

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

mapping problems are studied informally in [10].
We aim at the formalization of such mapping problems.

Each mapping problem is defined by a set of media needs
and a set of presentation resources. The media needs are ab-
stract description of the media content as well as its require-
ments for the physical components and their connections,
including for example audiovisual players, robotic interac-
tors and lights. These physical components are presenta-
tion resources. We employ Broy’s stream-based component
framework [2]. The following issues must be addressed:

1. component interfaces for control and for events;
2. user interfaces: touch screens, switches and buttons;
3. throughput requirements and network delays;
4. embedding of presentation components into devices;
5. standardization of specifications (keeping the math

away from the media developers).
The formalization will serve as a helpful framework for

the development of an automated mapper that can handle
real media needs and real presentation resources.

The mapping is to find the presentation resources for a
set of media so that each media content is properly pre-
sented. In a typical implementation a mapping is a process
that at run-time deals with control and events, and that has
access to a number of reserved presentation resources. A
presentation could be built by a “mapping server”, which
behaves as a factory [3], launching presentations. Of course
the mapping server takes a mapping problem (= media
needs + presentation resources) as its input, solves the map-
ping problem, makes the reservations, and then builds and
launches the presentation. In fact, a presentation could be
structured as a main process by the mapper server, upwards
serving the media needs, and several distributed and aux-
iliary processes downwards employing the local resources
from the devices in the environment. Typically, a distributed
presentation is built by a local server (also a factory). Al-
though one may expect that one such server per device
would be sufficient, this is actually not the case; the reason
is that several mutually incompatible software abstractions
exist upon the the same device (for example, the Real player
and the Microsoft media player on a Windows PC).

2 Preliminaries

To get started we consider a few simple media needs:
• high-resolution video presentation
• low-resolution video presentation
• dancing behavior
• up-down interactor

which have to be obtained from the following resources:
• cable: upc cable 801(10Mb/s)
• the sign: www.clips.com/the sign.mpg (10Kb/s)
• happy puppy: www.dance.com/happy puppy.dhb (1Kb/s)
• updown: /interactors/updown.exe (1b/s).

To model the media needs and presentation resources,
we follow the approach of Broy [2] based on timed streams.
We have some drawing conventions of our own, which is
derived from ADL Darwin [4, 5]. We use

F

I
...

O

instead of F

I
...

O

(See [2], p.7).

In an interactive presentation system, it is necessary
to distinguish user interface channels from data streaming
channels. For this we add another convention, namely out-
put channels � modeling real, physical presentations such
as sounds, video frames and robotic movements, and input
channels � modeling the components with which the user
may interact with the system, such as a GUI interface on a
screen and physical buttons on a remote control.

Broy demands that a set S of types be given. We put
S = {PAL, MPG, DBH, IBH, R}

for PAL streams, MPEG streams, Dancing BeHavior, Inter-
action BeHavior and “things in the Real world”(for exam-
ple, buttons, screens and robots).

In Broy’s approach there is a discrete time frame repre-
senting time as an infinite chain of time intervals of equal
finite duration. We take 1 second for that duration. This
allows us to formally represent the facts for example that
there are 25 video frames per second in a high-resolution
video stream and that each frame takes a number of bits.

We assume functions on data:
bits : PAL→{0, 1}∗ ... also for MPG, DBH

pr : PAL→R (pr for presentation)
pr : MGP→R (pr for presentation)
pr : DBH→R (pr for presentation)
pr : IBH→R (pr for presentation).

and obtain lifted versions of pr at timed-stream level:
pr′ : PAL∗→R

∗ by (pr′(p)).i = pr(p.i)
pr′′ : (PAL∗)∞→(R∗)∞ by (pr′′(x)).t = pr′(x.t)

and so on. The formal model has some structure of its own
(Figure 2).

screen

screen'

moving

buttons

upc_cable_801

www.clips.com/
The_sign

www.dance.com/
happy_puppy

/interactors/
updown

S1 C1 P1

S2 C2 P2

S3 C3 P3

S4 C4 P4

Figure 2. Formal model structure

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

In order to map this we must assume devices and con-
nections. Figure 3 shows a possible configuration with the
following devices:
• STB: set-top box;
• modem: internet modem;
• hi res&PIP: high-resolution monitor with picture-in-

picture function;
• lo res: low-resolution (lo res) monitor;
• level2 robot: “level-2” robot;
• RC: remote control for the low-resolution monitor

and the following connections:
• STB − modem 100b/s duplex;
• STB − hi res 100Mb/s duplex;
• modem − lo res 1Mb/s duplex;
• modem − robot 10Kb/s duplex;
• RC − lo res 100b/s duplex.

STB modem

hi-res&PIP low-res

robot RC

100Mb/s 1Mb/s

100b/s10Kb/s

100b/s

cable
network Internet

Figure 3. A possible configuration

There are two possible ways of presenting the dancing
behavior: either by an animated character on the PIP of the
hi res screen, or by the physical robot together with the RC
providing user input. But the STB − modem bandwidth is
not enough for the PIP to do it. So the robot must dance
and the RC must provide the up-down interaction.

3 Specification

We need some abbreviations. For timed stream z and
n1, n2 ∈ N,

rate(z, n1, n2) == ∀ t : N\{0} • #(z.t) = n1

∧ ∀ i : N • 0 < i � #(z.t) ⇒ #bits(z.t.i) = n2

with the intuition that e.g. rate(z, 100,100K) means that
100 frames fit into once second and that 100K bits go into
each frame (Figure 4).

For timed streams x and x′, and ∆ ∈ N,
delay(x, x′,∆) == ∀ t : N\{0} • x.t = x′.(t + ∆)

and for m ∈ N,
maxdelay(x, x′, m) ==

∃∆ : N • ∆ < m ∧ delay(x, x′,∆)
The rate information is put into the source devices

S1, S2, S3 and the sink S4.

... ...

1 second

100 frames
per second

......

010100010 01010

100K bits
per frame

Figure 4. rate(z, 100, 100K)

S1

in cable : PAL
out z : PAL

z = cable
rate(z, 100,100K)

S2

in the sign : MPG
out z : MPG

z = the sign
rate(z, 2, 5K)

S3

in happy puppy :
DBH

out z : DBH

z = happy puppy
rate(z, 10, 100)

S4

in z : IBH
out updown : IBH

z = updown
rate(z, 1, 1)

The relation between media formats and the real world
is described in P1, ..., P4.

P1

in w : PAL
out screen : R

screen = pr′′(w)

P2

in w : MPG
out screen′ : R

screen′ = pr′′(w)

P3

in w : DBH
out moving : R

moving = pr′′(w)

P4

in button : R

out w : IBH

button = pr′′(w)

Matters of delay are modelled in the channels.
C1

in z : PAL
out w : PAL

maxdelay(z, w, 2)

C2

in z : MPG
out w : MPG

maxdelay(z, w, 3)

C3

in z : DBH
out w : DBH

maxdelay(z, w, 4)

C4

in z : IBH
out w : IBH

maxdelay(z, w, 4)

Finally the whole system is specified by:
SYSTEM = (S1 ◦ C1 ◦ P1) \ {z, w}

‖ (S2 ◦ C2 ◦ P2) \ {z, w}
‖ (S3 ◦ C3 ◦ P3) \ {z, w}
‖ (P4 ◦ C4 ◦ S4) \ {z, w}

which has a syntactic interface of (I, O), where
I = {cable, the sign, happy puppy, button}
O = {screen, screen′, moving, updown}

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

4 Presentation resources

The next step is to formalize the presentation resources,
i.e. the components and the network connections. We as-
sume that the components cause delays and that the con-
nections give rise to bandwidth restrictions. The structure
of the resulting model is shown in Figure 5. Clearly we
will need renaming later, for example, [the sign/url1] (for
modem) and [cable/channel] (for STB).

100b/s

1Mb/s100Mb/s

100b/s

10Kb/s

control

control

screen'

button
moving

feeling

exec

control

modemSTB

hi_res
&PIP

screen

PIP
lo_res

RC
level2
robot

url1 url2 url3

control

channel

Figure 5. Structure of the resource model

Somehow the components must be configured to per-
form the required routing of streams. Although the current
mapping-example does not require it, in general a compo-
nent must be able to combine two incoming streams and
put them on a single output port, or conversely, split what
comes in to produce separate outgoing streams. In other
words, some components must contain a switch.

A component containing a switch must have an extra
channel of a special type, a control channel, accepting so-
called commands, from a set C. So from now on,

S = {PAL, MPG, DBH, IBH, R, C}
To get some experience in modelling switches, we try a

simplified component, the Simple Switch SS:

SS

x

y

z

u
(x, y, z : DBH)

Any selection from x, y and z can be combined and of-
fered on u, provided the rates fit. To adapt to the rate of u,
which is assumed to be fixed, dummy data must be stuffed.

We assume the existence of disjoint copies of the set
DBH, which we denote DBH1, DBH2, etc. We also as-
sume conversion functions d1 : DBH → DBH1, d2 :

DBH → DBH2, etc. and the corresponding inverses, e.g.
d−1
1 : DBH1 → DBH. They give rise to lifted versions,

e.g. d′
1 : DBH∗ → DBH∗

1 . These assumptions allow us to
specify streams being merged, e.g. x and y merged into u:

u c©DBH1 = d′′
1 (x) ∧ u c©DBH2 = d′′

2 (y)
In other words, the mechanism of disjoint copies is used to
model tagging of sub-streams conveniently in an abstract
way. (In Broy’s theory, S c©x means the stream obtained
from x by deleting all its messages that are not elements of
the set S.)

We introduce abbreviations:

maxrate(x, n) == ∀ t : N\{0} •
#(x.t)∑

i=1

#bits(x.t.i) < n

maxrate(x, y, n) == ∀ t : N\{0} •
#(x.t)∑

i=1

#bits(x.t.i) +
#(y.t)∑

i=1

#bits(y.t.i) < n

Although a real network connection carries bits, we use
a more abstract model to reflect the general-purpose nature
of connections:

B =
⋃

i=0,1,2...

DBHi

∪ ⋃
i=0,1,2...

PALi

∪ etc. (all data types used).

where DBH0 � DBH (So this can be used for the simple
case where tagging is not really needed).

SS
in x, y, z : DBH
in s : C

out u : B

s.1.1 = xy2u ⇒
maxrate(x, y, 100)
∧ delay(d′

1(x), u c©DBH1,∆SS)
∧ delay(d′

2(x), u c©DBH2,∆SS)
s.1.1 = yx2u ⇒

maxrate(x, y, 100)
∧ delay(d′

2(x), u c©DBH2,∆SS)
∧ delay(d′

1(x), u c©DBH1,∆SS)
s.1.1 = x2u ⇒

maxrate(x, 100)
∧ delay(d′

1(x), u c©DBH1,∆SS)
etc. (y2u, z2u, xz2u, ...)

On the basis of this example, we consider the real com-
ponents, assuming the real delay occurs in the compo-
nents as show in the following table. This means that a
constraint such as delay(x, u,∆SS) has to be rewritten as
delay(d′′

1 (x), u c©DBH1,∆SS). We assume that the delay is
fixed, independent of the load and the precise routing. Oth-
erwise, more sophisticated schemes can be devised if nec-
essary. Note that c©′ is the lifted version of c©. The rate
constraints are modelled as if they belong to the input ports.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

component delay value

STB ∆STB 1
modem ∆modem 1
hi res ∆hi res 1
lo res ∆lo res 1
level2 robot ∆level2 robot 0
RC ∆RC 0

control

exec
STB

channel u

x

vy

STB
in channel : PAL
in control : C

in x, y : B

out exec : IBH
out u, v : B

control.1.1 = channel2v ⇒
maxrate(channel,100M)
∧ delay(channel, v c©PAL,∆STB)

control.1.1 = x2exec ⇒
maxrate(x,100K)
∧ delay(x c©DBH, exec,∆STB)

control.1.1 = channel2v x2exec ⇒
maxrate(channel,100M)
∧ maxrate(x,100K)
∧ delay(channel, v c©PAL,∆STB)
∧ delay(x c©DBH, exec,∆STB)

etc.

hi_res
&PIP

screen

PIP
control

u x

hi res&PIP
in x : B

in control : C

out u : B

out screen, PIP : R

control.1.1 = x2screen ⇒
maxrate(x,100M)
∧ delay(pr′′(x c©PAL), screen,∆hi res&PIP)

control.1.1 = x2screen PIP ⇒
maxrate(x,100M)
∧ delay(pr′′(x c©PAL), screen,∆hi res&PIP)
∧ delay(pr′′(x c©DBH), PIP,∆hi res&PIP)

etc.

RC

u x

buttoncontrol

RC
in x : B

in control : C

in button : R

out u : B

control.1.1 = button2u ⇒
maxrate(u, 100)
∧ delay(button, pr′′(u c©IBH),∆RC)

controlmodem

url1 url2 url3

x

u

y v z w

modem
in url1, url2, url3, x, y, z : B

in control : C

out u, v, w : B

control.1.1 = url12v ⇒
maxrate(url1,56K)
∧ delay(url1, v,∆modem)

control.1.1 = z2u ⇒
maxrate(z,1M)
∧ delay(z, u,∆modem)

control.1.1 = url22w ⇒
maxrate(url2,56K)
∧ delay(url2, w,∆modem)

etc.

moving

feeling

level2
robot

u x

control

level2 robot
in x : B

in feeling : R

in control : C

out moving : R

out u : B

control.1.1 = x2moving ⇒
maxrate(x,10K)
∧ delay(pr′′(x c©DBH), moving,∆level2 robot)

control.1.1 = feeling2u ⇒
maxrate(u,10K)
∧ delay(feeling, pr′′(u c©IBH),∆level2 robot)

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

control.1.1 = x2moving feeling2u ⇒
maxrate(x,10K)
∧ maxrate(u,10K)
∧ delay(pr′′(x c©DBH), moving,∆level2 robot)
∧ delay(feeling, pr′′(u c©IBH),∆level2 robot)

screencontrol lo_res

u x

y v

lo res&PIP
in x, y : B

in control : C

out u, v : B

out screen : R

control.1.1 = x2screen ⇒
maxrate(x,1M)
∧ delay(pr′′(x c©MPG), screen,∆lo res)

control.1.1 = y2u ⇒
maxrate(y, 100)
∧ delay(y, u,∆lo res)

control.1.1 = x2screen y2u ⇒
maxrate(x,1M)
∧ maxrate(y, 100)
∧ delay(pr′′(x c©MPG), screen,∆lo res)
∧ delay(y, u,∆lo res)

etc.

5 Mapping

Next we propose a mapping. Abstractly, a mapping is a
set of paths through a given network, one path for each of
the four chains specified in SYSTEM. At a concrete level,
the paths are established by feeding appropriate switching
commands into STB, modem and lo res. In general there is
a freedom in choosing these paths, for example if alterna-
tive routing through the network exists. Even the choice of
which screen or interactive input is to be used is not a priori
fixed. The four paths are shown in Figure 6. In an infor-
mal way it is easy to check that the delay and bandwidth
constraints are not violated and the mapping is feasible.

To formalize the connections we use renaming by adapt-
ing port names to “wire names”. The wire names are also
shown in Figure 6. Note that w4a, w4b and w4c together
form a path from RC via lo res and modem to STB. The
other wire names are not used. Unused ports must be hid-

100b/s

100b/s

control

control

screen'

button
moving

feeling

exec

control

modemSTB

hi_res
&PIP

screen

PIP
lo_res

RC
level2
robot

url1 url2 url3channel

=1

=1 =1

=1

=0=0

Path4

Path1 Path3 Path2

1Mb/s100Mb/s

10Kb/s

w1

w4c

w4a

w3

w2

w4b

Media needs
∑

∆ Required
∑

∆

path1 cable 2 � 2
path2 the sign 1 � 3
path3 happy puppy 1 � 4
path4 updown 3 � 4

Figure 6. Four paths and “wire names”

den and ports that go to the external world must be renamed.
STB′ = STB[cable/channel,

updown/exec, w4c/x, w1/v]

 control : channel2v x2exec
\{control, x, y}

hi res&PIP′ = hi res&PIP[w1/x]

 control : x2screen
\{control, u, PIP}

RC′ = RC[w4a/u]

 control : button2u
\{control, x}

lo res′ = lo res[w4a/y, w4b/u, w2/x, screen′/screen]

 control : x2screen y2u
\{control, v}

modem′ = modem[happy puppy/url1, the sign/url2,
w4c/u, w3/v, w4b/z, w2/w]

 control : url12v url22w z2u
\{control, url3}

level2 robot′ = level2 robot[w3/x]

 control : x2moving
\{control, u, feeling}

Finally the whole system implementation is described by
SYSTEM′ = {STB′ ⊗ hi res&PIP′ ⊗ RC′ ⊗ modem′

⊗level2 robot}
which has the syntactic interface (I′, O′), where

I′ = {cable, the sign, happy puppy, button}
O′ = {screen, screen′, moving, updown}

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

6 Correctness

The next questions is: how to express the formal correct-
ness of the implementation?

Broy proposes three ideas of refinement: property re-
finement, glass box refinement, and interaction refinement.
The glass box refinement is a classical concept of refine-
ment typically used to decompose a system with a specified
black box behavior into a distributed system architecture in
the design phase, which seems appropriate in our case. The
general form of a glass box refinement is

F1 ⊕ F2 ⊕ · · · ⊕ Fn ⊆ F
(In Broy’s theory (see [2]), there is also another form for
state machines, which we don’t need here). The relation ⊆
on component behaviors is defined by the rule that F̂ ⊆ F
stands for the proposition ∀ x : I • F̂.x ⊆ F.x, where

F : I → P(O), F̂ : I → P(O).
Also recall the definition of ⊕ for F1 ⊕ F2

(F1 ⊕ F2).x = {y � O : y � I = x � I
∧ y � O1 = F1(x � I1) ∧ y � O2 = F2(x � I2)}

Let RATE′ be given by

rate(x.cable, 100,100K)
rate(x.happy puppy, 10, 100)
rate(x.the sign, 2, 5K)
rate(x.button, 1, 1)

Note that this is essentially the same as S1, ..., S4 are say-
ing about their z ports.

Consider an arbitrary x satisfying RATE′ where x ∈ I′

where I′ is {cable, ...}. x is a channel valuation x : I′ →
(M∗)∞ such that

∀ i : I′ • x.i ∈ (type(i)∗)∞

where M =
⋃
s∈S

s = PAL ∪ MPG ∪ DBH ∪ IBH ∪ R

Since I′ has only four elements, we can write this out by
assuming

x : cable �→ xu (xu ∈ (PAL∗)∞)
x : happy puppy �→ xd (xd ∈ (DBH∗)∞)
x : the sign �→ xc (xc ∈ (MPG∗)∞)
x : button �→ xb (xb ∈ (R∗)∞)

Now this x satisfies RATE′, that is, xu has 100 frames per
second, each frame being 100K bits, etc. (And similarly,
xd: 10, 100 respectively, xc: 2, 5K respectively and xb: 1, 1
respectively.)

Let y ∈ SYSTEM′.x where y ∈ O′where O′ is {screen,
screen′, moving, updown} which we write out by assuming

y : updown �→ yi (yi ∈ (IBH∗)∞)
y : screen �→ ys (ys ∈ (R∗)∞)
y : screen′ �→ ys′ (ys′ ∈ (R∗)∞)
y : moving �→ ym (ym ∈ (R∗)∞)

The correctness requirement is
RATE′ ∧ SYSTEM′ ⊆ SYSTEM

because SYSTEM′ only specifies maximal rates where as
SYSTEM has already fixed the rates.

The obvious proof strategy is to take an arbitrary x satis-
fying RATE′ and consider a y ∈ SYSTEM′.x, i.e.

y ∈ (STB′ ⊕ hi res&PIP′ ⊕ · · ·) \ {w1, w2, ...}).x
and then check that y ∈ SYSTEM.x, which essentially boils
down to checking maxdelay constraints and checking the
essential transformations of the form pr′′ for each of the
specification paths, e.g. when going from cable to screen,
or when going from the sign to screen′.

As an example we check that ys satisfies all constraints
of SYSTEM.x. Since SYSTEM falls apart in 4 unconnected
parts, it is enough to check that ys = y.screen satisfies the
the constraints of (S1 ◦ C1 ◦ P1)\{z, w}:

screenupc_cable
_801

S1 C1 P1

∃ z : (PAL∗)∞ • ∃w : (PAL∗)∞ •
z = x.cable ∧ rate(z, 100,100K)
∧ maxdelay(z, w, 2) ∧ y.screen = pr′′(w)

which is equivalent to:
rate(x.cable, 100,100K)

∧ maxdelay(pr′′(x.cable), y.screen, 2)
(since pr′′ works frame-wise.)

What we know about ys comes from RATE′ ∧ SYSTEM′

which for RATE′ means rate(cable, 100,100K). For
SYSTEM′, its meaning is more complicated. First, note that

SYSTEM′ : I → P(O)
also, SYSTEM′ = (STB′ ⊕ hi res&PIP′ ⊕ · · ·), where

STB′ = STB[cable/channel, w1/v, ...]

 control : channel2v x2exec
\{control, x, y}

hi res&PIP′ = hi res&PIP[w1/x]

 control : x2screen
\{control, u, PIP}

Note that for ys it suffices to focus on STB′ and
hi res&PIP and forget about all other channels than w1

where ⊕ can be replaced by ◦, i.e.
SYSTEM′ = hi res&PIP′ ◦ STB′

We summarize the assertions from SYSTEM′ by per-
forming the renamings and keeping only the relevant
clauses in view of the chosen control command. STB′ says:

maxrate(x.cable,100M)
∧ delay(x.cable, w1 c©PAL, ∆STB︸︷︷︸)

1
hi res&PIP′ says

maxrate(w1,100M)
∧ delay(pr′′(w1 c©PAL), y.screen, ∆hi res&PIP︸ ︷︷ ︸)

1

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

from rate(x.cable, 100,100K) we decide that for all t
#(x.cable.t) = 100

and for each i, the i-th frame has
#bits(x.cable.t.i) =100K

therefore
100∑
i=1

#bits(x.cable.t.i) =10M

so the maxrate requirement of STB′ saying
#(cable.t)∑

i=1

#bits(cable.t.i) <100M

is not contradicted.
Next we check the delays. We combine the two one-step

delay assertions, first by noting that pr′′ works frame-wise:{
delay(pr′′(x.cable), pr′′(w1 c©PAL), 1)
delay(pr′′(w1 c©PAL), screen, 1)

and secondly by adding the delays:
delay(pr′′(x.cable, y.screen, 2)

which satisfies the clause from SYSTEM that
maxdelay(pr′′(x.cable), y.screen, 2)

as required. The other SYSTEM constraints can be checked
in a similar manner.

7 Concluding remarks

The case study shows how Broy’s framework can deal
with special interfaces for control and events at an ab-
stract level and with real-world interfaces. It can also deal
with bandwidth requirements and network delays very well.
The case study does not have a sophisticated performance
model, but it is plausible that certain models can be made
using the same modelling style (for example if the delay is
a function of the bit rate).

The case study shows one specification and one config-
uration of presentation resources. Abstractly, the mapping
between the two is a set of paths through the network. Con-
cretely, a mapping is a set of control commands, to be given
to those components that have switching capabilities. Max-
imal rate and delay requirements can be checked formally,
although the calculations are not surprising. Media types
are described by sets such as PAL and MPG, this implies
that type compatibilities are handled formally too.

The model created focuses on the stream-based aspects;
in this type of distributed systems these aspects are most
important at the architectural level. At a protocol level, we
expect that reactive behavior is most important, and com-
plementary state-machine based models could be used [12].

The following research questions remain as options for
future research:

1. How to model dynamic aspects such as changing con-
figurations and servers that build presentations accord-
ing to the “factory” paradigm;

2. How to scale-up the approach when more and more
technicalities have to be modelled (while keeping the

math away from media developers);
3. How to specify the general class of “mapping prob-

lems” (instead of a single instance, as we did now).

Acknowledgment

The authors would like to thank Emile Aarts and Maddy
Janse from Philips Research Eindhoven for their support on
the work and Yuechen Qian for his comments on the early
draft of this paper.

References

[1] E. Aarts and S. Marzano. The New Everyday View on Ambi-
ent Intelligence. Uitgeverij 010 Publishers, 2003.

[2] M. Broy. A logical basis for component-based systems en-
gineering. In M. Broy and R. Steinbr uggen, editors, Calcu-
lational System Design. IOS Press, 1999.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture, A System
of Patterns. John Wiley & Sons, Inc., Chichester, UK, 1996.

[4] W. Eixelsberger and H. Gall. Describing software architec-
tures by system structure and properties. In COMPSAC ’98
- 22nd International Computer Software and Applications
Conference, pages 106–111, Vienna, Austria, 1998. IEEE
Computer Society.

[5] L. M. G. Feijs and Y. Qian. Component algebra. Science of
Computer Programming, 42(2-3):173–228, 2002.

[6] J. Hu and L. M. G. Feijs. An adaptive architecture for pre-
senting interactive media onto distributed interfaces. In The
21st IASTED International Conference on Applied Infor-
matics (AI 2003), pages 899–904, Innsbruck, Austria, 2003.
ACTA Press.

[7] J. Hu and L. M. G. Feijs. An agent-based architecture for
distributed interfaces and timed media in a storytelling ap-
plication. In The 2nd International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 1012–
1013, Melbourne, Australia, 2003.

[8] IBC. The world of content creation, management and deliv-
ery, 2003. Available from: http://www.ibc.org.

[9] ICE-CREAM. The ice-cream project homepage, 2003.
Available from: http://www.extra.research.philips.com /eu-
projects /icecream/.

[10] C. Kray, A. Krüger, and C. Endres. Some issues on presen-
tations in intelligent environments. In E. Aarts, R. Collier,
E. van Loenen, and B. de Ruyter, editors, First European
Symposium on Ambient Intelligence (EUSAI), pages 15–26,
Veldhoven, The Netherlands, 2003. Springer.

[11] NexTV. The nextv project homepage, 2001. Available from:
http://www.extra.research.philips.com /euprojects /nextv.

[12] A. Ulrich and H. König. Specification-based testing of con-
current systems. In A. Togashi, T. Mizuno, N. Shiratori,
and T. Higashino, editors, Joint International Conference
on Formal Description Techniques for Distributed Systems
and Communication Protocols (FORTE 1997), pages 7–22.
Chapman & Hall, 1997.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

	footer1:

